1
|
Celestra D, Nguyen NNL, Laberthonniere C, Pang KC, Saffery R, Davey RA, Mhlanga M, Cheung AS, Novakovic B. Epigenetic remodeling by sex hormone receptors and implications for gender affirming hormone therapy. Front Immunol 2025; 16:1501959. [PMID: 40406098 PMCID: PMC12095348 DOI: 10.3389/fimmu.2025.1501959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 04/17/2025] [Indexed: 05/26/2025] Open
Abstract
Sex differences in immune system development and response to pathogens has been well documented, with females exhibiting more favorable outcomes for certain infections but a higher incidence of autoimmune disease compared to males. At least some of these sex differences are mediated by sex hormones, which signal through sex hormone receptors to remodel the regulatory chromatin landscape of cells. Here, we summarize the current knowledge of how sex hormone receptors remodel chromatin structure and epigenetic marks in different contexts in humans. As the epigenome is fundamental to specifying cell identity and function, and reflects past exposures, epigenetic variation can influence cellular responses to future stimuli. This has implications for susceptibility to infection and complex inflammatory disease in a range of hormone therapy settings, including gender-affirming hormone therapy in transgender people. Therefore, profiling of epigenetic marks in the context of gender-affirming hormone therapy is an important unexplored field of research.
Collapse
Affiliation(s)
- Den Celestra
- Murdoch Children’s Research Institute and Department of Pediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Nhi N. L. Nguyen
- Murdoch Children’s Research Institute and Department of Pediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Camille Laberthonniere
- Radboud Institute for Molecular Life Sciences RIMLS, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ken C. Pang
- Murdoch Children’s Research Institute and Department of Pediatrics, The University of Melbourne, Parkville, VIC, Australia
- Department of Adolescent Medicine, Royal Children’s Hospital, Parkville, VIC, Australia
| | - Richard Saffery
- Murdoch Children’s Research Institute and Department of Pediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Rachel A. Davey
- Department of Medicine Austin Health, University of Melbourne, Heidelberg, VIC, Australia
| | - Musa Mhlanga
- Radboud Institute for Molecular Life Sciences RIMLS, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ada S. Cheung
- Department of Medicine Austin Health, University of Melbourne, Heidelberg, VIC, Australia
- Department of Endocrinology, Austin Health, Melbourne, VIC, Australia
| | - Boris Novakovic
- Murdoch Children’s Research Institute and Department of Pediatrics, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
2
|
Qu J, Jiang H, Zhang B, Shi H, Zeng S, Wang W, Chen L, Zhao Y. Oxidative stress-mediated abnormal polarization of decidual macrophages promotes the occurrence of atonic postpartum hemorrhage. Redox Biol 2025; 81:103530. [PMID: 40010137 PMCID: PMC11908556 DOI: 10.1016/j.redox.2025.103530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 02/28/2025] Open
Abstract
Postpartum hemorrhage (PPH) is the leading cause of maternal mortality worldwide. However, the mechanism underlying atonic PPH remains partially elucidated. Multi-omics revealed that differentially expressed proteins and metabolites were enriched in the immune-inflammation pathway in the vaginal blood of patients with atonic PPH. There was a pro-inflammatory immune microenvironment primarily activated by M1 macrophages in the decidua of the patients with atonic PPH, which presented as increased tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-8 levels and affected the contraction of the uterine smooth muscle. Besides, the decidual macrophage of the atonic PPH group exhibited increased oxidative stress. The PPH decidual cell culture medium induced the polarization of peripheral blood monocytes towards M1 macrophages while markedly increasing the levels of reactive oxygen species and superoxide anion radical. Using hydrogen peroxide (H2O2) to stimulate decidual macrophages induced a similar polarization state to that in atonic PPH samples, and the secretion of pro-inflammatory cytokines, such as TNF-α and IL-8, was significantly upregulated, which markedly impacted the expression of contraction-associated proteins (CAPs) in the uterine smooth muscle cells (uSMCs). The animal model suggested that H2O2 promoted the polarization of placental macrophages towards M1, affecting the levels of placental oxidative stress and inflammatory infiltration, and the contractility of uterine smooth muscle tissues. In summary, abnormal oxidative stress at the maternal-fetal interface induced the M1 polarization of decidual macrophages, causing the secretion of pro-inflammatory cytokines. TNF-α and IL-8 acted on uSMCs to inhibit CAP expression, inducing atonic PPH.
Collapse
Affiliation(s)
- Jiangxue Qu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; National Center for Healthcare Quality Management in Obstetrics, Beijing, China
| | - Hai Jiang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; National Center for Healthcare Quality Management in Obstetrics, Beijing, China
| | - Boyang Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, China
| | - Huifeng Shi
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; National Center for Healthcare Quality Management in Obstetrics, Beijing, China
| | - Shuai Zeng
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; National Center for Healthcare Quality Management in Obstetrics, Beijing, China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, China.
| | - Lian Chen
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; National Center for Healthcare Quality Management in Obstetrics, Beijing, China.
| | - Yangyu Zhao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; National Center for Healthcare Quality Management in Obstetrics, Beijing, China.
| |
Collapse
|
3
|
Yang W, Liu C, Li Z, Cui M. Exploring new drug treatment targets for immune related bone diseases using a multi omics joint analysis strategy. Sci Rep 2025; 15:10618. [PMID: 40148470 PMCID: PMC11950375 DOI: 10.1038/s41598-025-94053-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
In the field of treatment and prevention of immune-related bone diseases, significant challenges persist, necessitating the urgent exploration of new and effective treatment methods. However, most existing Mendelian randomization (MR) studies are confined to a single analytical approach, which limits the comprehensive understanding of the pathogenesis and potential therapeutic targets of these diseases. In light of this, we propose the hypothesis that genetic variations in specific plasma proteins have a causal relationship with immune-related bone diseases through the MR mechanism, and that key therapeutic targets can be accurately identified using an integrated multi-omic analysis approach. This study comprehensively applied a variety of analytical methods. Firstly, the protein quantitative trait locus (pQTLs) data from two large plasma protein databases and the Genome-Wide Association Study (GWAS) data of nine immune-related bone diseases were used for Mendelian randomization (MR) analysis. At the same time, we employed the Summary-based Mendelian Randomization (SMR) method, combined with the Bayesian colocalization analysis method of coding genes, as well as the Linkage Disequilibrium Score Regression (LDSC) analysis method based on genetic correlation analysis, as methods to verify the genetic association between genes and complex diseases, thus comprehensively obtaining positive results. In addition, a Phenome-wide Association Study (PheWAS) was conducted on significantly positive genes, and their expression patterns in different tissues were also explored. Subsequently, we integrated Protein-Protein Interaction (PPI) network analysis, Gene Ontology (GO) analysis. Finally, based on the above analytical methods, drug prediction and molecular docking studies were carried out with the aim of accurately identifying key therapeutic targets. Through a comprehensive analysis using four methods, namely the Mendelian randomization (MR) analysis study, Summary-based Mendelian Randomization (SMR) analysis study, Bayesian colocalization analysis study, and Linkage Disequilibrium Score Regression (LDSC) analysis study. We