1
|
Bowen E, Waque A, Su F, Davies M, Ode G, Lansdown D, Feeley B, Bedi A. Muscle Health & Fatty Infiltration with Advanced Rotator Cuff Pathology. Curr Rev Musculoskelet Med 2025; 18:160-172. [PMID: 40009348 PMCID: PMC11965080 DOI: 10.1007/s12178-025-09955-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2025] [Indexed: 02/27/2025]
Abstract
PURPOSE OF REVIEW Fatty infiltration (FI) of the rotator cuff is a critical determinant of clinical outcomes following rotator cuff injuries and repairs. This review examines the natural history, pathophysiology, imaging evaluation, and treatment strategies for FI, highlighting recent insights into its cellular mechanisms and emerging therapeutic approaches. RECENT FINDINGS Animal models demonstrate that FI begins shortly after tendon injury, progresses with muscle retraction and denervation, and is largely irreversible despite repair. Key cellular drivers include fibroadipogenic progenitor cells (FAPs), influenced by mechanical loading and inflammatory signaling pathways. Clinical studies show that FI is associated with advanced age, female sex, and full-thickness tears. Higher degrees of preoperative FI correlate with poorer functional outcomes and increased re-tear rates. Novel therapeutic targets, including pathways regulating FAP activity, TGF-β, and cell-based therapies, show promise in preclinical studies. Emerging strategies such as leukocyte-poor platelet-rich plasma (PRP) may mitigate FI progression in clinical settings. Fatty infiltration remains a significant barrier to successful rotator cuff repair and functional recovery. While surgical repair may slow FI progression, it is not consistently effective in reversing established muscle degeneration. Improved understanding of the molecular mechanisms driving FI has identified potential therapeutic targets, but their clinical applicability requires further validation. Future advances in regenerative medicine, including cell-based therapies and modulation of fibroadipogenic progenitors, offer hope for mitigating FI and improving long-term outcomes.
Collapse
Affiliation(s)
- Edward Bowen
- Rush University Medical Center, Chicago, IL, USA.
| | - Aboubacar Waque
- University of California San Francisco, San Francisco, CA, USA
| | - Favian Su
- University of California San Francisco, San Francisco, CA, USA
| | - Michael Davies
- University of California San Francisco, San Francisco, CA, USA
| | | | - Drew Lansdown
- University of California San Francisco, San Francisco, CA, USA
| | - Brian Feeley
- University of California San Francisco, San Francisco, CA, USA
| | - Asheesh Bedi
- Northshore University Health System, Skokie, IL, USA
| |
Collapse
|
2
|
Yamakado K. Influence of statin use on progression of postoperative fatty infiltration in the arthroscopic rotator cuff repair. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY & TRAUMATOLOGY : ORTHOPEDIE TRAUMATOLOGIE 2024; 34:3955-3960. [PMID: 39222249 DOI: 10.1007/s00590-024-04084-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE The purpose of this study was to determine the influence of hyperlipidemia and statin (hydroxyl-methylglutaryl-coenzyme-A reductase inhibitors) use on fatty infiltration (FI) of the rotator cuff muscle after arthroscopic rotator cuff repair (ARCR). The presence or absence of statin use and type of statins used (type 1 naturally derived statins and type 2 synthetic statins) were examined. METHODS This was a retrospective review of 620 cases (620 shoulders) who underwent arthroscopic rotator cuff repair. Total cholesterol (TC), low-density lipoprotein (LDL), triglycerides (TG) levels, and statin use were reviewed with the medical records. FI of the cuff muscles and repair integrity were assessed by MRI. A generalized linear model was used to analyze the progression of fatty infiltration. Repair integrity was determined according to the Sugaya classification, with types 4 and 5 as retears. RESULTS The mean age was 66.9 years (272, females). The overall retear rate was 16.1%. There was no significant difference in retears between statin use and non-use with a trend toward higher retear rates in the type 2 statins. FI progressed postoperatively, and multivariate regression showed that type 2 statin use was a significant risk factor (p = 0.006). Other significant risk factor were large-to-massive tear (p = 0.02) and retear (p < .0001). CONCLUSIONS The progression of FI after ARCR was observed. The new generation of strong statins (type 2 statins) was a significant risk factor for the progression of postoperative fatty infiltration, while neither serum lipid level (TC, LDL, and TG) was significant.
Collapse
Affiliation(s)
- Kotaro Yamakado
- Department of Orthopaedic Surgery, Fukui General Hospital, 58-16-1 Egami, Fukui, 910-8561, Japan.
| |
Collapse
|
3
|
Zhang H, Wague A, Diaz A, Liu M, Sang L, Youn A, Sharma S, Milan N, Kim H, Feeley B, Liu X. Overexpression of PRDM16 improves muscle function after rotator cuff tears. J Shoulder Elbow Surg 2024; 33:2725-2733. [PMID: 39032686 PMCID: PMC12070449 DOI: 10.1016/j.jse.2024.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/01/2024] [Accepted: 05/19/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Muscle atrophy, fibrosis, and fatty infiltration are commonly seen in rotator cuff tears (RCTs), which are critical factors that directly determine the clinical outcomes for patients with this injury. Therefore, improving muscle quality after RCT is crucial in improving the clinical outcome of tendon repair. In recent years, it has been discovered that adults have functional beige/brown adipose tissue (BAT) that can secrete batokines to promote muscle growth. PRDM16, a PR-domain-containing protein, was discovered with the ability to determine the brown fat cell fate and stimulate its development. Thus, the goal of this study was to discover the role of PRDM16 in improving muscle function after massive tendon tears using a transgenic mouse model with an elevated level of PRDM16 expression. METHODS Transgenic aP2-driven PRDM16-overexpressing mice and C57BL/6J mice underwent unilateral supraspinatus (SS) tendon transection and suprascapular nerve transection (TTDN) as described previously (n = 8 in each group). DigiGait was performed to evaluate forelimb function at 6 weeks post the TTDN injury. Bilateral SS muscles, interscapular brown fat, epididymal white fat, and inguinal beige fat were harvested for analysis. The expression of PRDM16 in adipose tissue was detected by Western blot. Masson Trichrome staining was conducted to evaluate the muscle fibrosis, and Oil Red O staining was used to determine the fat infiltration. Muscle fiber type was determined by major histocompatibility complex (MHC) expression via immunostaining. All data were presented in the form of mean ± standard deviation. t test and 2-way analysis of variance was performed to determine a statistically significant difference between groups. Significance was considered when P < .05. RESULTS Western blot data showed an increased expression of PRDM16 protein in both white and brown fat in PRDM16-overexpressing mice compared with wild-type (WT) mice. Even though PRDM16 overexpression had no effect on increasing muscle weight, it significantly improved the forelimbs function with longer brake, stance, and stride time and larger stride length and paw area in mice after RCT. Additionally, PRDM16-overexpressing mice showed no difference in the amount of fibrosis when compared to WT mice; however, they had a significantly reduced area of fatty infiltration. These mice also exhibited abundant MHC-IIx fiber percentage in the supraspinatus muscle after TTDN. CONCLUSION Overexpression of PRDM16 significantly improved muscle function and reduced fatty infiltration after rotator cuff tears. Promoting BAT activity is beneficial in improving rotator cuff muscle quality and shoulder function after RCT.
Collapse
Affiliation(s)
- He Zhang
- Department of Physical Education, Central South University, Changsha, Hunan, China; Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Aboubacar Wague
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Agustin Diaz
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Mengyao Liu
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Luke Sang
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Alex Youn
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Sankalp Sharma
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Nesa Milan
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Hubert Kim
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Brian Feeley
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Xuhui Liu
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Liu MM, Chen X, Yu CW, Chen JW, Zhen PX, Liu ZP. A causal association between lipid-lowering medications and rotator cuff syndrome: a drug-targeted mendelian randomization study. Front Genet 2024; 15:1383646. [PMID: 38903760 PMCID: PMC11187090 DOI: 10.3389/fgene.2024.1383646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Background: Previous research has suggested that dyslipidemia may be a risk factor for rotator cuff syndrome (RCS), and lipid-lowering drugs may aid in its treatment, though conclusions have not been definitive. Mendelian randomization is a statistical method that explores the causal relationships between exposure factors and diseases. It overcomes the confounding issues inherent in traditional observational studies, thereby providing more reliable causal inferences. We employed this method to investigate whether hyperlipidemia is a risk factor for rotator cuff syndrome and whether lipid-lowering drugs can effectively treat this condition. Methods: Genetic variations linked to lipid traits low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), and total cholesterol (TC) were acquired from the UK Biobank and the Global Lipids Genetics Consortium (GLGC). Data on genetic variation in rotator cuff syndrome were obtained from FinnGen, including 24,061 patients and 275,212 controls. In the next step, we carried out two-sample Mendelian randomization analyses to determine whether lipid traits correlate with rotator cuff syndrome risk. Additionally, we performed drug-target Mendelian randomization (MR) analyses on 10 drug targets related to rotator cuff syndrome. For the drug targets that showed significant results, further analysis was done using Summary-data-based Mendelian Randomization (SMR) and colocalization techniques. We performed a mediation analysis to identify potential mediators between HMG-CoA reductase (HMGCR) and RCS. Results: No causative link was established between these lipid traits and rotator cuff syndrome. However, a significant association has been identified where HMGCR inhibition corresponds to a reduced risk of rotator cuff disease (OR = 0.68, [95% CI, 0.56-0.83], p = 1.510 × 10-4). Additionally, enhanced expression of HMGCR in muscle tissues is also linked to a decreased risk of rotator cuff syndrome (OR = 0.88, [95% CI, 0.76-0.99], p = 0.03). Body mass index (BMI) mediated 22.97% of the total effect of HMGCR on RCS. Conclusion: This study does not support low-density LDL-C, TG, and TC as risk factors for rotator cuff syndrome. HMGCR represents a potential pharmaceutical target for preventing and treating rotator cuff syndrome. The protective action of statins on the rotator cuff syndrome might not be associated with their lipid-lowering properties.
