1
|
Xu D, Tu Z, Ji M, Niu W, Xu W. Preventing secondary screw perforation following proximal humerus fracture after locking plate fixation: a new clinical prognostic risk stratification model. Arch Orthop Trauma Surg 2024; 144:651-662. [PMID: 38006437 DOI: 10.1007/s00402-023-05130-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/03/2023] [Indexed: 11/27/2023]
Abstract
INTRODUCTION After locking plate (LP) fixation, secondary screw perforation (SSP) is the most common complication in proximal humerus fracture (PHF). SSP is the main cause of glenoid destruction and always leads to reoperation. This study aimed to identify independent risk parameters for SSP and establish an individualized risk prognostic model to facilitate its clinical management. METHODS We retrospectively reviewed the medical information of patients with PHF who underwent open reduction and internal LP fixation at one medical center (n = 289) between June 2013 and June 2021. Uni- and multivariate regression analyses identified the independent risk factors. A novel nomogram was formulated based on the final independent risk factors for predicting the risk of SSP. We performed internal validation through concordance indices (C-index) and calibration curves. To implement the clinical use of the model, we performed decision curve analyses (DCA) and risk stratification according to the optimal cutoff value. RESULTS A total of 232 patients who met the inclusion criteria were enrolled. The incidence of SSP was 21.98% at the last follow-up. We found that fracture type (odds ratio [OR], 3.111; 95% confidence interval [CI], 1.223-7.914; P = 0.017), postoperative neck-shaft angle (OR, 4.270; 95% CI 1.622-11.239; P = 0.003), the absence of calcar screws (OR, 3.962; 95% CI 1.753-8.955; P = 0.003), and non-medial metaphyseal support (OR,7.066; 95% CI 2.747-18.174; P = 0.000) were independent predictors of SSP. Based on these variables, we developed a nomogram that showed good discrimination (C-index = 0.815). The predicted values of the new model were in good agreement with the actual values demonstrated by the calibration curve. Furthermore, the model's DCA and risk stratification (cutoff = 140 points) showed significantly higher clinical benefits. CONCLUSIONS We developed and validated a visual and personalized nomogram that could predict the individual risk of SSP and provide a decision basis for surgeons to create the most optional management plan. However, future prospective and externally validated design studies are warranted to verify our model's efficacy.
Collapse
Affiliation(s)
- Daxing Xu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Department of Orthopaedics, Sanshui Hospital of Foshan Hospital of Traditional Chinese Medicine, Foshan, 528100, Guangdong Province, China.
| | - Zesong Tu
- Department of Orthopaedics, Sanshui Hospital of Foshan Hospital of Traditional Chinese Medicine, Foshan, 528100, Guangdong Province, China
- Department of Orthopaedics, Foshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong Province, China
| | - Muqiang Ji
- Department of Orthopaedics, Sanshui Hospital of Foshan Hospital of Traditional Chinese Medicine, Foshan, 528100, Guangdong Province, China
| | - Wei Niu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Weipeng Xu
- Department of Orthopaedics, Foshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong Province, China
| |
Collapse
|
2
|
Zdero R, Brzozowski P, Schemitsch EH. Biomechanical design optimization of proximal humerus locked plates: A review. Injury 2024; 55:111247. [PMID: 38056059 DOI: 10.1016/j.injury.2023.111247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/15/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Proximal humerus locked plates (PHLPs) are widely used for fracture surgery. Yet, non-union, malunion, infection, avascular necrosis, screw cut-out (i.e., perforation), fixation failure, and re-operation occur. Most biomechanical investigators compare a specific PHLP configuration to other implants like non-locked plates, nails, wires, and arthroplasties. However, it is unknown whether the PHLP configuration is biomechanically optimal according to some well-known biomechanical criteria. Therefore, this is the first review of the systematic optimization of plate and/or screw design variables for improved PHLP biomechanical performance. METHODS The PubMed website was searched for papers using the terms "proximal humerus" or "shoulder" plus "biomechanics/biomechanical" plus "locked/locking plates". PHLP papers were included if they were (a) optimization studies that systematically varied plate and screw variables to determine their influence on PHLP's biomechanical performance; (b) focused on plate and screw variables rather than augmentation techniques (i.e., extra implants, bone struts, or cement); (c) published after the year 2000 signaling the commercial availability of locked plate technology; and (d) written in English. RESULTS The 41 eligible papers involved experimental testing and/or finite element modeling. Plate variables investigated by these papers were geometry, material, and/or position, while screw variables studied were number, distribution, angle, size, and/or threads. Numerical outcomes given by these papers included stiffness, strength, fracture motion, bone and implant stress, and/or the number of loading cycles to failure. But, no paper fully optimized any plate or screw variable for a PHLP by simultaneously applying four well-established biomechanical criteria: (a) allow controlled fracture motion for early callus generation; (b) reduce bone and implant stress below the material's ultimate stress to prevent failure; (c) maintain sufficient bone-plate interface stress to reduce bone resorption (i.e., stress shielding); and (d) increase the number of loading cycles before failure for a clinically beneficial lifespan (i.e., fatigue life). Finally, this review made suggestions for future work, identified clinical implications, and assessed the quality of the papers reviewed. CONCLUSIONS Applying biomechanical optimization criteria can assist biomedical engineers in designing or evaluating PHLPs, so orthopaedic surgeons can have superior PHLP constructs for clinical use.