found that through MR, SMR, and combined with Bayesian colocalization analysis, an association was found between rheumatoid arthritis (RA) and HDGF. Using the combination of MR and Bayesian colocalization analysis, as well as LDSC analysis, it was concluded that RA was related to CCL19 and TNFRSF14. Based on the methods of MR and Bayesian colocalization, an association was found between GPT and Crohn's disease-related arthritis, and associations were found between BTN1A1, EVI5, OGA, TNFRSF14 and multiple sclerosis (MS), and associations were found between ICAM5, CCDC50, IL17RD, UBLCP1 and psoriatic arthritis (PsA). Specifically, in the MR analysis of RA, HDGF (P_ivw = 0.0338, OR = 1.0373, 95%CI = 1.0028-1.0730), CCL19 (P_ivw = 0.0004, OR = 0.3885, 95%CI = 0.2299-0.6566), TNFRSF14 (P_ivw = 0.0007, OR = 0.6947, 95%CI = 0.5634-0.8566); in the MR analysis of MS, BTN1A1 (P_ivw = 0.0000, OR = 0.6101, 95%CI = 0.4813-0.7733), EVI5 (P_ivw = 0.0000, OR = 0.3032, 95%CI = 0.1981-0.4642), OGA (P_ivw = 0.0005, OR = 0.4599, 95%CI = 0.2966-0.7131), TNFRSF14 (P_ivw = 0.0002, OR = 0.4026, 95%CI = 0.2505-0.6471); in the MR analysis of PsA, ICAM5 (P_ivw = 0.0281, OR = 1.1742, 95%CI = 1.0174-1.3552), CCDC50 (P_ivw = 0.0092, OR = 0.7359, 95%CI = 0.5843-0.9269), IL17RD (P_ivw = 0.0006, OR = 0.7887, 95%CI = 0.6886-0.9034), UBLCP1 (P_ivw = 0.0021, OR = 0.6901, 95%CI = 0.5448-0.8741); in the MR analysis of Crohn's disease-related arthritis, GPT (P_ivw = 0.0006, OR = 0.0057, 95%CI = 0.0003-0.1111). In the Bayesian colocalization analysis of RA, HDGF (H4 = 0.8426), CCL19 (H4 = 0.9762), TNFRSF14 (H4 = 0.8016); in the Bayesian colocalization analysis of MS, BTN1A1 (H4 = 0.7660), EVI5 (H4 = 0.9800), OGA (H4 = 0.8569), TNFRSF14 (H4 = 0.8904); in the Bayesian colocalization analysis of PsA, ICAM5 (H4 = 0.9476), CCDC50 (H4 = 0.9091), IL17RD (H4 = 0.9301), UBLCP1 (H4 = 0.8862); in the Bayesian colocalization analysis of Crohn's disease-related arthritis, GPT (H4 = 0.8126). In the SMR analysis of RA, HDGF (p_SMR = 0.0338, p_HEIDI = 0.0628). In the LDSC analysis of RA, CCL19 (P = 0.0000), TNFRSF14 (P = 0.0258). By comprehensively analyzing plasma proteomic and transcriptomic data, we successfully identified key therapeutic targets for various clinical subtypes of immune-associated bone diseases. Our findings indicate that the significant positive genes associated with RA include HDGF, CCL19, and TNFRSF14; the positive gene linked to Crohn-related arthropathy is GPT; for MS, the positive genes are BTN1A1, EVI5, OGA, and TNFRSF14; and for PsA, the positive genes are ICAM5, CCDC50, IL17RD, and UBLCP1. Through this comprehensive analytical approach, we have screened potential therapeutic targets for different clinical subtypes of immune-related bone diseases. This research not only enhances our understanding of the pathogenesis of these conditions but also provides a solid theoretical foundation for subsequent drug development and clinical treatment, with the potential to yield significant advancements in the management of patients with immune-related bone diseases.
Collapse
Affiliation(s)
- Wei Yang
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Chenglin Liu
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Zhenhua Li
- Affiliated Hospital of Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin, China.
| | - Miao Cui
- Capital Medical University, No.10, Xitoutiao, You'anmenwai, Beijing, 100069, Fengtai District, China.
| |
Collapse
|
4
|
Albeitawi S, Bani-Mousa SU, Jarrar B, Aloqaily I, Al-Shlool N, Alsheyab G, Kassab A, Qawasmi B, Awaisheh A. Associations Between Follicular Fluid Biomarkers and IVF/ICSI Outcomes in Normo-Ovulatory Women-A Systematic Review. Biomolecules 2025; 15:443. [PMID: 40149979 PMCID: PMC11940193 DOI: 10.3390/biom15030443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
(1) Background: The follicular fluid (FF) comprises a large portion of ovarian follicles, and serves as both a communication and growth medium for oocytes, and thus should be representative of the metabolomic status of the follicle. This review aims to explore FF biomarkers as well as their effects on fertilization, oocyte, and embryo development, and later on implantation and maintenance of pregnancy. (2) Methods: This review was registered in the PROSPERO database with the ID: CRD42025633101. We parsed PubMed, Scopus, and Google Scholar for research on the effects of different FF biomarkers on IVF/ICSI outcomes in normo-ovulatory women. Included studies were assessed for risk of bias using the NOS scale. Data were extracted and tabulated by two independent researchers. (3) Results: 22 included articles, with a sample size range of 31 to 414 and a median of 60 participants, contained 61 biomarkers, including proteins, growth factors, steroid and polypeptide hormones, inflammation and oxidative stress markers, amino acids, vitamins, lipids of different types, and miRNAs. Most of the biomarkers studied had significant effects on IVF/ICSI outcomes, and seem to have roles in various cellular pathways responsible for oocyte and embryo growth, implantation, placental formation, and maintenance of pregnancy. The FF metabolome also seems to be interconnected, with its various components influencing the levels and activities of each other through feedback loops. (4) Conclusions: FF biomarkers can be utilized for diagnostic and therapeutic purposes in IVF; however, further studies are required for choosing the most promising ones due to heterogeneity of results. Widespread adoption of LC-MS and miRNA microarrays can help quantify a representative FF metabolome, and we see great potential for in vitro supplementation (IVS) of some FF biomarkers in improving IVF/ICSI outcomes.
Collapse
Affiliation(s)
- Soha Albeitawi
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | | | - Baraa Jarrar
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Ibrahim Aloqaily
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Nour Al-Shlool
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Ghaida Alsheyab
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Ahmad Kassab
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Baha’a Qawasmi
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Abdalrahman Awaisheh
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| |
Collapse
|
5
|
Huo C, Zhang C, Lu J, Su X, Qi X, Guo Y, Bao Y, Jia H, Cao G, Na R, Zhang W, Li X. A deep learning tissue classifier based on differential co-expression genes predicts the pregnancy outcomes of cattle†. Biol Reprod 2025; 112:550-562. [PMID: 39832283 DOI: 10.1093/biolre/ioaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025] Open
Abstract
Economic losses in cattle farms are frequently associated with failed pregnancies. Some studies found that the transcriptomic profiles of blood and endometrial tissues in cattle with varying pregnancy outcomes display discrepancies even before artificial insemination (AI) or embryo transfer (ET). In the study, 330 samples from seven distinct sources and two tissue types were integrated and divided into two groups based on the ability to establish and maintain pregnancy after AI or ET: P (pregnant) and NP (nonpregnant). By analyzing gene co-variation and employing machine learning algorithms, the objective was to identify genes that could predict pregnancy outcomes in cattle. Initially, within each tissue type, the top 100 differentially co-expressed genes (DCEGs) were identified based on the analysis of changes in correlation coefficients and network topological structure. Subsequently, these genes were used in models trained by seven different machine learning algorithms. Overall, models trained on DCEGs exhibited superior predictive accuracy compared to those trained on an equivalent number of differential expression genes. Among them, the deep learning models based on differential co-expression genes in blood and endometrial tissue achieved prediction accuracies of 91.7% and 82.6%, respectively. Finally, the importance of DCEGs was ranked using SHapley Additive exPlanations (SHAP) and enrichment analysis, identifying key signaling pathways that influence pregnancy. In summary, this study identified a set of genes potentially affecting pregnancy by analyzing the overall co-variation of gene connections between multiple sources. These key genes facilitated the development of interpretable machine learning models that accurately predict pregnancy outcomes in cattle.