Collapse
Affiliation(s)
- Meng-meng Liu
- School of Physical Education and Health, Guangxi Medical University, Nanning, China
| | - Xiang Chen
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chuan-wen Yu
- School of Physical Education and Health, Heze University, Heze, China
| | - Jin-wei Chen
- Department of Physical Education, Dongshin University, Naju, Republic of Korea
| | - Pu-xiang Zhen
- National Demonstration Center for Experimental (General Practice) Education, Hubei University of Science and Technology, Xianning, China
| | - Zhi-peng Liu
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
5
|
Rajalekshmi R, Agrawal DK. Understanding Fibrous Tissue in the Effective Healing of Rotator Cuff Injury. JOURNAL OF SURGERY AND RESEARCH 2024; 7:215-228. [PMID: 38872898 PMCID: PMC11174978 DOI: 10.26502/jsr.10020363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The rotator cuff is a crucial group of muscles and tendons in the shoulder complex that plays a significant role in the stabilization of the glenohumeral joint and enabling a wide range of motion. Rotator cuff tendon tears can occur due to sudden injuries or degenerative processes that develop gradually over time, whether they are partial or full thickness. These injuries are common causes of shoulder pain and functional impairment, and their complex nature highlights the essential role of the rotator cuff in shoulder function. Scar formation is a crucial aspect of the healing process initiated following a rotator cuff tendon tear, but excessive fibrous tissue development can potentially lead to stiffness, discomfort, and movement limitations. Age is a critical risk factor, with the prevalence of these tears increasing among older individuals. This comprehensive review aims to delve deeper into the anatomy and injury mechanisms of the rotator cuff. Furthermore, it will inspect the signaling pathways involved in fibrous tissue development, evaluate the various factors affecting the healing environment, and discuss proactive measures aimed at reducing excessive fibrous tissue formation. Lastly, this review identifed gaps within existing knowledge to advance methods for better management of rotator cuff tendon injuries.
Collapse
Affiliation(s)
- Resmi Rajalekshmi
- Department of Translational Research, College of the Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California USA
| | - Devendra K Agrawal
- Department of Translational Research, College of the Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California USA
| |
Collapse
|
6
|
Bedi A, Bishop J, Keener J, Lansdown DA, Levy O, MacDonald P, Maffulli N, Oh JH, Sabesan VJ, Sanchez-Sotelo J, Williams RJ, Feeley BT. Rotator cuff tears. Nat Rev Dis Primers 2024; 10:8. [PMID: 38332156 DOI: 10.1038/s41572-024-00492-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
Rotator cuff tears are the most common upper extremity condition seen by primary care and orthopaedic surgeons, with a spectrum ranging from tendinopathy to full-thickness tears with arthritic change. Some tears are traumatic, but most rotator cuff problems are degenerative. Not all tears are symptomatic and not all progress, and many patients in whom tears become more extensive do not experience symptom worsening. Hence, a standard algorithm for managing patients is challenging. The pathophysiology of rotator cuff tears is complex and encompasses an interplay between the tendon, bone and muscle. Rotator cuff tears begin as degenerative changes within the tendon, with matrix disorganization and inflammatory changes. Subsequently, tears progress to partial-thickness and then full-thickness tears. Muscle quality, as evidenced by the overall size of the muscle and intramuscular fatty infiltration, also influences symptoms, tear progression and the outcomes of surgery. Treatment depends primarily on symptoms, with non-operative management sufficient for most patients with rotator cuff problems. Modern arthroscopic repair techniques have improved recovery, but outcomes are still limited by a lack of understanding of how to improve tendon to bone healing in many patients.
Collapse
Affiliation(s)
- Asheesh Bedi
- Department of Orthopedic Surgery, University of Chicago, Chicago, IL, USA
- NorthShore Health System, Chicago, IL, USA
| | - Julie Bishop
- Department of Orthopedic Surgery, The Ohio State Wexner Medical Center, Columbus, OH, USA
| | - Jay Keener
- Department of Orthopedic Surgery, Washington University, St. Louis, MO, USA
| | - Drew A Lansdown
- Department of Orthopedic Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ofer Levy
- Reading Shoulder Unit, Berkshire Independent Hospital, Reading, UK
| | - Peter MacDonald
- Department of Surgery, Max Rady College of Medicine, Winnipeg, Manitoba, Canada
| | - Nicola Maffulli
- Department of Trauma and Orthopaedic Surgery, Faculty of Medicine and Psychology, University of Rome Sapienza, Rome, Italy
| | - Joo Han Oh
- Department of Orthopedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seoul, Korea
| | - Vani J Sabesan
- HCA Florida JFK Orthopaedic Surgery Residency Program, Atlantis Orthopedics, Atlantis, FL, USA
| | | | - Riley J Williams
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Brian T Feeley
- Department of Orthopedic Surgery, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
7
|
Yoon JP, Park SJ, Kim DH, Shim BJ, Chung SW. Current Research on the Influence of Statin Treatment on Rotator Cuff Healing. Clin Orthop Surg 2023; 15:873-879. [PMID: 38045588 PMCID: PMC10689229 DOI: 10.4055/cios23131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 12/05/2023] Open
Abstract
Rotator cuff tears are a condition characterized by damage to the muscles and tendons that connect the scapula and humerus, which are responsible for shoulder rotation and arm lifting. Metabolic factors such as diabetes, thyroid disease, high cholesterol, vitamin D deficiency, obesity, and smoking have been associated with an increased risk of rotator cuff tears. Interestingly, patients with hyperlipidemia, a condition characterized by high levels of cholesterol and other fats in the blood, have been found to have a higher incidence of rotator cuff tears and breakdown of tendon matrix. As a result, statin therapy, which is commonly used to lower cholesterol levels in hyperlipidemia, has been explored as a potential treatment to improve clinical outcomes in rotator cuff tears. However, the results of preclinical and clinical studies on the effects of statins on tendon healing in rotator cuff tears are limited and not well-defined. Moreover, since hyperlipidemia and rotator cuff tears are more prevalent in older individuals, a literature review on the efficacy and safety of statin therapy in this population is needed.
Collapse
Affiliation(s)
- Jong Pil Yoon
- Department of Orthopedic Surgery, Kyungpook National University Hospital, Daegu, Korea
| | - Sung-Jin Park
- Department of Orthopedic Surgery, Kyungpook National University Hospital, Daegu, Korea
| | - Dong-Hyun Kim
- Department of Orthopedic Surgery, Kyungpook National University Hospital, Daegu, Korea
| | - Bum-Jin Shim
- Department of Orthopedic Surgery, Kyungpook National University Hospital, Daegu, Korea
| | - Seok Won Chung
- Department of Orthopaedic Surgery, Konkuk University Medical Center, Seoul, Korea
| |
Collapse
|
8
|
Simvastatin Improves Benign Prostatic Hyperplasia: Role of Peroxisome-Proliferator-Activated Receptor-γ and Classic WNT/β-Catenin Pathway. Int J Mol Sci 2023; 24:ijms24054911. [PMID: 36902342 PMCID: PMC10003121 DOI: 10.3390/ijms24054911] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a common disease in elderly men with an uncertain etiology and mechanistic basis. Metabolic syndrome (MetS) is also a very common illness and is closely related to BPH. Simvastatin (SV) is one of the widely used statins for MetS. Peroxisome-proliferator-activated receptor gamma (PPARγ), crosstalking with the WNT/β-catenin pathway, plays important roles in MetS. Our current study aimed to examine SV-PPARγ-WNT/β-catenin signaling in the development of BPH. Human prostate tissues and cell lines plus a BPH rat model were utilized. Immunohistochemical, immunofluorescence, hematoxylin and eosin (H&E) and Masson's trichrome staining, construction of a tissue microarray (TMA), ELISA, CCK-8 assay, qRT-PCR, flow cytometry, and Western blotting were also performed. PPARγ was expressed in both prostate stroma and epithelial compartments and downregulated in BPH tissues. Furthermore, SV dose-dependently triggered cell apoptosis and cell cycle arrest at the G0/G1 phase and attenuated tissue fibrosis and the epithelial-mesenchymal transition (EMT) process both in vitro and in vivo. SV also upregulated the PPARγ pathway, whose antagonist could reverse SV produced in the aforementioned biological process. Additionally, crosstalk between PPARγ and WNT/β-catenin signaling was demonstrated. Finally, correlation analysis with our TMA containing 104 BPH specimens showed that PPARγ was negatively related with prostate volume (PV) and free prostate-specific antigen (fPSA) and positively correlated with maximum urinary flow rate (Qmax). WNT-1 and β-catenin were positively related with International Prostate Symptom Score (IPSS) and nocturia, respectively. Our novel data demonstrate that SV could modulate cell proliferation, apoptosis, tissue fibrosis, and the EMT process in the prostate through crosstalk between PPARγ and WNT/β-catenin pathways.
Collapse
|
9
|
Künzler MB, McGarry MH, Akeda M, Ihn H, Karol A, von Rechenberg B, Schär MO, Zumstein MA, Lee TQ. Effect of PARP-1 Inhibition on Rotator Cuff Healing: A Feasibility Study Using Veliparib in a Rat Model of Acute Rotator Cuff Repair. Am J Sports Med 2023; 51:758-767. [PMID: 36745049 DOI: 10.1177/03635465221148494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND PARP-1 (poly[ADP-ribose]) was shown to influence the inflammatory response after rotator cuff tear, leading to fibrosis, muscular atrophy, and fatty infiltration in mouse rotator cuff degeneration. So far, it is not known how PARP-1 influences enthesis healing after rotator cuff tear repair. HYPOTHESIS/PURPOSE This study aimed to examine the feasibility of oral PARP-1 inhibition and investigate its influence on rat supraspinatus enthesis and muscle healing after rotator cuff repair. The hypothesis was that oral PARP-1 inhibition would improve enthesis healing after acute rotator cuff repair in a rat model. STUDY DESIGN Controlled laboratory study. METHODS In 24 Sprague-Dawley rats, the supraspinatus tendon was sharply detached and immediately repaired with a single transosseous suture. The rats were randomly allocated into 2 groups, with the rats in the inhibitor group receiving veliparib with a target dose of 12.5 mg/kg/d via drinking water during the postoperative recovery period. The animals were sacrificed 8 weeks after surgery. For the analysis, macroscopic, biomechanical, and histologic methods were used. RESULTS Oral veliparib was safe for the rats, with no adverse effects observed. In total, the inhibitor group had a significantly better histologic grading of the enthesis with less scar tissue formation. The macroscopic cross-sectional area of the supraspinatus muscles was 10.5% higher (P = .034) in the inhibitor group, which was in agreement with an 8.7% higher microscopic muscle fiber diameter on histologic sections (P < .0001). There were no statistically significant differences in the biomechanical properties between the groups. CONCLUSION This study is the first to investigate the influence of PARP-1 inhibition on healing enthesis. On the basis of these findings, we conclude that oral veliparib, which was previously shown to inhibit PARP-1 effectively, is safe to apply and has beneficial effects on morphologic enthesis healing and muscle fiber size. CLINICAL RELEVANCE Modulating the inflammatory response through PARP-1 inhibition during the postoperative healing period is a promising approach to improve enthesis healing and reduce rotator cuff retearing. With substances already approved by the Food and Drug Administration, PARP-1 inhibition bears high potential for future translation into clinical application.