Collapse
Affiliation(s)
- Radovan Zdero
- Orthopaedic Biomechanics Lab, Victoria Hospital, London, ON, Canada
| | - Pawel Brzozowski
- Orthopaedic Biomechanics Lab, Victoria Hospital, London, ON, Canada.
| | - Emil H Schemitsch
- Orthopaedic Biomechanics Lab, Victoria Hospital, London, ON, Canada; Division of Orthopaedic Surgery, Western University, London, ON, Canada
| |
Collapse
|
3
|
Zhelev D, Hristov S, Zderic I, Ivanov S, Visscher L, Baltov A, Ribagin S, Stoffel K, Kralinger F, Winkler J, Richards RG, Varga P, Gueorguiev B. Treatment of Metaphyseal Defects in Plated Proximal Humerus Fractures with a New Augmentation Technique-A Biomechanical Cadaveric Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1604. [PMID: 37763723 PMCID: PMC10536689 DOI: 10.3390/medicina59091604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023]
Abstract
Background and Objectives: Unstable proximal humerus fractures (PHFs) with metaphyseal defects-weakening the osteosynthesis construct-are challenging to treat. A new augmentation technique of plated complex PHFs with metaphyseal defects was recently introduced in the clinical practice. This biomechanical study aimed to analyze the stability of plated unstable PHFs augmented via implementation of this technique versus no augmentation. Materials and Methods: Three-part AO/OTA 11-B1.1 unstable PHFs with metaphyseal defects were created in sixteen paired human cadaveric humeri (average donor age 76 years, range 66-92 years), pairwise assigned to two groups for locked plate fixation with identical implant configuration. In one of the groups, six-milliliter polymethylmethacrylate bone cement with medium viscosity (seven minutes after mixing) was placed manually through the lateral window in the defect of the humerus head after its anatomical reduction to the shaft and prior to the anatomical reduction of the greater tuberosity fragment. All specimens were tested biomechanically in a 25° adduction, applying progressively increasing cyclic loading at 2 Hz until failure. Interfragmentary movements were monitored by motion tracking and X-ray imaging. Results: Initial stiffness was not significantly different between the groups, p = 0.467. Varus deformation of the humerus head fragment, fracture displacement at the medial humerus head aspect, and proximal screw migration and cut-out were significantly smaller in the augmented group after 2000, 4000, 6000, 8000 and 10,000 cycles, p ≤ 0.019. Cycles to 5° varus deformation of the humerus head fragment-set as a clinically relevant failure criterion-and failure load were significantly higher in the augmented group, p = 0.018. Conclusions: From a biomechanical standpoint, augmentation with polymethylmethacrylate bone cement placed in the metaphyseal humerus head defect of plated unstable PHFs considerably enhances fixation stability and can reduce the risk of postoperative complications.
Collapse
Affiliation(s)
- Daniel Zhelev
- AO Research Institute Davos, 7270 Davos, Switzerland; (D.Z.); (I.Z.); (L.V.); (R.G.R.); (P.V.)
- Department of Orthopedics and Traumatology, University Hospital for Active Treatment, 8018 Burgas, Bulgaria;
| | - Stoyan Hristov
- Department of Orthopedics and Traumatology, University Hospital for Active Treatment, 8018 Burgas, Bulgaria;
| | - Ivan Zderic
- AO Research Institute Davos, 7270 Davos, Switzerland; (D.Z.); (I.Z.); (L.V.); (R.G.R.); (P.V.)
| | - Stoyan Ivanov
- Department of Orthopaedics and Traumatology, Medical University of Varna, 9002 Varna, Bulgaria;
| | - Luke Visscher
- AO Research Institute Davos, 7270 Davos, Switzerland; (D.Z.); (I.Z.); (L.V.); (R.G.R.); (P.V.)