Collapse
Affiliation(s)
- Chenxi Huo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Chuanqiang Zhang
- Inner Mongolia SK·Xing Animal Breeding and Breeding Biotechnology Research Institute Co., Ltd, Hohhot, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Jing Lu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaofeng Su
- Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, China
| | - Xiaoxia Qi
- Inner Mongolia SK·Xing Animal Breeding and Breeding Biotechnology Research Institute Co., Ltd, Hohhot, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Yaqiang Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanchun Bao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Hongxia Jia
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Guifang Cao
- Inner Mongolia SK·Xing Animal Breeding and Breeding Biotechnology Research Institute Co., Ltd, Hohhot, China
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Risu Na
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Wenguang Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Xihe Li
- Inner Mongolia SK·Xing Animal Breeding and Breeding Biotechnology Research Institute Co., Ltd, Hohhot, China
- National Center of Technology Innovation for Dairy, Hohhot, China
- Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, China
| |
Collapse
|
6
|
Feyaerts D, Diop M, Galaz J, Einhaus JF, Arck PC, Diemert A, Winn VD, Parast M, Gyamfi-Bannerman C, Prins JR, Gomez-Lopez N, Stelzer IA. The single-cell immune profile throughout gestation and its potential value for identifying women at risk for spontaneous preterm birth. Eur J Obstet Gynecol Reprod Biol X 2025; 25:100371. [PMID: 40052005 PMCID: PMC11883378 DOI: 10.1016/j.eurox.2025.100371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/23/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025] Open
Abstract
Precisely timed immune adaptations, observed in the maternal circulation, underpin the notion of an immune clock of human pregnancy that supports its successful progression and completion at delivery. This immune clock is divided into three immunological phases, with the first phase starting at the time of conception and implantation, shifting into the second phase that supports homeostasis and tolerance throughout pregnancy, and culminating in the last phase of labor and parturition. Disruptions of this immune clock are reported in pregnancy complications such as spontaneous preterm birth. However, our understanding of the immune clock preceding spontaneous preterm birth remains scattered. In this review, we describe the chronology of maternal immune cell adaptations during healthy pregnancies and highlight its disruption in spontaneous preterm birth. With a focus on single-cell cytometric, proteomic and transcriptomic approaches, we review recent studies of term and spontaneous preterm pregnancies and discuss the need for future prospective studies aimed at tracking pregnancies longitudinally on a multi-omic scale. Such studies will be critical in determining whether spontaneous preterm pregnancies progress at an accelerated pace or follow a preterm-intrinsic pattern when compared to those delivered at term.
Collapse
Affiliation(s)
- Dorien Feyaerts
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Maïgane Diop
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jose Galaz
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jakob F. Einhaus
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Petra C. Arck
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anke Diemert
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Virginia D. Winn
- Department of Obstetrics and Gynecology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mana Parast
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Cynthia Gyamfi-Bannerman
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Jelmer R. Prins
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Nardhy Gomez-Lopez
- Departments of Obstetrics and Gynecology & Pathology and Immunology, Washington University School of Medicine, St. Louis, USA
| | - Ina A. Stelzer
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
7
|
Yahyayev T, Kirmizitas TS, Benian A, Gunel T. Can activator protein-1 transcription factors be monitored in the maternal circulation to predict set on labor? Obstet Gynecol Sci 2025; 68:139-147. [PMID: 39935051 PMCID: PMC11976921 DOI: 10.5468/ogs.23288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 09/06/2024] [Accepted: 02/02/2025] [Indexed: 02/13/2025] Open
Abstract
OBJECTIVE We aimed to compare gene expression levels in myometrial tissues and serum from pregnant women undergoing cesarean section (CS) with and without uterine contractions. The myometrial activator protein-1 (AP-1) transcription factor family (JUN, FOS, and fos-related antigen-2 [FOSL2]) was evaluated as a contraction-related marker in maternal circulation to predict labor timing. METHODS Samples were collected from pregnant women undergoing CS. Uterine contractions were observed in the experimental group (n=10) but not in the control group (n=10). Gene expression of JUN, FOS, and FOSL2 was analyzed in serum and myometrial samples using droplet digital polymerase chain reaction, and statistical analysis was performed using GraphPad software (GraphPad Software, San Diego, CA, USA). RESULTS Given the non-normal data distribution, JUN, FOS, and FOSL2 gene expression levels increased in the CS group with uterine contractions. However, this increase was not statistically significant in either tissue or serum samples. Nevertheless, the correlation of JUN messenger RNA expression between maternal circulation and myometrial tissue was statistically significant in the CS group with contractions (p<0.01). CONCLUSION This is the first study to investigate AP-1 transcription factor expression in matched tissue and serum samples in relation to uterine contractility. The increased expression of JUN, FOS, and FOSL2 in the CS group with contractions suggests these genes may play a key role in initiating or propagating human labor, indicating that contractionassociated AP-1 could serve as a biomarker for labor timing.
Collapse
Affiliation(s)
- Toghrul Yahyayev
- Department of Obstetrics and Gynecology, Istanbul University - Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Istanbul,
Türkiye
| | - Tugce Senturk Kirmizitas
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul,
Türkiye
| | - Ali Benian
- Department of Obstetrics and Gynecology, Istanbul University - Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Istanbul,
Türkiye
| | - Tuba Gunel
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul,
Türkiye
| |
Collapse
|
8
|
Mikhalev SA, Kurtser MA, Radzinsky VE, Orazov MR, Beeraka NM, Mikhaleva LM. Exploring the Role of Lower Genital Tract Microbiota and Cervical-Endometrial Immune Metabolome in Unknown Genesis of Recurrent Pregnancy Loss. Int J Mol Sci 2025; 26:1326. [PMID: 39941094 PMCID: PMC11818274 DOI: 10.3390/ijms26031326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Recurrent pregnancy loss (RPL) of unknown genesis is a complex condition with multifactorial origins, including genetic, hormonal, and immunological factors. However, the specific mechanisms underlying endocervical cell proliferation disorders in women with RPL remain inadequately understood, particularly concerning the role of microbiota and viral infections. The aim of this study was to investigate the mechanisms of endocervical cell proliferation disorders in women with RPL of unknown genesis by examining microbiota, human papillomavirus (HPV) typing, and the expression levels of key molecular biological markers, including p16/Ki-67, BCL-2, miR-145, and miR-34a. A prospective observational comparative study was executed on women with RPL and healthy pregnant controls with full ethical approval. Samples were collected for HPV typing and immunocytochemical analysis to evaluate the expression of p16, Ki-67, BCL-2, and the anti-oncogenic microRNAs (miR-145 and miR-34a). The expression of mRNA for the progesterone receptor (PGR-A) was also assessed, alongside local immune status markers, including proinflammatory T-lymphocytes (Th17/Th1) and regulatory CD4+ Tregs. Overexpression of p16, Ki-67, and BCL-2 was observed in 52.5% of women with RPL who had an ASC-US/LSIL cytogram, with the average double expression of p16/Ki-67 being three times higher than in the healthy pregnant group. A significant decrease in PGR-A mRNA expression in the endocervix of women with RPL was noted, accompanied by a dysregulated local immune status characterized by an increased prevalence of Th17/Th1 cells and a reduction in regulatory CD4+ Tregs. Additionally, the expression of miR-145 and miR-34a in the endocervix and endometrium of women with RPL significantly differed from the physiological pregnancy group, particularly in the context of high-risk HPV infection. The findings describe that disorders of endocervical cell proliferation in women with RPL of unknown genesis are associated with overexpression of specific molecular markers, impaired immune regulation, and altered microRNA profiles. These alterations may contribute to the pathophysiology of RPL, highlighting the need for further research into targeted interventions that could improve reproductive outcomes in affected individuals.