Collapse
Affiliation(s)
- Michael B Künzler
- Shoulder, Elbow and Orthopaedic Sports Medicine, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland.,Orthopaedics Biomechanics Laboratory, VA Long Beach Healthcare System, Long Beach, California, USA.,Musculoskeletal Research Unit, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Michelle H McGarry
- Orthopaedics Biomechanics Laboratory, VA Long Beach Healthcare System, Long Beach, California, USA.,Orthopaedics Biomechanics Laboratory, Congress Medical Foundation, Pasadena, California, USA
| | - Masaki Akeda
- Orthopaedics Biomechanics Laboratory, VA Long Beach Healthcare System, Long Beach, California, USA
| | - Hansel Ihn
- Orthopaedics Biomechanics Laboratory, VA Long Beach Healthcare System, Long Beach, California, USA
| | - Agnieszka Karol
- Musculoskeletal Research Unit, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | - Michael O Schär
- Shoulder, Elbow and Orthopaedic Sports Medicine, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
| | - Matthias A Zumstein
- Shoulder, Elbow and Orthopaedic Sports Medicine, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland.,Shoulder, Elbow and Orthopaedic Sports Medicine, Sonnenhof Orthopaedics, Bern, Switzerland
| | - Thay Q Lee
- Orthopaedics Biomechanics Laboratory, VA Long Beach Healthcare System, Long Beach, California, USA.,Orthopaedics Biomechanics Laboratory, Congress Medical Foundation, Pasadena, California, USA
| |
Collapse
|
10
|
Wang L, Feng J, Deng Y, Yang Q, Wei Q, Ye D, Rong X, Guo J. CCAAT/Enhancer-Binding Proteins in Fibrosis: Complex Roles Beyond Conventional Understanding. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9891689. [PMID: 36299447 PMCID: PMC9575473 DOI: 10.34133/2022/9891689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/18/2022] [Indexed: 07/29/2023]
Abstract
CCAAT/enhancer-binding proteins (C/EBPs) are a family of at least six identified transcription factors that contain a highly conserved basic leucine zipper domain and interact selectively with duplex DNA to regulate target gene expression. C/EBPs play important roles in various physiological processes, and their abnormal function can lead to various diseases. Recently, accumulating evidence has demonstrated that aberrant C/EBP expression or activity is closely associated with the onset and progression of fibrosis in several organs and tissues. During fibrosis, various C/EBPs can exert distinct functions in the same organ, while the same C/EBP can exert distinct functions in different organs. Modulating C/EBP expression or activity could regulate various molecular processes to alleviate fibrosis in multiple organs; therefore, novel C/EBPs-based therapeutic methods for treating fibrosis have attracted considerable attention. In this review, we will explore the features of C/EBPs and their critical functions in fibrosis in order to highlight new avenues for the development of novel therapies targeting C/EBPs.
Collapse
Affiliation(s)
- Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiaojiao Feng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanyue Deng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qianqian Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Quxing Wei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dewei Ye
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
11
|
Su CA, Jildeh TR, Vopat ML, Waltz RA, Millett PJ, Provencher MT, Philippon MJ, Huard J. Current State of Platelet-Rich Plasma and Cell-Based Therapies for the Treatment of Osteoarthritis and Tendon and Ligament Injuries. J Bone Joint Surg Am 2022; 104:1406-1414. [PMID: 35867717 DOI: 10.2106/jbjs.21.01112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
➤ Orthobiologics encompass numerous substances that are naturally found in the human body including platelet-rich plasma (PRP), isolated growth factors, and cell therapy approaches to theoretically optimize and improve the healing of cartilage, fractures, and injured muscles, tendons, and ligaments. ➤ PRP is an autologous derivative of whole blood generated by centrifugation and is perhaps the most widely used orthobiologic treatment modality. Despite a vast amount of literature on its use in osteoarthritis as well as in tendon and ligament pathology, clinical efficacy results remain mixed, partly as a result of insufficient reporting of experimental details or exact compositions of PRP formulations used. ➤ Mesenchymal stromal cells (MSCs) can be isolated from a variety of tissues, with the most common being bone marrow aspirate concentrate. Similar to PRP, clinical results in orthopaedics with MSCs have been highly variable, with the quality and concentration of MSCs being highly contingent on the site of procurement and the techniques of harvesting and preparation. ➤ Advances in novel orthobiologics, therapeutic targets, and customized orthobiologic therapy will undoubtedly continue to burgeon, with some early promising results from studies targeting fibrosis and senescence.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Johnny Huard
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, Colorado
| |
Collapse
|
12
|
Weng CJ, Liao CT, Hsu MY, Chang FP, Liu SJ. Simvastatin-Loaded Nanofibrous Membrane Efficiency on the Repair of Achilles Tendons. Int J Nanomedicine 2022; 17:1171-1184. [PMID: 35321025 PMCID: PMC8935736 DOI: 10.2147/ijn.s353066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/10/2022] [Indexed: 12/23/2022] Open
Affiliation(s)
- Chun-Jui Weng
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan
- Department of Orthopaedics, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chieh-Tun Liao
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Yi Hsu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan
- Department of Radiology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Fu-Pang Chang
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Jung Liu
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan
- Correspondence: Shih-Jung Liu, Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital at Linkou and Department of Mechanical Engineering, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Taoyuan, 33302, Taiwan, Tel +886-3-2118166, Fax +886-3-2118558, Email
| |
Collapse
|
13
|
David MA, Reiter AJ, Dunham CL, Castile RM, Abraham JA, Iannucci LE, Shah ID, Havlioglu N, Chamberlain AM, Lake SP. Pleiotropic Effects of Simvastatin and Losartan in Preclinical Models of Post-Traumatic Elbow Contracture. Front Bioeng Biotechnol 2022; 10:803403. [PMID: 35265595 PMCID: PMC8899197 DOI: 10.3389/fbioe.2022.803403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/04/2022] [Indexed: 02/02/2023] Open
Abstract
Elbow trauma can lead to post-traumatic joint contracture (PTJC), which is characterized by loss of motion associated with capsule/ligament fibrosis and cartilage damage. Unfortunately, current therapies are often unsuccessful or cause complications. This study aimed to determine the effects of prophylactically administered simvastatin (SV) and losartan (LS) in two preclinical models of elbow PTJC: an in vivo elbow-specific rat injury model and an in vitro collagen gel contraction assay. The in vivo elbow rat (n = 3-10/group) injury model evaluated the effects of orally administered SV and LS at two dosing strategies [i.e., low dose/high frequency/short duration (D1) vs. high dose/low frequency/long duration (D2)] on post-mortem elbow range of motion (via biomechanical testing) as well as capsule fibrosis and cartilage damage (via histopathology). The in vitro gel contraction assay coupled with live/dead staining (n = 3-19/group) evaluated the effects of SV and LS at various concentrations (i.e., 1, 10, 100 µM) and durations (i.e., continuous, short, or delayed) on the contractibility and viability of fibroblasts/myofibroblasts [i.e., NIH3T3 fibroblasts with endogenous transforming growth factor-beta 1 (TGFβ1)]. In vivo, no drug strategy prevented elbow contracture biomechanically. Histologically, only SV-D2 modestly reduced capsule fibrosis but maintained elevated cellularity and tissue hypertrophy, and both SV strategies lessened cartilage damage. SV modest benefits were localized to the anterior region, not the posterior, of the joint. Neither LS strategy had meaningful benefits in capsule nor cartilage. In vitro, irrespective of the presence of TGFβ1, SV (≥10 μM) prevented gel contraction partly by decreasing cell viability (100 μM). In contrast, LS did not prevent gel contraction or affect cell viability. This study demonstrates that SV, but not LS, might be suitable prophylactic drug therapy in two preclinical models of elbow PTJC. Results provide initial insight to guide future preclinical studies aimed at preventing or mitigating elbow PTJC.
Collapse
Affiliation(s)
- Michael A. David
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, United States
| | - Alex J. Reiter
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, United States
| | - Chelsey L. Dunham
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Ryan M. Castile
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, United States
| | - James A. Abraham
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, United States
| | - Leanne E. Iannucci
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Ishani D. Shah
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, United States
| | - Necat Havlioglu
- Department of Pathology, John Cochran VA Medical Center, St. Louis, MO, United States
| | - Aaron M. Chamberlain
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, United States
| | - Spencer P. Lake
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
14
|
Nelson GB, McMellen CJ, Kolaczko JG, Millett PJ, Gillespie RJ, Su CA. Immunologic Contributions Following Rotator Cuff Injury and Development of Cuff Tear Arthropathy. JBJS Rev 2021; 9:01874474-202111000-00006. [PMID: 34757960 DOI: 10.2106/jbjs.rvw.21.00126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
» Rotator cuff tear arthropathy (RCTA) describes a pattern of glenohumeral degenerative changes following chronic rotator cuff tears that is characterized by superior humeral head migration, erosion of the greater tuberosity of the humeral head, contouring of the coracoacromial arch to create a socket for the humeral head, and eventual glenohumeral arthritis. » Acute and chronic inflammatory changes following rotator cuff tears are thought to contribute to cartilage damage, muscle fibrosis, and fatty infiltration in the glenohumeral joint. » In vitro animal studies targeting various inflammatory modulators, including macrophages, insulin-like growth factor-I, and transforming growth factor-beta pathways, provide promising therapeutic targets to improve healing after rotator cuff tears. » The role of platelet-rich plasma in the treatment and prevention of RCTA has been investigated, with conflicting results.