- School of Medicine, Queensland University of Technology, Brisbane 4000, Australia
| | - Asen Baltov
- Department of Trauma Surgery, University Multiprofile Hospital for Active Treatment and Emergency Medicine ‘N. I. Pirogov’, 1606 Sofia, Bulgaria;
| | - Simeon Ribagin
- Department of Health Pharmaceutical Care, Medical College, University ‘Prof. Dr. Asen Zlatarov’, 8010 Burgas, Bulgaria;
| | - Karl Stoffel
- Department of Orthopaedics and Traumatology, University Hospital Basel, 4031 Basel, Switzerland;
| | - Franz Kralinger
- Department of Trauma Surgery, Medical University of Vienna, 1090 Vienna, Austria;
- Trauma and Sports Department, Ottakring Clinic, Teaching Hospital, Medical University of Vienna, 1160 Vienna, Austria
| | - Jörg Winkler
- Cantonal Hospital Graubuenden, 7000 Chur, Switzerland;
| | - R. Geoff Richards
- AO Research Institute Davos, 7270 Davos, Switzerland; (D.Z.); (I.Z.); (L.V.); (R.G.R.); (P.V.)
| | - Peter Varga
- AO Research Institute Davos, 7270 Davos, Switzerland; (D.Z.); (I.Z.); (L.V.); (R.G.R.); (P.V.)
| | - Boyko Gueorguiev
- AO Research Institute Davos, 7270 Davos, Switzerland; (D.Z.); (I.Z.); (L.V.); (R.G.R.); (P.V.)
| |
Collapse
|
4
|
李 波, 张 世, 胡 孙, 杜 守, 熊 文. [Three-dimensional finite element analysis of exo-cortical placement of humeral calcar screw for reconstruction of medial column stability]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:995-1002. [PMID: 35979792 PMCID: PMC9379462 DOI: 10.7507/1002-1892.202202032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/27/2022] [Indexed: 01/24/2023]
Abstract
Objective To explore the biomechanical stability of the medial column reconstructed with the exo-cortical placement of humeral calcar screw by three-dimensional finite element analysis. Methods A 70-year-old female volunteer was selected for CT scan of the proximal humerus, and a wedge osteotomy was performed 5 mm medially inferior to the humeral head to form a three-dimensional finite element model of a 5 mm defect in the medial cortex. Then, the proximal humeral locking plate (PHILOS) was placed. According to distribution of 2 calcar screws, the study were divided into 3 groups: group A, in which 2 calcar screws were inserted into the lower quadrant of the humeral head in the normal direction for supporting the humeral head; group B, in which 1 calcar screw was inserted outside the cortex below the humeral head, and the other was inserted into the humeral head in the normal direction; group C, in which 2 calcar screws were inserted outside the cortex below the humeral head. The models were loaded with axial, shear, and rotational loadings, and the biomechanical stability of the 3 groups was compared by evaluating the peak von mises stress (PVMS) of the proximal humerus and the internal fixator, proximal humeral displacement, neck-shaft angle changes, and the rotational stability of the proximal humerus. Seven cases of proximal humeral fractures with comminuted medial cortex were retrospectively analyzed between January 2017 and December 2020. Locking proximal humeral plate surgery was performed, and one (5 cases) or two (2 cases) calcar screws were inserted into the inferior cortex of the humeral head during the operation, and the effectiveness was observed. Results Under axial and shear force, the PVMS of the proximal humerus in group B and group C was greater than that in group A, the PVMS of the internal fixator in group B and group C was less than that in group A, while the PVMS of the proximal humerus and internal fixator between group B and group C were similar. The displacement of the proximal humerus and the neck-shaft angle change among the 3 groups were similar under axial and shear force, respectively. Under the rotational torque, compared with group A, the rotation angle of humerus in group B and group C increased slightly, and the rotation stability decreased slightly. All the 7 patients were followed up 6-12 months. All the fractures healed, and the healing time was 8-14 weeks, with an average of 10.9 weeks; the neck-shaft angle changes (the difference between the last follow-up and the immediate postoperative neck-shaft angle) was (1.30±0.42)°, and the Constant score of shoulder joint function was 87.4±4.2; there was no complication such as humeral head varus collapse and screw penetrating the articular surface. Conclusion For proximal humeral fractures with comminuted medial cortex, exo-cortical placement of 1 or 2 humeral calcar screw of the locking plate outside the inferior cortex of the humeral head can also effectively reconstruct medial column stability, providing an alternative approach for clinical practice.
Collapse
Affiliation(s)
- 波 李
- 同济大学附属杨浦医院骨科(上海 200090)Department of Orthopaedic Surgery, Yangpu Hospital, Tongji University, Shanghai, 200090, P. R. China
| | - 世民 张
- 同济大学附属杨浦医院骨科(上海 200090)Department of Orthopaedic Surgery, Yangpu Hospital, Tongji University, Shanghai, 200090, P. R. China
| | - 孙君 胡
- 同济大学附属杨浦医院骨科(上海 200090)Department of Orthopaedic Surgery, Yangpu Hospital, Tongji University, Shanghai, 200090, P. R. China
| | - 守超 杜
- 同济大学附属杨浦医院骨科(上海 200090)Department of Orthopaedic Surgery, Yangpu Hospital, Tongji University, Shanghai, 200090, P. R. China
| | - 文峰 熊
- 同济大学附属杨浦医院骨科(上海 200090)Department of Orthopaedic Surgery, Yangpu Hospital, Tongji University, Shanghai, 200090, P. R. China
| |
Collapse
|