Collapse
Affiliation(s)
- Sergey A. Mikhalev
- Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov Russian National Research Medical University” of the Ministry of Health of the Russian Federation, 117997 Moscow, Russia; (S.A.M.); (M.A.K.)
- City Clinical Hospital No. 31 Named After Academician G.M. Savelyeva of the Department of Health, 119415 Moscow, Russia
| | - Mark A. Kurtser
- Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov Russian National Research Medical University” of the Ministry of Health of the Russian Federation, 117997 Moscow, Russia; (S.A.M.); (M.A.K.)
| | - Victor E. Radzinsky
- Department of Obstetrics and Gynecology, Federal State Autonomous Educational Institution of Higher Education «Peoples’ Friendship University of Russia», 117198 Moscow, Russia; (V.E.R.); (M.R.O.)
| | - Mekan R. Orazov
- Department of Obstetrics and Gynecology, Federal State Autonomous Educational Institution of Higher Education «Peoples’ Friendship University of Russia», 117198 Moscow, Russia; (V.E.R.); (M.R.O.)
| | - Narasimha M. Beeraka
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Chiyyedu 515721, Andhra Pradesh, India
- Department of Studies in Molecular Biology, University of Mysore, Mysore 570006, Karnataka, India
| | - Lyudmila M. Mikhaleva
- Scientific Research Institute of Human Morphology Named After Academician A.P. Avtsyn of the Federal State Budgetary Scientific Institution “Russian Scientific Center of Surgery Named After Academician B.V. Petrovsky”, 125315 Moscow, Russia
| |
Collapse
|
9
|
Zhou J, Yan P, Ma W, Li J. Cytokine modulation and immunoregulation of uterine NK cells in pregnancy disorders. Cytokine Growth Factor Rev 2025; 81:40-53. [PMID: 39603954 DOI: 10.1016/j.cytogfr.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Uterine natural killer (uNK) cells play a pivotal role in promoting placental development and supporting maternal-fetal immune tolerance, primarily through cytokine regulation and growth factor production. While the importance of uNK cells in pregnancy is well-established, the mechanisms of their interactions with trophoblasts and contributions to various pregnancy complications remain incompletely understood. This review highlights recent advancements in understanding uNK cell functions, with a focus on cytokine production, growth factor secretion, and receptor-ligand interactions, particularly involving killer immunoglobulin-like receptors (KIR) and human leukocyte antigen-C (HLA-C). We explore how uNK cell dysfunction contributes to pregnancy complications, including preeclampsia, recurrent pregnancy loss, and placenta accreta spectrum (PAS) disorders, emphasizing their roles in immune tolerance and placental health. By detailing the distinct cytokine signaling pathways and functional subtypes of uNK cells, this review provides insights into their regulatory mechanisms essential for pregnancy maintenance. Additionally, we discuss emerging therapeutic strategies targeting uNK-trophoblast interactions and propose future research directions, including the development of non-invasive biomarkers and personalized interventions. This comprehensive review addresses critical knowledge gaps, aiming to advance research in reproductive immunology and guide therapeutic innovations in maternal health.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China.
| | - Ping Yan
- Qingdao City Health Care Center for Cadres, Qingdao, Shandong 266071, China.
| | - Wenxue Ma
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, University of California San Diego, La Jolla, CA 92093, USA.
| | - Jing Li
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China.
| |
Collapse
|
10
|
Park M, Kim YS, Song H. Macrophages: a double-edged sword in female reproduction and disorders. Exp Mol Med 2025; 57:285-297. [PMID: 39894821 PMCID: PMC11873061 DOI: 10.1038/s12276-025-01392-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/31/2024] [Accepted: 11/12/2024] [Indexed: 02/04/2025] Open
Abstract
Reproduction consists of sequential inflammation-like events, primarily within the endometrium, from ovulation to embryo implantation, decidualization and delivery. During the reproductive cycle, the endometrium repeatedly undergoes cyclic periods of proliferation, differentiation, tissue breakdown and repair without scarring. Owing to their phagocytic activity, macrophages, key players in innate immunity, are thought to play crucial roles in the endometrium. Endometrial macrophages actively participate in various stages of reproductive tissue remodeling, particularly during decidualization and pregnancy establishment. Traditionally considered simple bystanders that clear debris to prevent autoimmune responses in tissue homeostasis, macrophages are now recognized as main actors with broad functional plasticity that allows them to fine tune the balance between pro- and anti-inflammatory responses during tissue inflammation, remodeling and repair. Homeostatic balance is determined by the sum of various mediators produced by two distinctly polarized macrophage subpopulations. The biased polarization of tissue-resident macrophages may contribute to the pathogenesis of various diseases, such as inflammation and cancer. Thus, understanding how macrophages contribute to endometrial homeostasis is crucial for deciphering the underlying mechanisms of various reproductive disorders. Nanomedicines using extracellular vesicles, nanoparticles and noncoding RNAs have recently been applied to modulate macrophage polarization and alleviate disease phenotypes. Despite these advances, the functions of endometrial macrophages under physiological and pathophysiological conditions remain poorly understood, which complicates the development of targeted therapies. Here we update the current understanding of the homeostatic function of macrophages and the putative contribution of endometrial macrophage dysfunction to reproductive disorders in women, along with innovative molecular therapeutics to resolve this issue.
Collapse
Affiliation(s)
- Mira Park
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, Korea
| | - Yeon Sun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, Korea
| | - Haengseok Song
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, Korea.
- Division of Life Science, CHA University, Pocheon, Korea.
- Department of Life Science, Graduate School, CHA University, Pocheon, Korea.
- CHA Advanced Research Institute, Seongnam, Korea.
- KW-Bio Co., Chuncheon, Korea.
| |
Collapse
|
11
|
Battistoni O, Huston RH, Verma C, Pacheco-Fernandez T, Abul-Khoudoud S, Campbell A, Satoskar AR. Understanding Sex-biases in Kinetoplastid Infections: Leishmaniasis and Trypanosomiasis. Expert Rev Mol Med 2025; 27:e7. [PMID: 39781597 PMCID: PMC11803520 DOI: 10.1017/erm.2024.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/27/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Leishmaniasis, Chagas disease (CD), and Human African Trypanosomiasis (HAT) are neglected tropical diseases in humans caused by intracellular parasites from the class Kinetoplastida. Leishmaniasis is one infectious disease that exhibits sex-bias not explained solely by behavioral or cultural differences. However, HAT and CD have less well documented and understood sex-related differences, either due to a lack of differences or insufficient research and reporting. METHODS This paper reviews the rate of disease and disease severity among male and females infected with CD, HAT, and leishmaniasis. We further review the specific immune response to each pathogen and potential sex-based mechanisms which could impact immune responses and disease outcomes. RESULTS These mechanisms include sex hormone modulation of the immune response, sex-related genetic differences, and socio-cultural factors impacting risky behaviors in men and women. The mechanistic differences in immune response among sexes and pathogens provide important insights and identification of areas for further research. CONCLUSIONS This information can aid in future development of inclusive, targeted, safe, and effective treatments and control measures for these neglected diseases and other infectious diseases.