Collapse
Affiliation(s)
- Grant B Nelson
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Christopher J McMellen
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Jensen G Kolaczko
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | | | - Robert J Gillespie
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Charles A Su
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| |
Collapse
|
15
|
Does statin-treated hyperlipidemia affect rotator cuff healing or muscle fatty infiltration after rotator cuff repair? J Shoulder Elbow Surg 2021; 30:2465-2474. [PMID: 34116193 DOI: 10.1016/j.jse.2021.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/04/2021] [Accepted: 05/09/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Hyperlipidemia is linked to poor tendon-to-bone healing and progression of fatty infiltration after rotator cuff repair. Statins effectively treat hyperlipidemia, but it is unknown if they have any potential detrimental effects following rotator cuff repair. The aim of this study was to evaluate the effect of statins on rotator cuff healing and fatty infiltration following repair. METHODS A total of 77 patients undergoing arthroscopic rotator cuff repair were recruited prospectively, 38 patients who were prescribed a statin for hyperlipidemia (statin group) and 39 patients who were not taking a statin (control group). Patients who did not have both preoperative and 1-year postoperative magnetic resonance imaging (MRI) scans were excluded from the study. Patient-reported outcome measures, namely the Western Ontario Rotator Cuff (WORC) index, Constant-Murley score, American Shoulder and Elbow Surgeons (ASES) score, and Disabilities of the Arm, Shoulder and Hand (DASH) score, were collected preoperatively and at 1 year. Fatty infiltration was assessed on MRI according to the Goutallier grade preoperatively and at 12 months; rotator cuff healing was assessed at 12 months according to the Sugaya classification. Following propensity score weighting to adjust for baseline imbalances, 12-month outcomes were compared between the 2 groups. RESULTS At 12 months, all patient-reported outcome measures had improved significantly compared with baseline (WORC score, 85.9 vs. 32.5, P < .001; ASES score, 87.3 vs. 37.5, P < .001; Constant-Murley score, 77 vs. 31, P < .001; and DASH score, 13.6 vs. 61.4, P < .001). There was no significant difference in postoperative scores in the statin group vs. the control group (WORC score, 84.9 vs. 89.6, P = .94; ASES score, 87.5 vs. 86.6, P = .40; Constant-Murley score, 77 vs. 81, P = .90; and DASH score, 14.4 vs. 11.4, P = .14), and for 3 of these scores, the 95% confidence intervals excluded a clinically meaningful difference. Similarly, rotator cuff healing at 12 months and Goutallier fatty infiltration grades were comparable between the 2 groups. Retears were seen in 6 patients (15.8%) in the statin group and 8 (20.5%) in the control group. Progression of fatty infiltration was seen in 4 patients (10.5%) in the statin and 4 (10.3%) in the control group. Statin use did not demonstrate a significant association with either retear risk (P = .41) or progression of fatty atrophy (P = .69). CONCLUSION Patient-reported outcomes, rotator cuff retear rate, and fatty infiltration on MRI at 12 months after rotator cuff repair in patients with hyperlipidemia treated with statins are similar to those in a control group.
Collapse
|
16
|
Mucha O, Podkalicka P, Kaziród K, Samborowska E, Dulak J, Łoboda A. Simvastatin does not alleviate muscle pathology in a mouse model of Duchenne muscular dystrophy. Skelet Muscle 2021; 11:21. [PMID: 34479633 PMCID: PMC8414747 DOI: 10.1186/s13395-021-00276-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is an incurable disease, caused by the mutations in the DMD gene, encoding dystrophin, an actin-binding cytoskeletal protein. Lack of functional dystrophin results in muscle weakness, degeneration, and as an outcome cardiac and respiratory failure. As there is still no cure for affected individuals, the pharmacological compounds with the potential to treat or at least attenuate the symptoms of the disease are under constant evaluation. The pleiotropic agents, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, known as statins, have been suggested to exert beneficial effects in the mouse model of DMD. On the other hand, they were also reported to induce skeletal-muscle myopathy. Therefore, we decided to verify the hypothesis that simvastatin may be considered a potential therapeutic agent in DMD. Methods Several methods including functional assessment of muscle function via grip strength measurement, treadmill test, and single-muscle force estimation, enzymatic assays, histological analysis of muscle damage, gene expression evaluation, and immunofluorescence staining were conducted to study simvastatin-related alterations in the mdx mouse model of DMD. Results In our study, simvastatin treatment of mdx mice did not result in improved running performance, grip strength, or specific force of the single muscle. Creatine kinase and lactate dehydrogenase activity, markers of muscle injury, were also unaffected by simvastatin delivery in mdx mice. Furthermore, no significant changes in inflammation, fibrosis, and angiogenesis were noted. Despite the decreased percentage of centrally nucleated myofibers in gastrocnemius muscle after simvastatin delivery, no changes were noticed in other regeneration-related parameters. Of note, even an increased rate of necrosis was found in simvastatin-treated mdx mice. Conclusion In conclusion, our study revealed that simvastatin does not ameliorate DMD pathology. Supplementary Information The online version contains supplementary material available at 10.1186/s13395-021-00276-3.
Collapse
Affiliation(s)
- Olga Mucha
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Paulina Podkalicka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Katarzyna Kaziród
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Emilia Samborowska
- Mass Spectrometry Lab, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
17
|
Zhang X, Wang D, Mak KLK, Tuan RS, Ker DFE. Engineering Musculoskeletal Grafts for Multi-Tissue Unit Repair: Lessons From Developmental Biology and Wound Healing. Front Physiol 2021; 12:691954. [PMID: 34504435 PMCID: PMC8421786 DOI: 10.3389/fphys.2021.691954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
In the musculoskeletal system, bone, tendon, and skeletal muscle integrate and act coordinately as a single multi-tissue unit to facilitate body movement. The development, integration, and maturation of these essential components and their response to injury are vital for conferring efficient locomotion. The highly integrated nature of these components is evident under disease conditions, where rotator cuff tears at the bone-tendon interface have been reported to be associated with distal pathological alterations such as skeletal muscle degeneration and bone loss. To successfully treat musculoskeletal injuries and diseases, it is important to gain deep understanding of the development, integration and maturation of these musculoskeletal tissues along with their interfaces as well as the impact of inflammation on musculoskeletal healing and graft integration. This review highlights the current knowledge of developmental biology and wound healing in the bone-tendon-muscle multi-tissue unit and perspectives of what can be learnt from these biological and pathological processes within the context of musculoskeletal tissue engineering and regenerative medicine. Integrating these knowledge and perspectives can serve as guiding principles to inform the development and engineering of musculoskeletal grafts and other tissue engineering strategies to address challenging musculoskeletal injuries and diseases.
Collapse
Affiliation(s)
- Xu Zhang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Dan Wang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
| | - King-Lun Kingston Mak
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health-Guangdong Laboratory), Guangzhou, China
| | - Rocky S. Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
| |
Collapse
|
18
|
|
19
|
Simvastatin Enhances Muscle Regeneration Through Autophagic Defect-Mediated Inflammation and mTOR Activation in G93ASOD1 Mice. Mol Neurobiol 2020; 58:1593-1606. [PMID: 33222146 DOI: 10.1007/s12035-020-02216-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis is a fatal neurodegenerative disease characterised by the selective loss of motor neurons, muscular atrophy, and degeneration. Statins, as 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, are the most widely prescribed drugs to lower cholesterol levels and used for the treatment of cardiovascular and cerebrovascular diseases. However, statins are seldom used in muscular diseases, primarily because of their rare statin-associated myopathy. Recently, statins have been shown to reduce muscular damage and improve its function. Here, we investigated the role of statins in myopathy using G93ASOD1 mice. Our results indicated that simvastatin significantly increased the autophagic flux defect and increased inflammation in the skeletal muscles of G93ASOD1 mice. We also found that increased inflammation correlated with aggravated muscle atrophy and fibrosis. Nevertheless, long-term simvastatin treatment promoted the regeneration of damaged muscle by activating the mammalian target of rapamycin pathway. However, administration of simvastatin did not impede vast muscle degeneration and movement dysfunction resulting from the enhanced progressive impairment of the neuromuscular junction. Together, our findings highlighted that simvastatin exacerbated skeletal muscle atrophy and denervation in spite of promoting myogenesis in damaged muscle, providing new insights into the selective use of statin-induced myopathy in ALS.
Collapse
|
20
|
Lin DJ, Burke CJ, Abiri B, Babb JS, Adler RS. Supraspinatus muscle shear wave elastography (SWE): detection of biomechanical differences with varying tendon quality prior to gray-scale morphologic changes. Skeletal Radiol 2020; 49:731-738. [PMID: 31811348 DOI: 10.1007/s00256-019-03334-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The purpose of this study was to determine whether SWE can detect biomechanical changes in the supraspinatus muscle that occur with increasing supraspinatus tendon abnormality prior to morphologic gray-scale changes. MATERIALS AND METHODS An IRB approved, HIPAA compliant retrospective study of shoulder ultrasounds from 2013-2018 was performed. The cohort consisted of 88 patients (mean age 55 ± 15 years old) with 110 ultrasounds. Images were acquired in longitudinal orientation to the supraspinatus muscle with shear wave velocity (SWV) point quantification. The tendon and muscle were graded in order of increasing tendinosis/tear (1-4 scale) and increasing fatty infiltration (0-3 scale). Mixed model analysis of variance, analysis of covariance, and Spearman rank correlation were used for statistical analysis. RESULTS There was no statistically significant age or sex dependence for supraspinatus muscle SWV (p = 0.314, 0.118, respectively). There was no significant correlation between muscle SWV and muscle or tendon grade (p = 0.317, 0.691, respectively). In patients with morphologically normal muscle on gray-scale ultrasound, there were significant differences in muscle SWV when comparing tendon grade 3 with grades 1, 2, and 4 (p = 0.018, 0.025, 0.014, respectively), even when adjusting for gender and age (p = 0.044, 0.028, 0.018, respectively). Pairwise comparison of tendon grades other than those mentioned did not achieve statistical significance (p > 0.05). CONCLUSION SWE can detect biomechanical differences within the supraspinatus muscle that are not morphologically evident on gray-scale ultrasound. Specifically, supraspinatus tendon partial tears with moderate to severe tendinosis may correspond to biomechanically distinct muscle properties compared to both lower grades of tendon abnormality and full-thickness tears.
