1
|
Hussain R, Khan S, Sardar A, Rasheed L, Islam MS, Almutairi TM. Synthetic strategies, biological and computational screening of thiadiazole bearing benzothiazole derivatives as prospective anti-diabetic agents. J Mol Struct 2025; 1337:142141. [DOI: 10.1016/j.molstruc.2025.142141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
|
2
|
Mumtaz S, Rahim F, Hussain R, Khan S, Abid OUR, Sardar A, Iqbal T, Islam MS, Almutairi TM. Insight into in vitro thymidine phosphorylase and in silico molecular docking studies: identification of hybrid thiazole bearing Schiff base derivatives. Z NATURFORSCH C 2025:znc-2024-0214. [PMID: 39908583 DOI: 10.1515/znc-2024-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/18/2025] [Indexed: 02/07/2025]
Abstract
In pursuit of effective thymidine phosphorylase inhibitors, a series of hybrid analogs of thiazole-hydrazone derivatives (1-15) were synthesized and evaluated for their enzyme inhibitory potential using 7-deazaxanthine as a positive control. The goal was to determine these derivatives' effectiveness in suppressing thymidine phosphorylase activity, a target relevant to antitumor strategies due to the enzyme's role in angiogenesis and tumor growth. Biological evaluations indicated that all synthesized analogs displayed significant to moderate inhibitory activity, with IC50 values between 3.93 ± 0.90 and 25.75 ± 4.30 µM. Particularly, compounds 12, 9, and 28 exhibited superior potency, with IC50 values of 3.93 ± 0.90, 4.10 ± 1.10, and 4.50 ± 1.10 µM, respectively, surpassing the standard inhibitor 7-deazaxanthine (IC50 = 16.8 ± 2.20 µM). Additionally, molecular docking studies were performed to elucidate the binding interactions of the synthesized thiazole-hydrazone derivatives with the active site of thymidine phosphorylase. The docking results aligned well with experimental data, revealing favorable binding conformations and significant interactions that support the observed inhibitory activities, particularly in the most potent compounds. These findings underscore the promise of thiazole-hydrazone derivatives as effective thymidine phosphorylase inhibitors, suggesting that targeted structural modifications could further enhance their activity. Further investigations, including in vivo studies, are warranted to explore their potential applications in anticancer therapies. This study highlights the valuable role of molecular docking in understanding the structure-activity relationship (SAR) of thiazole-hydrazone derivatives, emphasizing the potential of these compounds in advancing thymidine phosphorylase inhibition strategies for therapeutic purposes.
Collapse
Affiliation(s)
- Sundas Mumtaz
- Department of Chemistry, Hazara University, Mansehra, 21120, Pakistan
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra, 21120, Pakistan
| | - Rafaqat Hussain
- College of Biology, Hunan University Changsha, Hunan 81002 P.R. China
| | - Shoaib Khan
- Department of Chemistry, Abbottabad University of Science and Technology (AUST), Abbottabad, 22500, Pakistan
| | | | - Asma Sardar
- Department of Chemistry, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Tayyiaba Iqbal
- Department of Chemistry, Abbottabad University of Science and Technology (AUST), Abbottabad, 22500, Pakistan
| | - Mohammad Shahidul Islam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Tahani Mazyad Almutairi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
3
|
Abbas M, Arshad N. Synthesis, highly potent α-glucosidase inhibition, antioxidant and molecular docking of various novel dihydropyrimidine derivatives to treat diabetes mellitus. Bioorg Med Chem Lett 2025; 115:130016. [PMID: 39489228 DOI: 10.1016/j.bmcl.2024.130016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/17/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
1,4-dihydropyrimidine-2-thiones were synthesized in five series that include 5-carboxylic acid derivatives of dihydropyrimidine (series A, 6-8), novel 5-carboxamide derivatives of dihydropyrimidine (series B, 9-14), N,S-dimethyl-dihydropyrimidine (series C, 15-20), N-hydrazinyl derivatives of dihydropyrimidine (series D, 21-24) and tetrazolo dihydropyrimidine derivatives (series E, 25-28), and evaluated for anti-diabetic capability. The prepared novel compounds were structurally established by FTIR, 1HNMR, 13CNMR, ESI and HRMS. All of these compounds from series A-E were first time examined for α-glucosidase inhibition as to evaluate their anti-diabetic potential. Most of the compounds for example 8, 11-14, 15, 17-21, 25 and 28 demonstrated greater α-glucosidase inhibitory effects (IC50 = 12.5 ± 0.21 to 47.3 ± 0.23 μM) when compared to deoxynojirimycin as standard (IC50 = 52.02 ± 0.36 μM). Compounds from series B and C found to be highly active however, the compounds from series D found generally less active. The structure-activity relationships demonstrated the importance of C-5 carboxamides, C-5 ethyl ester functionality, and the presence of N,S-dimethyl groups at pyrimidine ring for α-glucosidase inhibition. The docking studies demonstrated that all the active compounds have van der Waals and alkyl bonds interactions with the targeted site of the human lysosomal acid α-glucosidase. All these compounds were also tested for antioxidant potential by DPPH radical scavenging protocol that exhibited significant antioxidant effects (IC50 = 21.4 ± 0.45 to 92.1 ± 0.38 μM) as compared to the standard butylated hydroxyanisol (IC50 = 44.2 ± 0.36 μM). Among all, compound 13, 14 and 19 with potent α-glucosidase inhibition (IC50 = 18.9 ± 0.72, 23.3 ± 0.45 and 21.5 ± 0.16 µM, respectively) along with excellent antioxidant potential in the range of (IC50 = 21.4 ± 0.45 to 31.2 ± 0.23 μM) indicated their ability to use as valuable leads for the development of anti-diabetic drugs with the combined effects of antioxidants.