Collapse
Affiliation(s)
- Olivia Battistoni
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Ryan H. Huston
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
- Department of Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Chaitenya Verma
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
- Department of Biotechnology, Sharda School of Engineering & Technology, Sharda University, Greater Noida, UP, India
| | - Thalia Pacheco-Fernandez
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Sara Abul-Khoudoud
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Alison Campbell
- Department of Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Abhay R. Satoskar
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
- Department of Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
12
|
Meggyes M, Nagy DU, Mezosi L, Polgar B, Szereday L. CD8+ and CD8- NK Cells and Immune Checkpoint Networks in Peripheral Blood During Healthy Pregnancy. Int J Mol Sci 2025; 26:428. [PMID: 39796279 PMCID: PMC11720283 DOI: 10.3390/ijms26010428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Pregnancy involves significant immunological changes to support fetal development while protecting the mother from infections. A growing body of evidence supports the importance of immune checkpoint pathways, especially at the maternal-fetal interface, although limited information is available about the peripheral expression of these molecules by CD8+ and CD8- NK cell subsets during the trimesters of pregnancy. Understanding the dynamics of these immune cells and their checkpoint pathways is crucial for elucidating their roles in pregnancy maintenance and potential complications. This study aims to investigate the peripheral expression and functional characteristics of CD8+ and CD8- NK cell subsets throughout pregnancy, providing insights into their contributions to maternal and fetal health. A total of 34 healthy women were enrolled from the first, 30 from the second and 40 from the third trimester of pregnancy. At the same time, 35 healthy age-matched non-pregnant women formed the control group. From peripheral blood, mononuclear cells were separated and stored at -80 °C. CD8+ and CD8- NK cell subsets were analyzed from freshly thawed samples, and surface and intracellular staining was performed using flow cytometric analyses. The proportions of CD56+ NK cells in peripheral blood were similar across groups. While CD8- NKdim cells increased significantly in all trimesters compared to non-pregnant controls, CD8+ NKdim cells showed no significant changes. CD8- NKbright cells had higher frequencies throughout pregnancy, whereas CD8+ NKbright cells significantly increased only in the first and second trimesters. The expression levels of immune checkpoint molecules, such as PD-1 and PD-L1, and cytotoxic-activity-related molecules were stable, with notable perforin and granzyme B increases in CD8- NKbright cells throughout pregnancy. Our study shows that peripheral NK cell populations, especially CD8- subsets, are predominant during pregnancy. This shift suggests a crucial role for CD8- NK cells in balancing maternal immune tolerance and surveillance. The stable expression of immune checkpoint molecules indicates that other regulatory mechanisms may be at work. These findings enhance our understanding of peripheral immune dynamics in pregnancy and suggest that targeting CD8- NKbright cell functions could help manage pregnancy-related immune complications. This research elucidates the stable distribution and functional characteristics of peripheral NK cells during pregnancy, with CD8- subsets being more prevalent. The increased activity of CD8- NKbright cells suggests their critical role in maintaining immune surveillance. Our findings provide a basis for future studies to uncover the mechanisms regulating NK cell function in pregnancy, potentially leading to new treatments for immune-related pregnancy complications.
Collapse
Affiliation(s)
- Matyas Meggyes
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pecs, Hungary
| | - David U. Nagy
- Institute of Geobotany/Plant Ecology, Martin-Luther-University, Große Steinstraße 79/80, D-06108 Halle, Germany
| | - Livia Mezosi
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary
| | - Beata Polgar
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary
| | - Laszlo Szereday
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pecs, Hungary
| |
Collapse
|
13
|
de Ziegler D, Soktean S, Pirtea P. Why frozen embryo transfer results are lower with vaginal progesterone? Did we miss something? Fertil Steril 2024:S0015-0282(24)02386-0. [PMID: 39522744 DOI: 10.1016/j.fertnstert.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Affiliation(s)
| | - Sean Soktean
- Fertility Clinic of Cambodia (FCC), Phnom Penh, Cambodia
| | - Paul Pirtea
- Obstetrics and Gynecology Department, Hopital Foch, Paris, France
| |
Collapse
|
14
|
Bautista-Bautista G, Salguero-Zacarias S, Villeda-Gabriel G, García-López G, Osorio-Caballero M, Palafox-Vargas ML, Acuña-González RJ, Lara-Pereyra I, Díaz-Ruíz O, Flores-Herrera H. Escherichia coli induced matrix metalloproteinase-9 activity and type IV collagen degradation is regulated by progesterone in human maternal decidual. BMC Pregnancy Childbirth 2024; 24:645. [PMID: 39367340 PMCID: PMC11451097 DOI: 10.1186/s12884-024-06847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Escherichia coli (E. coli) is one of the main bacteria associated with preterm premature rupture of membranes by increasing pro-matrix metalloproteinase 9 (proMMP-9) and degradation of type IV collagen in human feto-maternal interface (HFMi). proMMP-9 is regulated by progesterone (P4) but it is unclear whether P4 inhibits proMMP in human maternal decidual (MDec). This study aimed to determine a role of P4 on proMMP-2 and - 9 and type IV collagen induced by E. coli infection in MDec. METHODS Nine HFMi were mounted in a Transwell system. MDec was stimulated with P4 or E. coli for 3-, 6-, or 24-hours. proMMP-2, -9 and type IV collagen were assessed. RESULTS Gelatin zymography revealed an increase in proMMP-9 after 3, 6, and 24 h of stimulating MDec with E. coli. Using immunofluorescence, it was confirmed the increase in the HFMi tissue and a reduction on the amount of type IV collagen leading to the separation of fetal amniochorion and MDEc. The degradative activity of proMMP-9 was reduced by 20% by coincubation with P4. CONCLUSIONS P4 modulates the activity of proMMP-9 induced by E. coli stimulation but it was unable to completely reverse the degradation of type IV collagen in human MDec tissue.
Collapse
Affiliation(s)
- Gerardo Bautista-Bautista
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Urales #800 Col. Lomas de Virreyes CP 11000, Tercer piso de la Torre de Investigación, Ciudad de México, México
| | - Santos Salguero-Zacarias
- Departamento de Tococirugia y Urgencias, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, México
| | - Graciela Villeda-Gabriel
- Departamento de Inmunología e infectología, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, México
| | - Guadalupe García-López
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes , Ciudad de México, México
| | - Mauricio Osorio-Caballero
- Departamento de Salud Sexual y Reproductiva, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, México
| | - Martha Leticia Palafox-Vargas
- Departamento de Anatomía Patológica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, México
| | - Ricardo Josué Acuña-González
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Urales #800 Col. Lomas de Virreyes CP 11000, Tercer piso de la Torre de Investigación, Ciudad de México, México
| | - Irlando Lara-Pereyra
- Departamento de Ginecología, Hospital General de Zona 252, Instituto Mexicano del Seguro Social, Atlacomulco, México
| | - Oscar Díaz-Ruíz
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hector Flores-Herrera
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Urales #800 Col. Lomas de Virreyes CP 11000, Tercer piso de la Torre de Investigación, Ciudad de México, México.