Collapse
Affiliation(s)
- Dana J Lin
- Department of Radiology, Division of Musculoskeletal Radiology, NYU Langone Health, 301 East 17th Street, 6th Floor, New York, NY, 10003, USA
| | - Christopher J Burke
- Department of Radiology, Division of Musculoskeletal Radiology, NYU Langone Health, 301 East 17th Street, 6th Floor, New York, NY, 10003, USA
| | - Benjamin Abiri
- Department of Radiology, Division of Musculoskeletal Radiology, NYU Langone Health, 301 East 17th Street, 6th Floor, New York, NY, 10003, USA
| | - James S Babb
- Department of Radiology, Division of Musculoskeletal Radiology, NYU Langone Health, 301 East 17th Street, 6th Floor, New York, NY, 10003, USA
| | - Ronald S Adler
- Department of Radiology, Division of Musculoskeletal Radiology, NYU Langone Health, 301 East 17th Street, 6th Floor, New York, NY, 10003, USA.
| |
Collapse
|
21
|
Talarek JR, Piacentini AN, Konja AC, Wada S, Swanson JB, Nussenzweig SC, Dines JS, Rodeo SA, Mendias CL. The MRL/MpJ Mouse Strain Is Not Protected From Muscle Atrophy and Weakness After Rotator Cuff Tear. J Orthop Res 2020; 38:811-822. [PMID: 31696955 PMCID: PMC7071998 DOI: 10.1002/jor.24516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 11/04/2019] [Indexed: 02/04/2023]
Abstract
Chronic rotator cuff tears are a common source of shoulder pain and disability. Patients with rotator cuff tears often have substantial weakness, fibrosis, and fat accumulation, which limit successful surgical repair and postoperative rehabilitation. The Murphy Roths Large (MRL) strain of mice have demonstrated superior healing and protection against pathological changes in several disease and injury conditions. We tested the hypothesis that, compared with the commonly used C57Bl/6 (B6) strain, MRL mice would have less muscle fiber atrophy and fat accumulation, and be protected against the loss in force production that occurs after cuff tear. Adult male B6 and MRL mice were subjected to a rotator cuff tear, and changes in muscle fiber contractility and histology were measured. RNA sequencing and shotgun metabolomics and lipidomics were also performed. The muscles were harvested one month after tear. B6 and MRL mice had a 40% reduction in relative muscle force production after rotator cuff tear. RNA sequencing identified an increase in fibrosis-associated genes and a reduction in mitochondrial metabolism genes. The markers of glycolytic metabolism increased in B6 mice, while MRL mice appeared to increase amino acid metabolism after tear. There was an accumulation of lipid after injury, although there was a divergent response between B6 and MRL mice in the types of lipid species that accrued. There were strain-specific differences between the transcriptome, metabolome, and lipidome of B6 and MRL mice, but these differences did not protect MRL mice from weakness and pathological changes after rotator cuff tear. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:811-822, 2020.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joshua S Dines
- Hospital for Special Surgery, New York, NY
- Department of Orthopaedic Surgery, Weill Cornell Medical College, New York, NY
| | - Scott A Rodeo
- Hospital for Special Surgery, New York, NY
- Department of Orthopaedic Surgery, Weill Cornell Medical College, New York, NY
| | - Christopher L Mendias
- Hospital for Special Surgery, New York, NY
- Department of Orthopaedic Surgery, Weill Cornell Medical College, New York, NY
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY
- Corresponding Author: Christopher Mendias, PhD, Hospital for Special Surgery, 535 E 70th St, New York, NY 10021, USA, +1 212-606-1785 office, +1 212-249-2373 fax,
| |
Collapse
|
22
|
Gumucio JP, Qasawa AH, Ferrara PJ, Malik AN, Funai K, McDonagh B, Mendias CL. Reduced mitochondrial lipid oxidation leads to fat accumulation in myosteatosis. FASEB J 2019; 33:7863-7881. [PMID: 30939247 DOI: 10.1096/fj.201802457rr] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Myosteatosis is the pathologic accumulation of lipid that can occur in conjunction with atrophy and fibrosis following skeletal muscle injury. Little is known about the mechanisms by which lipid accumulates in myosteatosis, but many clinical studies have demonstrated that the degree of lipid infiltration negatively correlates with muscle function and regeneration. Our objective was to determine the pathologic changes that result in lipid accumulation in injured muscle fibers. We used a rat model of rotator cuff injury in this study because the rotator cuff muscle group is particularly prone to the development of myosteatosis after injury. Muscles were collected from uninjured controls or 10, 30, or 60 d after injury and analyzed using a combination of muscle fiber contractility assessments, RNA sequencing, and undirected metabolomics, lipidomics, and proteomics, along with bioinformatics techniques to identify potential pathways and cellular processes that are dysregulated after rotator cuff tear. Bioinformatics analyses indicated that mitochondrial function was likely disrupted after injury. Based on these findings and given the role that mitochondria play in lipid metabolism, we then performed targeted biochemical and imaging studies and determined that mitochondrial dysfunction and reduced fatty acid oxidation likely leads to the accumulation of lipid in myosteatosis.-Gumucio, J. P., Qasawa, A. H., Ferrara, P. J., Malik, A. N., Funai, K., McDonagh, B., Mendias, C. L. Reduced mitochondrial lipid oxidation leads to fat accumulation in myosteatosis.
Collapse
Affiliation(s)
- Jonathan P Gumucio
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, Michigan, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Austin H Qasawa
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Patrick J Ferrara
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA
| | - Afshan N Malik
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA
| | - Brian McDonagh
- Department of Physiology, School of Medicine, National University of Ireland, Galway, Ireland
| | - Christopher L Mendias
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, Michigan, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA.,Hospital for Special Surgery, New York, New York, USA.,Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
23
|
Yuan X, Zhang M, Wang Y, Zhao H, Sun D. Using co-axial electrospray deposition to eliminate burst release of simvastatin from microparticles and to enhance induced osteogenesis. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 30:355-375. [PMID: 30572791 DOI: 10.1080/09205063.2018.1559978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Microparticles (MPs) exhibit fast dissolution, characterized by a burst drug release pattern. In the present work, we prepared core-shell MPs of simvastatin (SIM) and zein with chitosan (CS) and nano-hydroxyapatite (nHA) as a drug carrier using the coaxial electrospray deposition method. The morphology, formation and in vitro osteogenic differentiation of these MPs were studied. The synthetic MPs have a diameter of about 1 μm and they are composed of non-toxic natural materials. They provide an effective way to enable long-term sustained-release activity, which is controlled by their double layer structures. The CS-nHA/zein-SIM MPs presented a low initial burst release (approximately 35-47%) within the first 24 h of application followed by the sustained release for at least 4 weeks. In vitro cell culture experiments were performed and the results revealed that the CS-nHA/zein-SIM core-shell MPs were beneficial to the adhesion, proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). The CS-nHA/zein-SIM MPs with a low SIM concentration were beneficial to cell proliferation and promotion of osteogenic differentiation.
Collapse
Affiliation(s)
- Xiaowei Yuan
- a Norman Bethune First Hospital, Jilin University , Changchun , China
| | - Mei Zhang
- b Alan G. MacDiarmid Laboratory , College of Chemistry, Jilin University , Changchun , China
| | - Yilong Wang
- b Alan G. MacDiarmid Laboratory , College of Chemistry, Jilin University , Changchun , China
| | - He Zhao
- b Alan G. MacDiarmid Laboratory , College of Chemistry, Jilin University , Changchun , China
| | - Dahui Sun
- a Norman Bethune First Hospital, Jilin University , Changchun , China
| |
Collapse
|
24
|
Choi GJ, Park HK, Kim DS, Lee D, Kang H. Effect of statins on experimental postoperative adhesion: a systematic review and meta-analysis. Sci Rep 2018; 8:14754. [PMID: 30283040 PMCID: PMC6170439 DOI: 10.1038/s41598-018-33145-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022] Open
Abstract
Adhesion is a significant concern after surgery. Many researchers studied the anti-adhesive effect of statin, of which results were inconsistent. Thus, we purposed to perform a systematic review and meta-analysis to evaluate the effect of statins on postoperative adhesion in an experimental study. A comprehensive search was conducted using MEDLINE, EMBASE, and Google Scholar to identify animal studies that investigated the postoperative anti-adhesive effect of statins applied at the surgical area. Primary outcome measure was gross adhesion score. Secondary outcomes included microscopic adhesion score and tissue plasminogen activator (t-PA) activity. Totally, 298 rats from 9 animal studies (172 rats received statin therapy and 126 rats received placebo or no treatment) were included in the final analysis. The combined results showed that gross and microscopic adhesion scores were significantly lower in the statin group in comparison to the control group (standardized mean difference [SMD] = 1.65, 95% confidence interval [CI]: 1.02 to 2.28, Pchi2 < 0.001, I2 = 77.9%; SMD = 1.90, 95% CI: 1.10 to 2.79, Pchi2 < 0.001, I2 = 84.5%, respectively). However, there was no evidence of a difference in t-PA activity (SMD = -3.43, 95% CI: -7.95 to 1.09, Pchi2 < 0.001, I2 = 95.5%). In conclusion, statins were effective in preventing postoperative adhesion, as assessed based on gross and microscopic adhesion scores in rats.
Collapse
Affiliation(s)
- Geun Joo Choi
- Department of Anesthesiology and Pain Medicine, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06911, Republic of Korea
| | - Hee Kyung Park
- Department of Biomedical Engineering, School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06911, Republic of Korea
| | - Dong Su Kim
- Department of Biomedical Engineering, School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06911, Republic of Korea
| | - Donghyun Lee
- Department of Biomedical Engineering, School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06911, Republic of Korea.
| | - Hyun Kang
- Department of Anesthesiology and Pain Medicine, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06911, Republic of Korea.
| |
Collapse
|
25
|
Yang Y, Qu J. The effects of hyperlipidemia on rotator cuff diseases: a systematic review. J Orthop Surg Res 2018; 13:204. [PMID: 30119634 PMCID: PMC6098646 DOI: 10.1186/s13018-018-0912-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/08/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Rotator cuff disease is a common condition that causes shoulder pain and functional disability. Recent studies suggested that hyperlipidemia might be associated with the development of rotator cuff disease. The objective of this study was to explore the relationship of hyperlipidemia and rotator cuff diseases. METHODS A computerized search using relevant search terms was performed in the PubMed, EMBASE, and Cochrane Library databases, as well as a manual search of reference and citation lists of the included studies. Searches were limited to studies that explored the association of hyperlipidemia and rotator cuff diseases. RESULTS Sixteen studies were included in this systematic review. Ten of sixteen included studies suggested an association between dyslipidemia and rotator cuff diseases, while the other six studies did not find an association. Two studies demonstrated there were an association between statins and reduced risk of developing rotator cuff diseases or decreased incidence of revision after rotator cuff repair. CONCLUSION The current study suggested that there was an association between hyperlipidemia and rotator cuff diseases. Furthermore, current evidence suggested that use of statins could decrease the risk of developing rotator cuff diseases and the incidence of revision after rotator cuff repair. Future high-quality studies are highly needed to confirm these findings.