Collapse
Affiliation(s)
- Masooma Abbas
- Department of Chemistry, NED University of Engineering and Technology, Karachi 75270, Pakistan
| | - Nuzhat Arshad
- Department of Chemistry, NED University of Engineering and Technology, Karachi 75270, Pakistan.
| |
Collapse
|
4
|
Hussain R, Rehman W, Rahim F, Khan S, Alanazi AS, Alanazi MM, Rasheed L, Khan Y, Adnan. Ali. Shah S, Taha M. Synthesis, In Vitro Thymidine Phosphorylase Inhibitory Activity and Molecular Docking Study of Novel Pyridine-derived Bis-Oxadiazole Bearing Bis-Schiff Base Derivatives. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
|
5
|
Akhter N, Batool S, Khan SG, Rasool N, Anjum F, Rasul A, Adem Ş, Mahmood S, Rehman AU, Nisa MU, Razzaq Z, Christensen JB, Abourehab MAS, Shah SAA, Imran S. Bio-Oriented Synthesis and Molecular Docking Studies of 1,2,4-Triazole Based Derivatives as Potential Anti-Cancer Agents against HepG2 Cell Line. Pharmaceuticals (Basel) 2023; 16:211. [PMID: 37259360 PMCID: PMC9964635 DOI: 10.3390/ph16020211] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 08/22/2023] Open
Abstract
Triazole-based acetamides serve as important scaffolds for various pharmacologically active drugs. In the present work, structural hybrids of 1,2,4-triazole and acetamides were furnished by chemically modifying 2-(4-isobutylphenyl) propanoic acid (1). Target compounds 7a-f were produced in considerable yields (70-76%) by coupling the triazole of compound 1 with different electrophiles under different reaction conditions. These triazole-coupled acetamide derivatives were verified by physiochemical and spectroscopic (HRMS, FTIR, 13CNMR, and 1HNMR,) methods. The anti-liver carcinoma effects of all of the derivatives against a HepG2 cell line were investigated. Compound 7f, with two methyl moieties at the ortho-position, exhibited the highest anti-proliferative activity among all of the compounds with an IC50 value of 16.782 µg/mL. 7f, the most effective anti-cancer molecule, also had a very low toxicity of 1.190.02%. Molecular docking demonstrates that all of the compounds, especially 7f, have exhibited excellent binding affinities of -176.749 kcal/mol and -170.066 kcal/mol to c-kit tyrosine kinase and protein kinase B, respectively. Compound 7f is recognized as the most suitable drug pharmacophore for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Naheed Akhter
- Department of Biochemistry, Faculty of Life Science, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sidra Batool
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Samreen Gul Khan
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Nasir Rasool
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Fozia Anjum
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Şevki Adem
- Department of Chemistry, Faculty of Sciences, Çankırı Karatekin University, 18100 Çankırı, Turkey
| | - Sadaf Mahmood
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Aziz ur Rehman
- Department of Chemistry, Government College University, Lahore 54000, Pakistan
| | - Mehr un Nisa
- Department of Chemistry, University of Lahore, Lahore 40100, Pakistan
| | - Zainib Razzaq
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Jørn B. Christensen
- Department of Chemistry, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor D. E., Malaysia
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor D. E., Malaysia
| | - Syahrul Imran
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor D. E., Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA Shah Alam, Shah Alam 40450, Selangor D.E., Malaysia
| |
Collapse
|
6
|
Sultana R, Abid OUR, Sultana N, Fakhar-e-Alam M, Siddique MH, Atif M, Nawaz M, Wadood A, Rehman AU, Farooq W, Shafeeq S, Afzal M. Potential Enzyme Inhibitor Triazoles from Aliphatic esters: Synthesis, enzyme inhibition and docking studies. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Sardar A, Abid OUR, Daud S, Ali Shah B, Shahid W, Ashraf M, fatima M, ezzine S, Wadood A, Shareef A, Al-Ghulikah HA, Alissa SA. Identification of novel diclofenac acid and naproxen bearing hydrazones as 15-LOX inhibitors: Design, Synthesis, In vitro evaluation, cytotoxicity, and In silico studies. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|