| |
Collapse
|
15
|
Zhao X, Xu A, Lu X, Chen B, Hua Y, Ma Y. Association of phthalates exposure and sex steroid hormones with late-onset preeclampsia: a case-control study. BMC Pregnancy Childbirth 2024; 24:577. [PMID: 39227873 PMCID: PMC11369995 DOI: 10.1186/s12884-024-06793-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND This study aimed to investigate the relationship between phthalates exposure and estrogen and progesterone levels, as well as their role in late-onset preeclampsia. METHODS A total of 60 pregnant women who met the inclusion and exclusion criteria were recruited. Based on the diagnosis of preeclampsia, participants were divided into two groups: normotensive pregnant women (n = 30) and pregnant women with late-onset preeclampsia (n = 30). The major metabolites of phthalates (MMP, MEP, MiBP, MBP, MEHP, MEOHP, MEHHP) and sex steroid hormones (estrogen and progesterone) were quantified in urine samples of the participants. RESULTS No significant differences were observed in the levels of MMP, MEP, MiBP, MBP, MEHP, MEOHP, and MEHHP between women with preeclampsia and normotensive pregnant women (P > 0.05). The urinary estrogen showed a negative correlation with systolic blood pressure (rs= -0.46, P < 0.001) and diastolic blood pressure (rs= -0.47, P < 0.001). Additionally, the urinary estrogen and progesterone levels were lower in women with preeclampsia compared to those in normotensive pregnant women (P < 0.05). After adjusting for confounding factors, we observed a significant association between reduced urinary estrogen levels and an increased risk of preeclampsia (aOR = 0.09, 95%CI = 0.02-0.46). Notably, in our decision tree model, urinary estrogen emerged as the most crucial variable for identifying pregnant women at a high risk of developing preeclampsia. A positive correlation was observed between urinary progesterone and MEHP (rs = 0.36, P < 0.05) in normotensive pregnant women. A negative correlation was observed between urinary estrogen and MEP in pregnant women with preeclampsia (rs= -0.42, P < 0.05). CONCLUSIONS Phthalates exposure was similar in normotensive pregnant women and those with late-onset preeclampsia within the same region. Pregnant women with preeclampsia had lower levels of estrogen and progesterone in their urine, while maternal urinary estrogen was negatively correlated with the risk of preeclampsia and phthalate metabolites (MEP). TRIAL REGISTRATION Registration ID in Clinical Trials: NCT04369313; registration date: 30/04/2020.
Collapse
Affiliation(s)
- Xiaomin Zhao
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Department of Obstetrics and Gynecology, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China
| | - Anjian Xu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xinyue Lu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Baoyi Chen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ying Hua
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Yanyan Ma
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
16
|
Druker S, Sicsic R, Ravid S, Scheinin S, Raz T. Reproductive Tract Microbial Transitions from Late Gestation to Early Postpartum Using 16S rRNA Metagenetic Profiling in First-Pregnancy Heifers. Int J Mol Sci 2024; 25:9164. [PMID: 39273112 PMCID: PMC11394886 DOI: 10.3390/ijms25179164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/31/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Studies in recent years indicate that reproductive tract microbial communities are crucial for shaping mammals' health and reproductive outcomes. Following parturition, uterine bacterial contamination often occurs due to the open cervix, which may lead to postpartum uterine inflammatory diseases, especially in primiparous individuals. However, investigations into spatio-temporal microbial transitions in the reproductive tract of primigravid females remain limited. Our objective was to describe and compare the microbial community compositions in the vagina at late gestation and in the vagina and uterus at early postpartum in first-pregnancy heifers. Three swab samples were collected from 33 first-pregnancy Holstein Friesian heifers: one vaginal sample at gestation day 258 ± 4, and vaginal and uterine samples at postpartum day 7 ± 2. Each sample underwent 16S rRNA V4 region metagenetic analysis via Illumina MiSeq, with bioinformatics following Mothur MiSeq SOP. The reproductive tract bacterial communities were assigned to 1255 genus-level OTUs across 30 phyla. Dominant phyla, accounting for approximately 90% of the communities, included Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, and Fusobacteria. However, the results revealed distinct shifts in microbial composition between the prepartum vagina (Vag-pre), postpartum vagina (Vag-post), and postpartum uterus (Utr-post). The Vag-pre and Utr-post microbial profiles were the most distinct. The Utr-post group had lower relative abundances of Proteobacteria but higher abundances of Bacteroidetes, Fusobacteria, and Tenericutes compared to Vag-pre, while Vag-post displayed intermediate values for these phyla, suggesting a transitional profile. Additionally, the Utr-post group exhibited lower bacterial richness and diversity compared to both Vag-pre and Vag-post. The unsupervised probabilistic Dirichlet Multinomial Mixtures model identified two distinct community types: most Vag-pre samples clustered into one type and Utr-post samples into another, while Vag-post samples were distributed evenly between the two. LEfSe analysis revealed distinct microbial profiles at the genus level. Overall, specific microbial markers were associated with anatomical and temporal transitions, revealing a dynamic microbial landscape during the first pregnancy and parturition. These differences highlight the complexity of these ecosystems and open new avenues for research in reproductive biology and microbial ecology.
Collapse
Affiliation(s)
- Shaked Druker
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610010, Israel
- Hachaklait, Mutual Society for Veterinary Services, Caesarea Industrial Park, Caesarea 3079548, Israel
| | - Ron Sicsic
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610010, Israel
| | - Shachar Ravid
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610010, Israel
| | - Shani Scheinin
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610010, Israel
- Hachaklait, Mutual Society for Veterinary Services, Caesarea Industrial Park, Caesarea 3079548, Israel
| | - Tal Raz
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610010, Israel
- Advanced Academic Programs, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
17
|
Chen HC, Lin HY, Chiang YH, Yang WB, Wang CH, Yang PY, Hu SL, Hsu TI. Progesterone boosts abiraterone-driven target and NK cell therapies against glioblastoma. J Exp Clin Cancer Res 2024; 43:218. [PMID: 39103871 DOI: 10.1186/s13046-024-03144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
INTRODUCTION Glioblastoma (GBM) poses a significant challenge in oncology, with median survival times barely extending beyond a year due to resistance to standard therapies like temozolomide (TMZ). This study introduces a novel therapeutic strategy combining progesterone (Prog) and abiraterone (Abi) aimed at enhancing GBM treatment efficacy by modulating the tumor microenvironment and augmenting NK cell-mediated immunity. METHODS We employed in vitro and in vivo GBM models to assess the effects of Prog and Abi on cell viability, proliferation, apoptosis, and the immune microenvironment. Techniques included cell viability assays, Glo-caspase 3/7 apoptosis assays, RNA-seq and qPCR for gene expression, Seahorse analysis for mitochondrial function, HPLC-MS for metabolomics analysis, and immune analysis by flow cytometry to quantify NK cell infiltration. RESULTS Prog significantly reduced the IC50 of Abi in TMZ-resistant GBM cell, suggesting the enhanced cytotoxicity. Treatment induced greater apoptosis than either agent alone, suppressed tumor growth, and prolonged survival in mouse models. Notably, there was an increase in CD3-/CD19-/CD56+/NK1.1+ NK cell infiltration in treated tumors, indicating a shift towards an anti-tumor immune microenvironment. The combination therapy also resulted in a reduction of MGMT expression and a suppression of mitochondrial respiration and glycolysis in GBM cells. CONCLUSION The combination of Prog and Abi represents a promising therapeutic approach for GBM, showing potential in suppressing tumor growth, extending survival, and modulating the immune microenvironment. These findings warrant further exploration into the clinical applicability of this strategy to improve outcomes for GBM patients.
Collapse
Affiliation(s)
- Hsien-Chung Chen
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hong-Yi Lin
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
- Research Center for Neuroscience, Taipei Medical University, Taipei, Taiwan
| | - Yung-Hsiao Chiang
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
- Research Center for Neuroscience, Taipei Medical University, Taipei, Taiwan
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Bin Yang
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
- Research Center for Neuroscience, Taipei Medical University, Taipei, Taiwan
- International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chung-Han Wang
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
| | - Pei-Yu Yang
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
| | - Siou-Lian Hu
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
| | - Tsung-I Hsu
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan.
- Research Center for Neuroscience, Taipei Medical University, Taipei, Taiwan.