Collapse
Affiliation(s)
- Yang Yang
- Department of Cardiovascular Disease, The Second Xiangya Hospital, Central South University, Changsha, 410011 People’s Republic of China
| | - Jin Qu
- Department of Sports Medicine, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008 People’s Republic of China
| |
Collapse
|
26
|
Valencia AP, Lai JK, Iyer SR, Mistretta KL, Spangenburg EE, Davis DL, Lovering RM, Gilotra MN. Fatty Infiltration Is a Prognostic Marker of Muscle Function After Rotator Cuff Tear. Am J Sports Med 2018; 46:2161-2169. [PMID: 29750541 PMCID: PMC6397750 DOI: 10.1177/0363546518769267] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Massive rotator cuff tears (RCTs) begin as primary tendon injuries and cause a myriad of changes in the muscle, including atrophy, fatty infiltration (FI), and fibrosis. However, it is unclear which changes are most closely associated with muscle function. PURPOSE To determine if FI of the supraspinatus muscle after acute RCT relates to short-term changes in muscle function. STUDY DESIGN Controlled laboratory study. METHODS Unilateral RCTs were induced in female rabbits via tenotomy of the supraspinatus and infraspinatus. Maximal isometric force and rate of fatigue were measured in the supraspinatus in vivo at 6 and 12 weeks after tenotomy. Computed tomography scanning was performed, followed by histologic analysis of myofiber size, FI, and fibrosis. RESULTS Tenotomy resulted in supraspinatus weakness, reduced myofiber size, FI, and fibrosis, but no differences were evident between 6 and 12 weeks after tenotomy except for increased collagen content at 12 weeks. FI was a predictor of supraspinatus weakness and was strongly correlated to force, even after accounting for muscle cross-sectional area. While muscle atrophy accounted for the loss in force in tenotomized muscles with minimal FI, it did not account for the greater loss in force in tenotomized muscles with the most FI. Collagen content was not strongly correlated with maximal isometric force, even when normalized to muscle size. CONCLUSION After RCT, muscle atrophy results in the loss of contractile force from the supraspinatus, but exacerbated weakness is observed with increased FI. Therefore, the level of FI can help predict contractile function of torn rotator cuff muscles. CLINICAL RELEVANCE Markers to predict contractile function of RCTs will help determine the appropriate treatment to improve functional recovery after RCTs.
Collapse
Affiliation(s)
- Ana P. Valencia
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Department of Kinesiology, School of Public Health, University of Maryland, Baltimore, Maryland, USA
| | - Jim K. Lai
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Shama R. Iyer
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Katherine L. Mistretta
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Espen E. Spangenburg
- Department of Physiology, East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Derik L. Davis
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Richard M. Lovering
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Mohit N. Gilotra
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Department of Orthopaedics, Baltimore Veteran Affairs Medical Center, Baltimore, Maryland, USA
- Address correspondence to Mohit N. Gilotra, MD, Department of Orthopaedics, School of Medicine and VA Maryland Health Care System, University of Maryland, AHB, Rm 540, 100 Penn St, Baltimore, MD 21201, USA ()
| | | |
Collapse
|
27
|
Valencia AP, Iyer SR, Spangenburg EE, Gilotra MN, Lovering RM. Impaired contractile function of the supraspinatus in the acute period following a rotator cuff tear. BMC Musculoskelet Disord 2017; 18:436. [PMID: 29121906 PMCID: PMC5679320 DOI: 10.1186/s12891-017-1789-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/26/2017] [Indexed: 01/16/2023] Open
Abstract
Background Rotator cuff (RTC) tears are a common clinical problem resulting in adverse changes to the muscle, but there is limited information comparing histopathology to contractile function. This study assessed supraspinatus force and susceptibility to injury in the rat model of RTC tear, and compared these functional changes to histopathology of the muscle. Methods Unilateral RTC tears were induced in male rats via tenotomy of the supraspinatus and infraspinatus. Maximal tetanic force and susceptibility to injury of the supraspinatus muscle were measured in vivo at day 2 and day 15 after tenotomy. Supraspinatus muscles were weighed and harvested for histologic analysis of the neuromuscular junction (NMJ), intramuscular lipid, and collagen. Results Tenotomy resulted in eventual atrophy and weakness. Despite no loss in muscle mass at day 2 there was a 30% reduction in contractile force, and a decrease in NMJ continuity and size. Reduced force persisted at day 15, a time point when muscle atrophy was evident but NMJ morphology was restored. At day 15, torn muscles had decreased collagen-packing density and were also more susceptible to contraction-induced injury. Conclusion Muscle size and histopathology are not direct indicators of overall RTC contractile health. Changes in NMJ morphology and collagen organization were associated with changes in contractile function and thus may play a role in response to injury. Although our findings are limited to the acute phase after a RTC tear, the most salient finding is that RTC tenotomy results in increased susceptibility to injury of the supraspinatus.
Collapse
Affiliation(s)
- Ana P Valencia
- Department of Orthopaedics, University of Maryland School of Medicine, AHB, Rm 540, 100 Penn St., Baltimore, MD, 21201, USA.,Department of Kinesiology, University of Maryland School of Public Health, College Park, USA
| | - Shama R Iyer
- Department of Orthopaedics, University of Maryland School of Medicine, AHB, Rm 540, 100 Penn St., Baltimore, MD, 21201, USA
| | - Espen E Spangenburg
- Department of Physiology, East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, USA
| | - Mohit N Gilotra
- Department of Orthopaedics, University of Maryland School of Medicine, AHB, Rm 540, 100 Penn St., Baltimore, MD, 21201, USA
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, AHB, Rm 540, 100 Penn St., Baltimore, MD, 21201, USA.
| |
Collapse
|
28
|
What is the role of systemic conditions and options for manipulation of bone formation and bone resorption in rotator cuff tendon healing and repair? TECHNIQUES IN SHOULDER AND ELBOW SURGERY 2017; 18:113-120. [PMID: 28966557 DOI: 10.1097/bte.0000000000000121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rotator cuff pathology is a significant cause of shoulder pain. Operative repair of rotator cuff is an established standard of care for these patient, however, failure of the procedure is common. Systemic conditions such as diabetes mellitus, hypocholesteremia, thyroid disease, and smoking significantly affect the outcomes of rotator cuff repair and have significant implications for the management of these patients. Diabetes mellitus has been proposed to damage tendons through non-enzymatic glycosylation of collagen with advanced glycation end product formation and impaired microcirculation. Hypocholesteremia may lead to fatty infiltration and subsequent pro-inflammatory degenerative enzymatic degeneration. Thyroid disease may disrupt tendon homeostasis through the alteration of collagen production and the accumulation of glycosaminoglycans. Lastly, smoking inhibits tendon healing through the induction of hypovascularity and hypoperfusion. Understanding of the implications these systemic conditions have on the outcomes is important in the management of rotator cuff disease.
Collapse
|
29
|
MacDonald AE, Ekhtiari S, Khan M, Moro JK, Bedi A, Miller BS. Dyslipidaemia is associated with an increased risk of rotator cuff disease: a systematic review. J ISAKOS 2017. [DOI: 10.1136/jisakos-2017-000142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
30
|
Eliasson P, Svensson RB, Giannopoulos A, Eismark C, Kjær M, Schjerling P, Heinemeier KM. Simvastatin and atorvastatin reduce the mechanical properties of tendon constructs in vitro and introduce catabolic changes in the gene expression pattern. PLoS One 2017; 12:e0172797. [PMID: 28264197 PMCID: PMC5339395 DOI: 10.1371/journal.pone.0172797] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/09/2017] [Indexed: 01/13/2023] Open
Abstract
Treatment with lipid-lowering drugs, statins, is common all over the world. Lately, the occurrence of spontaneous tendon ruptures or tendinosis have suggested a negative influence of statins upon tendon tissue. But how statins might influence tendons is not clear. In the present study, we investigated the effect of statin treatment on mechanical strength, cell proliferation, collagen content and gene expression pattern in a tendon-like tissue made from human tenocytes in vitro. Human tendon fibroblasts were grown in a 3D tissue culture model (tendon constructs), and treated with either simvastatin or atorvastatin, low or high dose, respectively, for up to seven days. After seven days of treatment, mechanical testing of the constructs was performed. Collagen content and cell proliferation were also determined. mRNA levels of several target genes were measured after one or seven days. The maximum force and stiffness were reduced by both statins after 7 days (p<0.05), while the cross sectional area was unaffected. Further, the collagen content was reduced by atorvastatin (p = 0.01) and the cell proliferation rate was decreased by both types of statins (p<0.05). Statin treatment also introduced increased mRNA levels of MMP-1, MMP-3, MMP-13, TIMP-1 and decreased levels of collagen type 1 and 3. In conclusion, statin treatment appears to have a negative effect on tendon matrix quality as seen by a reduced strength of the tendon constructs. Further, activated catabolic changes in the gene expression pattern and a reduced collagen content indicated a disturbed balance in matrix production of tendon due to statin administration.
Collapse
Affiliation(s)
- Pernilla Eliasson
- Institute of Sports Medicine Copenhagen, Dept of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- * E-mail:
| | - Rene B. Svensson
- Institute of Sports Medicine Copenhagen, Dept of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Antonis Giannopoulos
- Institute of Sports Medicine Copenhagen, Dept of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Eismark
- Institute of Sports Medicine Copenhagen, Dept of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kjær
- Institute of Sports Medicine Copenhagen, Dept of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Dept of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katja M. Heinemeier
- Institute of Sports Medicine Copenhagen, Dept of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Southern WM, Nichenko AS, Shill DD, Spencer CC, Jenkins NT, McCully KK, Call JA. Skeletal muscle metabolic adaptations to endurance exercise training are attainable in mice with simvastatin treatment. PLoS One 2017; 12:e0172551. [PMID: 28207880 PMCID: PMC5313210 DOI: 10.1371/journal.pone.0172551] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/06/2017] [Indexed: 01/02/2023] Open
Abstract
We tested the hypothesis that a 6-week regimen of simvastatin would attenuate skeletal muscle adaptation to low-intensity exercise. Male C57BL/6J wildtype mice were subjected to 6-weeks of voluntary wheel running or normal cage activities with or without simvastatin treatment (20 mg/kg/d, n = 7-8 per group). Adaptations in in vivo fatigue resistance were determined by a treadmill running test, and by ankle plantarflexor contractile assessment. The tibialis anterior, gastrocnemius, and plantaris muscles were evaluated for exercised-induced mitochondrial adaptations (i.e., biogenesis, function, autophagy). There was no difference in weekly wheel running distance between control and simvastatin-treated mice (P = 0.51). Trained mice had greater treadmill running distance (296%, P<0.001), and ankle plantarflexor contractile fatigue resistance (9%, P<0.05) compared to sedentary mice, independent of simvastatin treatment. At the cellular level, trained mice had greater mitochondrial biogenesis (e.g., ~2-fold greater PGC1α expression, P<0.05) and mitochondrial content (e.g., 25% greater citrate synthase activity, P<0.05), independent of simvastatin treatment. Mitochondrial autophagy-related protein contents were greater in trained mice (e.g., 40% greater Bnip3, P<0.05), independent of simvastatin treatment. However, Drp1, a marker of mitochondrial fission, was less in simvastatin treated mice, independent of exercise training, and there was a significant interaction between training and statin treatment (P<0.022) for LC3-II protein content, a marker of autophagy flux. These data indicate that whole body and skeletal muscle adaptations to endurance exercise training are attainable with simvastatin treatment, but simvastatin may have side effects on muscle mitochondrial maintenance via autophagy, which could have long-term implications on muscle health.
Collapse
Affiliation(s)
- William M. Southern
- Department of Kinesiology, University of Georgia, Athens, Georgia, United States of America
| | - Anna S. Nichenko
- Department of Kinesiology, University of Georgia, Athens, Georgia, United States of America
| | - Daniel D. Shill
- Department of Kinesiology, University of Georgia, Athens, Georgia, United States of America
| | - Corey C. Spencer
- Department of Kinesiology, University of Georgia, Athens, Georgia, United States of America
| | - Nathan T. Jenkins
- Department of Kinesiology, University of Georgia, Athens, Georgia, United States of America
| | - Kevin K. McCully
- Department of Kinesiology, University of Georgia, Athens, Georgia, United States of America
| | - Jarrod A. Call
- Department of Kinesiology, University of Georgia, Athens, Georgia, United States of America
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
32
|
Rothrauff BB, Pauyo T, Debski RE, Rodosky MW, Tuan RS, Musahl V. The Rotator Cuff Organ: Integrating Developmental Biology, Tissue Engineering, and Surgical Considerations to Treat Chronic Massive Rotator Cuff Tears. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:318-335. [PMID: 28084902 DOI: 10.1089/ten.teb.2016.0446] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The torn rotator cuff remains a persistent orthopedic challenge, with poor outcomes disproportionately associated with chronic, massive tears. Degenerative changes in the tissues that comprise the rotator cuff organ, including muscle, tendon, and bone, contribute to the poor healing capacity of chronic tears, resulting in poor function and an increased risk for repair failure. Tissue engineering strategies to augment rotator cuff repair have been developed in an effort to improve rotator cuff healing and have focused on three principal aims: (1) immediate mechanical augmentation of the surgical repair, (2) restoration of muscle quality and contractility, and (3) regeneration of native enthesis structure. Work in these areas will be reviewed in sequence, highlighting the relevant pathophysiology, developmental biology, and biomechanics, which must be considered when designing therapeutic applications. While the independent use of these strategies has shown promise, synergistic benefits may emerge from their combined application given the interdependence of the tissues that constitute the rotator cuff organ. Furthermore, controlled mobilization of augmented rotator cuff repairs during postoperative rehabilitation may provide mechanotransductive cues capable of guiding tissue regeneration and restoration of rotator cuff function. Present challenges and future possibilities will be identified, which if realized, may provide solutions to the vexing condition of chronic massive rotator cuff tears.
Collapse
Affiliation(s)
- Benjamin B Rothrauff
- 1 Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Thierry Pauyo
- 3 Division of Sports Medicine, Department of Orthopaedic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Richard E Debski
- 2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark W Rodosky
- 3 Division of Sports Medicine, Department of Orthopaedic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Rocky S Tuan
- 1 Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Volker Musahl
- 2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Division of Sports Medicine, Department of Orthopaedic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania.,4 Orthopaedic Robotics Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
33
|
Hirooka S, Ueno M, Fukuda S, Miyajima A, Hirota T. Effects of Simvastatin on Alveolar Regeneration and Its Relationship to Exposure in Mice with Dexamethasone-Induced Emphysema. Biol Pharm Bull 2017; 40:155-160. [PMID: 28154254 DOI: 10.1248/bpb.b16-00637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, the relationship between systemic exposure of simvastatin (SV) hydroxy acid (SV-acid), an active form of SV, and its alveolar regeneration rates was investigated using emphysema model mice created by postnatal treatment of dexamethasone. In a model with young animals, the mice were treated with SV for 10 d from postnatal day 42. Similar alveolar regeneration with a % mean linear intercept (Lm) recovery of 60 to 70% by histochemical observation was observed in mice after intraperitoneal administration at dose in the range of 4-100 µg/mouse. The % Lm recovery after oral administration of 20 µg/mouse was comparable with that after intraperitoneal administration at a dose of 4 µg/mouse, when their exposure of SV-acid was almost similar in both treated groups. Regardless of the route of administration, the recovery can depend on the exposure level of SV-acid, and to the maximum was about 60-70%. On the other hand, in a model with adult animals, the mice were intraperitoneally administrated SV at a dose of 4 µg/mouse for 10 d from postnatal day 152. Compared to young animals, less % Lm recovery was observed in adult mice even their systemic exposures of SV-acid were similar.
Collapse
Affiliation(s)
- Shihomi Hirooka
- Department of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | | | | | | | | |
Collapse
|
34
|
Mendias CL, Schwartz AJ, Grekin JA, Gumucio JP, Sugg KB. Changes in muscle fiber contractility and extracellular matrix production during skeletal muscle hypertrophy. J Appl Physiol (1985) 2016; 122:571-579. [PMID: 27979985 DOI: 10.1152/japplphysiol.00719.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/04/2016] [Accepted: 12/08/2016] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle can adapt to increased mechanical loads by undergoing hypertrophy. Transient reductions in whole muscle force production have been reported during the onset of hypertrophy, but contractile changes in individual muscle fibers have not been previously studied. Additionally, the extracellular matrix (ECM) stores and transmits forces from muscle fibers to tendons and bones, and determining how the ECM changes during hypertrophy is important in understanding the adaptation of muscle tissue to mechanical loading. Using the synergist ablation model, we sought to measure changes in muscle fiber contractility, collagen content, and cross-linking, and in the expression of several genes and activation of signaling proteins that regulate critical components of myogenesis and ECM synthesis and remodeling during muscle hypertrophy. Tissues were harvested 3, 7, and 28 days after induction of hypertrophy, and nonoverloaded rats served as controls. Muscle fiber specific force (sFo), which is the maximum isometric force normalized to cross-sectional area, was reduced 3 and 7 days after the onset of mechanical overload, but returned to control levels by 28 days. Collagen abundance displayed a similar pattern of change. Nearly a quarter of the transcriptome changed over the course of overload, as well as the activation of signaling pathways related to hypertrophy and atrophy. Overall, this study provides insight into fundamental mechanisms of muscle and ECM growth, and indicates that although muscle fibers appear to have completed remodeling and regeneration 1 mo after synergist ablation, the ECM continues to be actively remodeling at this time point.NEW & NOTEWORTHY This study utilized a rat synergist ablation model to integrate changes in single muscle fiber contractility, extracellular matrix composition, activation of important signaling pathways in muscle adaption, and corresponding changes in the muscle transcriptome to provide novel insight into the basic biological mechanisms of muscle fiber hypertrophy.
Collapse
Affiliation(s)
- Christopher L Mendias
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan; .,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan; and
| | - Andrew J Schwartz
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan; and
| | - Jeremy A Grekin
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jonathan P Gumucio
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan; and
| | - Kristoffer B Sugg
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan; and.,Department of Surgery, Section of Plastic Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
35
|
Tucker JJ, Soslowsky LJ. Effect of simvastatin on rat supraspinatus tendon mechanical and histological properties in a diet-induced hypercholesterolemia model. J Orthop Res 2016; 34:2009-2015. [PMID: 26970227 PMCID: PMC5349294 DOI: 10.1002/jor.23225] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 02/18/2016] [Indexed: 02/04/2023]
Abstract
Hypercholesterolemia is a common condition and is a risk factor for tendon rupture, specifically in the supraspinatus tendon. In the clinic, statins are commonly prescribed to lower cholesterol, but little information is available examining the effect of statin treatment on the musculoskeletal system. Therefore, the objective of this study was to determine the biomechanical and histological effects of statin treatment in a diet-induced hypercholesterolemia model. We hypothesized that hypercholesterolemic rats treated with statins would have improved tendon biomechanical and histological properties compared to hypercholesterolemic rats not receiving daily statin treatment. Thirty adult male Sprague-Dawley rats ate either high-cholesterol (HC) diet (n = 20) or normal chow (CTL, n = 10). After 6 months, a subset of HC rats began daily oral simvastatin dosing (HC+S) at 20 mg/kg. All rats were sacrificed after a total of 9 months (3 months of statin treatment) and evaluated for histology and mechanics. For mechanics, at the insertion region, HC+S group had increased tendon cross-sectional area decreased and modulus. No differences were noted in mechanical properties at the midsubstance. For histology, no differences were noted in the insertion region. In the midsubstance region, HC+S group had more spindle shaped cells. Our results suggest that 3 months of simvastatin treatment in a diet-induced hypercholesterolemia rat model alters some tendon mechanical and histological properties, although a strong conclusion in support of improved parameters cannot be drawn. Therefore, we conclude that simvastatin treatment does not negatively affect tendon properties. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2009-2015, 2016.
Collapse
|
36
|
Kasukonis B, Kim J, Brown L, Jones J, Ahmadi S, Washington T, Wolchok J. Codelivery of Infusion Decellularized Skeletal Muscle with Minced Muscle Autografts Improved Recovery from Volumetric Muscle Loss Injury in a Rat Model. Tissue Eng Part A 2016; 22:1151-1163. [PMID: 27570911 DOI: 10.1089/ten.tea.2016.0134] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Skeletal muscle is capable of robust self-repair following mild trauma, yet in cases of traumatic volumetric muscle loss (VML), where more than 20% of a muscle's mass is lost, this capacity is overwhelmed. Current autogenic whole muscle transfer techniques are imperfect, which has motivated the exploration of implantable scaffolding strategies. In this study, the use of an allogeneic decellularized skeletal muscle (DSM) scaffold with and without the addition of minced muscle (MM) autograft tissue was explored as a repair strategy using a lower-limb VML injury model (n = 8/sample group). We found that the repair of VML injuries using DSM + MM scaffolds significantly increased recovery of peak contractile force (81 ± 3% of normal contralateral muscle) compared to unrepaired VML controls (62 ± 4%). Similar significant improvements were measured for restoration of muscle mass (88 ± 3%) in response to DSM + MM repair compared to unrepaired VML controls (79 ± 3%). Histological findings revealed a marked decrease in collagen dense repair tissue formation both at and away from the implant site for DSM + MM repaired muscles. The addition of MM to DSM significantly increased MyoD expression, compared to isolated DSM treatment (21-fold increase) and unrepaired VML (37-fold) controls. These findings support the further exploration of both DSM and MM as promising strategies for the repair of VML injury.