- International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan.
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei, Taiwan.
| |
Collapse
|
18
|
Atarieh M, Javadian M, Basirat Z, Kashifard M, Yazdani S, Adib‐Rad H, Abdollahzade‐Delavar M, Gholinia H. Comparison of the effect of dydrogesterone and natural micronized progesterone for luteal-phase support in assisted reproductive technology cycles: A single-blind randomized clinical trial study. Health Sci Rep 2024; 7:e2296. [PMID: 39131598 PMCID: PMC11310270 DOI: 10.1002/hsr2.2296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/15/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024] Open
Abstract
Background and Aims One of the causes of preterm labor and recurrent abortion is progesterone deficiency in the luteal phase. The aim of the study was a comparison of the effect of oral dydrogesterone and vaginal progesterone for luteal-phase support (LPS) in assisted reproductive technology cycles (ART). Methods This randomized clinical control trial study was conducted on 207 infertile women. Samples were randomly divided into two groups. The first group received a natural micronized vaginal progesterone (MVP) of 400 mg once daily and the second group received dydrogesterone (Duphestone) 20 mg twice daily. Then chemical pregnancy, abortion, and live births were compared in two groups. Results The results of the study showed that the vaginal form of the drug could increase the chance of pregnancy (positive β-human chorionic gonadotropin) versus the oral form. According to the results of multiple logistic regression analysis after adjusting for other variables, the live birth rate in the vaginal group was more than five times that of the oral group (odds ratio = 5.07; 95% confidence interval = 1.24-20.65; p = 0.023). Conclusion The vaginal form of the progesterone could increase the chance of pregnancy and the outcome of fertility (live birth). Thus, vaginal progesterone is effective for LPS in women undergoing fresh embryo transfer.
Collapse
Affiliation(s)
- Masoomeh Atarieh
- Infertility and Health Reproductive Research Center, Health Research InstituteBabol University of Medical SciencesBabolIran
| | - Maryam Javadian
- Infertility and Health Reproductive Research Center, Health Research InstituteBabol University of Medical SciencesBabolIran
| | - Zahra Basirat
- Infertility and Health Reproductive Research Center, Health Research InstituteBabol University of Medical SciencesBabolIran
| | - Mehdi Kashifard
- Infertility and Health Reproductive Research Center, Health Research InstituteBabol University of Medical SciencesBabolIran
| | - Shahla Yazdani
- Clinical Research Development Unite of Rouhani HospitalBabol University of Medical SciencesBabolIran
| | - Hajar Adib‐Rad
- Infertility and Health Reproductive Research Center, Health Research InstituteBabol University of Medical SciencesBabolIran
| | - Maryam Abdollahzade‐Delavar
- Infertility and Health Reproductive Research Center, Health Research InstituteBabol University of Medical SciencesBabolIran
| | - Hemmat Gholinia
- Clinical Research Development Unite of Rouhani HospitalBabol University of Medical SciencesBabolIran
| |
Collapse
|
19
|
Ghanbarzadeh M, Ghaffarinejad A, Shahdost-Fard F. A nitrogen-doped hollow carbon nanospheres-based aptasensor for non-invasive salivary detection of progesterone. Talanta 2024; 273:125927. [PMID: 38521026 DOI: 10.1016/j.talanta.2024.125927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Developing an easy-to-use and non-invasive sensor for monitoring progesterone (P4) as a multi-functional hormone is highly demanded for point-of-care testing. In this study, an ultrasensitive electrochemical aptasensor is fabricated for monitoring P4 in human biofluids. The sensing interface was designed based on the porous nitrogen-doped hollow carbon spheres (N-HCSs). The N-HCSs covalently immobilized high-dense aptamer (Apt) sequences as the bioreceptor of P4. The electron transfer of the redox probe was hindered by incubating P4 on the aptasensor surface and forming the P4-Apt complexes. Meanwhile, the signaling was decreased under two wide linear dynamic ranges (LDRs) from 10 fM to 5.6 μM with a limit of detection (LOD) value of 3.33 fM. The aptasensor presented satisfactory selectivity in the presence of different off-target species with successful feasibility for P4 detection in some human urine and saliva samples. The aptasensor with high sensitivity, as an advantage for on-site and sensitive measurement of P4, can be considered a non-invasive tool for routine analysis of real-world clinical samples method.
Collapse
Affiliation(s)
- Mahsa Ghanbarzadeh
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Ali Ghaffarinejad
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; Electroanalytical Chemistry Research Center, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran.
| | - Faezeh Shahdost-Fard
- Department of Chemistry Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran.
| |
Collapse
|
20
|
Jiang X, Li L. Decidual macrophage: a reversible role in immunotolerance between mother and fetus during pregnancy. Arch Gynecol Obstet 2024; 309:1735-1744. [PMID: 38329548 DOI: 10.1007/s00404-023-07364-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/17/2023] [Indexed: 02/09/2024]
Abstract
The tolerance of the semi-allogeneic fetus by the maternal immune system is an eternal topic of reproductive immunology for ensuring a satisfactory outcome. The maternal-fetal interface serves as a direct portal for communication between the fetus and the mother. It is composed of placental villi trophoblast cells, decidual immune cells, and stromal cells. Decidual immune cells engage in maintaining the homeostasis of the maternal-fetal interface microenvironment. Furthermore, growing evidence has shown that decidual macrophages play a crucial role in maternal-fetal tolerance during pregnancy. As the second largest cell population among decidual immune cells, decidual macrophages are divided into two subtypes: classically activated macrophages (M1) and alternatively activated macrophages (M2). M2 polarization is critical for placentation and embryonic development. Cytokines, exosomes, and metabolites regulate the polarization of decidual macrophages, and thereby modulate maternal-fetal immunotolerance. Explore the initial relationship between decidual macrophages polarization and maternal-fetal immunotolerance will help diagnose and treat the relevant pregnancy diseases, reverse the undesirable outcomes of mothers and infants.
Collapse
Affiliation(s)
- Xiaotong Jiang
- Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Lei Li
- Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
- Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China, No. 324, Jingwu Weiqi Road, Huaiyin District, 250021.
- The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan, China, No. 6699, Qingdao Road, Huaiyin District, 250117.
| |
Collapse
|
21
|
Wei J, Zhang L, Xu H, Luo Q. Preterm birth, a consequence of immune deviation mediated hyperinflammation. Heliyon 2024; 10:e28483. [PMID: 38689990 PMCID: PMC11059518 DOI: 10.1016/j.heliyon.2024.e28483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 05/02/2024] Open
Abstract
Preterm birth represents a multifaceted syndrome with intricacies still present in our comprehension of its etiology. In the context of a semi-allograft, the prosperity from implantation to pregnancy to delivery hinges on the establishment of a favorable maternal-fetal immune microenvironment and a successful trilogy of immune activation, immune tolerance and then immune activation transitions. The occurrence of spontaneous preterm birth could be related to abnormalities within the immune trilogy, stemming from deviation in maternal and fetal immunity. These immune deviations, characterized by insufficient immune tolerance and early immune activation, ultimately culminated in an unsustainable pregnancy. In this review, we accentuated the role of both innate and adaptive immune reason in promoting spontaneous preterm birth, reviewed the risk of preterm birth from vaginal microbiome mediated by immune changes and the potential of vaginal microbiomes and metabolites as a new predictive marker, and discuss the changes in the role of progesterone and its interaction with immune cells in a preterm birth population. Our objective was to contribute to the growing body of knowledge in the field, shedding light on the immunologic reason of spontaneous preterm birth and effective biomarkers for early prediction, providing a roadmap for forthcoming investigations.
Collapse
Affiliation(s)
- Juan Wei
- Department of Obstetrics, Women's Hospital, of Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, China
| | - LiYuan Zhang
- Department of Obstetrics, Women's Hospital, of Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, China
| | - Heng Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Qiong Luo
- Department of Obstetrics, Women's Hospital, of Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, China
| |
Collapse
|
22
|
Dai X, Zhou L, He X, Hua J, Chen L, Lu Y. Identification of apoptosis-related gene signatures as potential biomarkers for differentiating active from latent tuberculosis via bioinformatics analysis. Front Cell Infect Microbiol 2024; 14:1285493. [PMID: 38312744 PMCID: PMC10834671 DOI: 10.3389/fcimb.2024.1285493] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/02/2024] [Indexed: 02/06/2024] Open
Abstract
Background Apoptosis is associated with the pathogenesis of Mycobacterium tuberculosis infection. This study aims to identify apoptosis-related genes as biomarkers for differentiating active tuberculosis (ATB) from latent tuberculosis infection (LTBI). Methods The tuberculosis (TB) datasets (GSE19491, GSE62525, and GSE28623) were downloaded from the Gene Expression Omnibus (GEO) database. The diagnostic biomarkers differentiating ATB from LTBI were identified by combining the data of protein-protein interaction network, differentially expressed gene, Weighted Gene Co-Expression Network Analysis (WGCNA), and receiver operating characteristic (ROC) analyses. Machine learning algorithms were employed to validate the diagnostic ability of the biomarkers. Enrichment analysis for biomarkers was established, and potential drugs were predicted. The association between biomarkers and N6-methyladenosine (m6A) or 5-methylated cytosine (m5C) regulators was evaluated. Results Six biomarkers including CASP1, TNFSF10, CASP4, CASP5, IFI16, and ATF3 were obtained for differentiating ATB from LTBI. They showed strong diagnostic performances, with area under ROC (AUC) values > 0.7. Enrichment analysis demonstrated that the biomarkers were involved in immune and inflammation responses. Furthermore, 24 drugs, including progesterone and emricasan, were predicted. The correlation analysis revealed that biomarkers were positively correlated with most m6A or m5C regulators. Conclusion The six ARGs can serve as effective biomarkers differentiating ATB from LTBI and provide insight into the pathogenesis of Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Xiaoting Dai
- Department of Infectious Diseases, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Litian Zhou
- Department of Neurosugery, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Xiaopu He
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Hua
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Chen
- Department of Infectious Diseases, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Yingying Lu
- Department of Clinical Laboratory, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Clinical Laboratory, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| |
Collapse
|
23
|
Sandru F, Dumitrascu MC, Petca A, Petca RC, Roman AM. Progesterone Hypersensitivity in Assisted Reproductive Technologies: Implications for Safety and Efficacy. J Pers Med 2024; 14:79. [PMID: 38248780 PMCID: PMC10817690 DOI: 10.3390/jpm14010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
The global rise in the age of childbirth, influenced by changing sociodemographic patterns, has had a notable impact on fertility rates. Simultaneously, assisted reproductive techniques (ARTs) have become increasingly prevalent due to advancements in reproductive medicine. The paper explores the intersection between the surge in ARTs and the rising number of iatrogenic autoimmune progesterone dermatitis (APD). Autoimmune progesterone dermatitis, commonly known as progesterone hypersensitivity, manifests itself as a mucocutaneous hypersensitivity syndrome. It is characterized by a wide range of dermatological symptoms, with urticaria and maculopapular rashes being the most prominent signs. Concurrently, systemic symptoms, such as fever, angioedema, and, in severe instances, anaphylaxis, may ensue. This dermatologic condition poses a significant challenge to women of childbearing age. This intricate syndrome frequently manifests itself in conjunction with menstruation or pregnancy as a reaction to physiological fluctuations in endogenous progesterone. However, given that exposure to exogenous progesterone is an integral component of various modern therapies, secondary APD has also been described. Our findings unveil a heightened likelihood of developing secondary progesterone hypersensitivity in ART patients that is attributed to the administration of exogenous progesterone through intramuscular, intravaginal, and oral routes. The study also explores available therapeutic interventions for facilitating viable pregnancies in individuals grappling with autoimmune progesterone dermatitis within the context of ARTs. This comprehensive analysis contributes valuable insights into the intricate relationship between reproductive technologies, dermatological challenges, and successful pregnancy outcomes.
Collapse
Affiliation(s)
- Florica Sandru
- Department of Dermatovenerology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Dermatology Department, “Elias” University Emergency Hospital, 011461 Bucharest, Romania;
| | - Mihai Cristian Dumitrascu
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Obstetrics and Gynecology, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Aida Petca
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Obstetrics and Gynecology, Elias Emergency University Hospital, 011461 Bucharest, Romania
| | - Razvan-Cosmin Petca
- Department of Urology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Urology, “Prof. Dr. Th. Burghele” Clinical Hospital, 050659 Bucharest, Romania
| | - Alexandra-Maria Roman
- Dermatology Department, “Elias” University Emergency Hospital, 011461 Bucharest, Romania;
| |
Collapse
|
24
|
Patil N, Maheshwari R, Wairkar S. Advances in progesterone delivery systems: Still work in progress? Int J Pharm 2023; 643:123250. [PMID: 37481096 DOI: 10.1016/j.ijpharm.2023.123250] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/03/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
Progesterone is a natural steroidal sex hormone in the human body, mainly secreted through the adrenal cortex, ovary, and placenta. In humans, progesterone is essential for endometrium transformation in the uterus at the time of ovulation and maintenance of pregnancy. When the body cannot produce enough progesterone for specific ailments, it is administered via different routes such as oral, vaginal, transdermal, topical, parental, and intranasal routes. Although progesterone is commercially available in multiple conventional formulations, low solubility, less permeability and extensive hepatic first-pass metabolism are the major constraints to its delivery. These challenges can be overcome substantially by formulating progesterone into novel delivery systems like lipid carriers, polymeric carriers, hydrogels, several nanocarriers, depot and controlled release systems. Various research papers and patents have been published in the last two decades on progesterone delivery systems; clinical studies were conducted to establish safety and efficacy. This review is focused on the pharmacodynamic and pharmacokinetic parameters of progesterone, its delivery constraints, and various advanced delivery systems of progesterone.
Collapse
Affiliation(s)
- Nikhil Patil
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Ronak Maheshwari
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India.
| |
Collapse
|
25
|
Weng J, Couture C, Girard S. Innate and Adaptive Immune Systems in Physiological and Pathological Pregnancy. BIOLOGY 2023; 12:402. [PMID: 36979094 PMCID: PMC10045867 DOI: 10.3390/biology12030402] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
The dynamic immunological changes occurring throughout pregnancy are well-orchestrated and important for the success of the pregnancy. One of the key immune adaptations is the maternal immune tolerance towards the semi-allogeneic fetus. In this review, we provide a comprehensive overview of what is known about the innate and adaptive immunological changes in pregnancy and the role(s) of specific immune cells during physiological and pathological pregnancy. Alongside this, we provided details of remaining questions and challenges, as well as future perspectives for this growing field of research. Understanding the immunological changes that occur can inform potential strategies on treatments for the optimal health of the neonate and pregnant individual both during and after pregnancy.
Collapse
Affiliation(s)
- Jessica Weng
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
| | - Camille Couture
- Department of Microbiology, Infectiology and Immunology, Universite de Montreal, Ste-Justine Hospital Research Center, Montreal, QC H3T 1C5, Canada
| | - Sylvie Girard
- Department of Obstetrics & Gynecology, Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|