Collapse
Affiliation(s)
- Benjamin Kasukonis
- 1 Department of Biomedical Engineering, College of Engineering, University of Arkansas , Fayetteville, Arkansas
| | - John Kim
- 1 Department of Biomedical Engineering, College of Engineering, University of Arkansas , Fayetteville, Arkansas
| | - Lemuel Brown
- 2 Department of Health, Human Performance, and Recreation, College of Education and Health Professions, University of Arkansas , Fayetteville, Arkansas
| | - Jake Jones
- 1 Department of Biomedical Engineering, College of Engineering, University of Arkansas , Fayetteville, Arkansas
| | - Shahryar Ahmadi
- 3 Department of Orthopedics, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| | - Tyrone Washington
- 2 Department of Health, Human Performance, and Recreation, College of Education and Health Professions, University of Arkansas , Fayetteville, Arkansas
| | - Jeffrey Wolchok
- 1 Department of Biomedical Engineering, College of Engineering, University of Arkansas , Fayetteville, Arkansas
| |
Collapse
|
37
|
Javaherzadeh M, Shekarchizadeh A, Kafaei M, Mirafshrieh A, Mosaffa N, Sabet B. Effects of Intraperitoneal Administration of Simvastatin in Prevention of Postoperative Intra-abdominal Adhesion Formation in Animal Model of Rat. Bull Emerg Trauma 2016; 4:156-160. [PMID: 27540550 PMCID: PMC4989042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/14/2016] [Accepted: 06/19/2016] [Indexed: 06/06/2023] Open
Abstract
OBJECTIVE To determine the preventive effects of local administration of simvastatin for postoperative intra-abdominal adhesion formation in animal model of rat. METHODS In this experimental study, 32 Wistar albino rats as the animal model of intra-abdominal adhesion formation were included. Adhesions were induced in all the animals via abrasion of the peritoneal and intestinal surface during laparotomy. Afterwards, the rats were randomly assigned to receive simvastatin (30 mg/kg body weight) as a single intraperitoneal dose at the time of laparotomy (n=16) or normal saline in same volume at the same time (n=16). At the day 21, animals were euthanized and the adhesions were quantified clinically (via repeated laparotomy) and pathologically and compared between the two groups. RESULTS The baseline characteristics of the animals were comparable between two study groups. Clinically, in simvastatin group, 10 rats (62.5%) did not develop any adhesion and 6 (37.5%) had first-grade adhesion; whereas in the control group, 11 (68.8%) rats had first- and 5 (31.2%) had second-grade adhesions (p<0.001). Pathologically, in simvastatin group, 6 rats (37.5%) had first-grade adhesion, while in control group, 11 rats (68.8%) had first- and 5 (31.2%) had second-grade adhesions (p<0.001). CONCLUSION Our findings suggest that intraperitoneal administration of simvastatin is an effective method for prevention of postoperative intra-abdominal adhesion formation in animal model of rat.
Collapse
Affiliation(s)
- Mojtaba Javaherzadeh
- Department of Surgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Shekarchizadeh
- Poursina Hakim Gastrointestinal (GI) Research Center, Poursina Hakim Research Institution, Isfahan, Iran
| | - Marjan Kafaei
- Department of Surgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abass Mirafshrieh
- Department of Pathology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Sabet
- Department of Surgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Liu X, Ning AY, Chang NC, Kim H, Nissenson R, Wang L, Feeley BT. Investigating the cellular origin of rotator cuff muscle fatty infiltration and fibrosis after injury. Muscles Ligaments Tendons J 2016; 6:6-15. [PMID: 27331027 DOI: 10.11138/mltj/2016.6.1.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND rotator cuff muscle atrophy, fibrosis and fatty infiltration are common complications after large and massive rotator cuff tears. Currently, there are no effective treatments for these muscle pathologies after injury. Furthermore, the cellular source for fibrotic and adipose tissues in rotator cuff muscle after injury remains unknown. In this study, we proposed that two groups of muscle resident progenitors, Tie2+ muscle mesenchymal progenitors and PDGFRα(+) fibro/adipogenic progenitor cells (FAPs), contribute significantly to rotator cuff muscle fibrosis and fatty infiltration. METHODS we tested our hypothesis using reporter mice. Rotator cuff muscles from Tie2-GFP and PDGFRα-GFP reporter mice were harvested at 2 and 6 weeks after unilateral massive rotator cuff tear surgeries. Immunofluorescent staining for fibroblast and adipocyte markers was conducted. RESULTS our results showed significant co-localization of Tie2+ cells with fibrotic markers vimentin and αSMA. In the PDGFRα-GFP reporter mice, GFP signal was seen in only a small fraction of cells staining positive for vimentin and αSMA. However, PDGFRα showed significant co-localization with adipocyte markers, including PPAR-γ, adiponectin, and perilipin A. Oil red O staining confirmed that the mature adipocytes appearing in rotator cuff muscles after injury are also PDGFRα(+). CONCLUSION these data demonstrated that the Tie2(+) muscle mesenchymal progenitors are the major source of fibroblasts while PDGFRα(+) FAPs are the major source of adipocytes in rotator cuff muscle fatty infiltration. Basic Science Study.
Collapse
Affiliation(s)
- Xuhui Liu
- Department of Orthopaedic Surgery, University of California at San Francisco, USA
| | - Anne Y Ning
- Department of Orthopaedic Surgery, University of California at San Francisco, USA
| | | | - Hubert Kim
- Department of Orthopaedic Surgery, University of California at San Francisco, USA
| | - Robert Nissenson
- Department of Orthopaedic Surgery, University of California at San Francisco, USA
| | - Liping Wang
- Department of Orthopaedic Surgery, University of California at San Francisco, USA
| | - Brian T Feeley
- Department of Orthopaedic Surgery, University of California at San Francisco, USA
| |
Collapse
|
39
|
Developmental Biology and Regenerative Medicine: Addressing the Vexing Problem of Persistent Muscle Atrophy in the Chronically Torn Human Rotator Cuff. Phys Ther 2016; 96:722-33. [PMID: 26847008 PMCID: PMC4858662 DOI: 10.2522/ptj.20150029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 01/24/2016] [Indexed: 12/18/2022]
Abstract
Persistent muscle atrophy in the chronically torn rotator cuff is a significant obstacle for treatment and recovery. Large atrophic changes are predictive of poor surgical and nonsurgical outcomes and frequently fail to resolve even following functional restoration of loading and rehabilitation. New insights into the processes of muscle atrophy and recovery gained through studies in developmental biology combined with the novel tools and strategies emerging in regenerative medicine provide new avenues to combat the vexing problem of muscle atrophy in the rotator cuff. Moving these treatment strategies forward likely will involve the combination of surgery, biologic/cellular agents, and physical interventions, as increasing experimental evidence points to the beneficial interaction between biologic therapies and physiologic stresses. Thus, the physical therapy profession is poised to play a significant role in defining the success of these combinatorial therapies. This perspective article will provide an overview of the developmental biology and regenerative medicine strategies currently under investigation to combat muscle atrophy and how they may integrate into the current and future practice of physical therapy.
Collapse
|
40
|
Hamrick MW, McGee-Lawrence ME, Frechette DM. Fatty Infiltration of Skeletal Muscle: Mechanisms and Comparisons with Bone Marrow Adiposity. Front Endocrinol (Lausanne) 2016; 7:69. [PMID: 27379021 PMCID: PMC4913107 DOI: 10.3389/fendo.2016.00069] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle and bone share common embryological origins from mesodermal cell populations and also display common growth trajectories early in life. Moreover, muscle and bone are both mechanoresponsive tissues, and the mass and strength of both tissues decline with age. The decline in muscle and bone strength that occurs with aging is accompanied in both cases by an accumulation of adipose tissue. In bone, adipocyte (AC) accumulation occurs in the marrow cavities of long bones and is known to increase with estrogen deficiency, mechanical unloading, and exposure to glucocorticoids. The factors leading to accumulation of intra- and intermuscular fat (myosteatosis) are less well understood, but recent evidence indicates that increases in intramuscular fat are associated with disuse, altered leptin signaling, sex steroid deficiency, and glucocorticoid treatment, factors that are also implicated in bone marrow adipogenesis. Importantly, accumulation of ACs in skeletal muscle and accumulation of intramyocellular lipid are linked to loss of muscle strength, reduced insulin sensitivity, and increased mortality among the elderly. Resistance exercise and whole body vibration can prevent fatty infiltration in skeletal muscle and also improve muscle strength. Therapeutic strategies to prevent myosteatosis may improve muscle function and reduce fall risk in the elderly, potentially impacting the incidence of bone fracture.
Collapse
Affiliation(s)
- Mark W. Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, GA, USA
- *Correspondence: Mark W. Hamrick,
| | | | | |
Collapse
|
41
|
Knobloch K. Drug-Induced Tendon Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 920:229-38. [DOI: 10.1007/978-3-319-33943-6_22] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
42
|
Cho E, Zhang Y, Pruznak A, Kim HM. Effect of tamoxifen on fatty degeneration and atrophy of rotator cuff muscles in chronic rotator cuff tear: An animal model study. J Orthop Res 2015; 33:1846-53. [PMID: 26121952 DOI: 10.1002/jor.22964] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/03/2015] [Indexed: 02/04/2023]
Abstract
Fatty degeneration of the rotator cuff muscles is an irreversible change resulting from chronic rotator cuff tear and is associated with poor clinical outcomes following rotator cuff repair. We evaluated the effect of Tamoxifen, a competitive estrogen receptor inhibitor, on fatty degeneration using a mouse model for chronic rotator cuff tear. Sixteen adult mice were divided into two diet groups (Tamoxifen vs. Regular) and subjected to surgical creation of a large rotator cuff tear and suprascapular nerve transection in their left shoulder with the right shoulder serving as a control. The rotator cuff muscles were harvested at 16 weeks and subjected to histology and RT-PCR for adipogenic and myogenic markers. Histology showed substantially decreased atrophy and endomysial inflammation in Tamoxifen group, but no significant differences in the amount of intramuscular adipocytes and lipid droplets compared to the Regular group. With RT-PCR, the operated shoulders showed significant upregulation of myogenin and PPAR-γ, and downregulation of myostatin compared to the nonsurgical shoulder. No significant differences of gene expression were found between the two diet groups. Our study demonstrated that tamoxifen diet leads to decreased muscle atrophy and inflammatory changes following chronic rotator cuff tear, but has no apparent effect on adipogenesis.
Collapse
Affiliation(s)
- Edward Cho
- Department of Orthopaedics and Rehabilitation, Penn State College of Medicine, Hershey, Pennsylvania
| | - Yue Zhang
- Department of Orthopaedics and Rehabilitation, Penn State College of Medicine, Hershey, Pennsylvania
| | - Anne Pruznak
- Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - H Mike Kim
- Department of Orthopaedics and Rehabilitation, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|