1
|
Hassanen EI, Hassan NH, Hussien AM, Ibrahim MA, Ali ME. Betaine alleviates methomyl-triggered oxidative stress-mediated cardiopulmonary inflammation in rats through iNOS/Cox2 and Nrf2/HO1/Keap1 signaling pathway. Toxicol Appl Pharmacol 2025; 495:117223. [PMID: 39742927 DOI: 10.1016/j.taap.2024.117223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/16/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Methomyl (MET), a universally used insecticide, has many adverse effects on various organs in both humans and animals including the liver, kidneys, and heart. Betaine (BET), a natural antioxidant, has a protective role against many toxicants-induced cardiovascular disorders. The present study was designed to elucidate the molecular mechanistic way underlying the mitigating effect of BET against MET-induced cardiopulmonary injury and inflammation in rats. Four groups of rats were used and orally administered the consequent materials daily for 28 days: normal saline, BET (250 mg/kg bwt), MET (2 mg/kg bwt), MET + BET. Blood and tissue (heart & lungs) samples were collected to assess the oxidative stress markers, lipid profile, biochemical markers, microscopic appearance, and inflammatory gene regulations. The results proved that MET induced oxidant/antioxidant imbalance, elevation of serum creatine kinase (CK) and lactate dehydrogenase (LDH) levels, and deterioration in lipid profile. The histopathological inspection showed severe myocardial necrosis and interstitial pneumonia along with bronchitis and alveolar damage. There was a marked increase in the intensity of cyclooxygenase-2 (Cox-2) and inducible nitric oxide synthase (iNOS) immunostaining with marked upregulation of the transcriptase levels of keap-1gene and downregulation of nuclear factor erythroid 2-related factor-2 (Nrf-2) and heme oxygenase-1 (HO-1) genes in both heart and lung tissues of MET group. Otherwise, the coadministration of BET with MET markedly alleviated the abovementioned toxicological parameters. We can conclude that BET was able to reduce the MET-induced oxidative stress-mediated cardiovascular injury and pulmonary inflammation by modulating Keap-1/Nrf-2 signaling pathway and inactivating Cox-2 and iNOS expression which therefore reduced further cellular damage and inflammatory response.
Collapse
Affiliation(s)
- Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt.
| | - Neven H Hassan
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt
| | - Ahmed M Hussien
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt
| | - Merhan E Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt
| |
Collapse
|
2
|
Mahmoud SA, El-Ghareeb AEW, Abd El-Rahman HA. Chlorantraniliprole (Coragen® 20% SC) exposure induced reproductive toxicity mediated by oxidative stress, apoptosis, and sperm quality deficient in male Wistar rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03806-8. [PMID: 39888365 DOI: 10.1007/s00210-025-03806-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025]
Abstract
Pesticides can adversely affect reproduction by causing congenital abnormalities, fetal demise, and infertility. The reproductive toxicity of coragen, a modified ryanodine receptor-targeting insecticide with chlorantraniliprole concentrations of 20%, was examined in male rats. Twenty-one healthy male rats were randomly assigned to one of three groups: the control group, two orally administered with low (500 mg/kg) and high (1000 mg/kg) doses of coragen for 8 weeks. Exposure to coragen resulted in significant, dose-dependent changes in male reproductive hormones, steroidogenic enzymes, and an imbalance in the oxidant-antioxidant system. The treated groups revealed significantly higher lipid peroxidation levels than the control group. The effects were accompanied by damage to testicular tissue, modified testicular lactate dehydrogenase, reduced sperm motility and viability, and heightened sperm abnormalities. Elevated levels of pro-apoptotic proteins (caspase-3 and Bax) and decreased levels of anti-apoptotic protein (Bcl-2) provided evidence of apoptosis in both treatment groups. Moreover, coragen induced substantial DNA damage in the testicular tissue. The results indicate that the reproductive impairment caused by coragen may be ascribed to oxidative stress, hormonal disturbance, apoptosis, and damage to testicular DNA and finally might result in infertility and compromised reproductive function.
Collapse
|
3
|
Emil AB, Hassan NH, Ibrahim S, Hassanen EI, Eldin ZE, Ali SE. Propolis extract nanoparticles alleviate diabetes-induced reproductive dysfunction in male rats: antidiabetic, antioxidant, and steroidogenesis modulatory role. Sci Rep 2024; 14:30607. [PMID: 39715797 DOI: 10.1038/s41598-024-81949-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/02/2024] [Indexed: 12/25/2024] Open
Abstract
Diabetes can affect male fertility via oxidative stress and endocrine system disruption. Nanomedicine based on natural products is employed to address diabetes complications. The current study aims to investigate the potential beneficial effect of propolis extract nanoparticles against diabetes-induced testicular damage in male rats. Sixty male rats were randomly allocated to six groups (n = 10). The first group served as a control group. The second and third received propolis extract (Pr) and propolis extract nanoparticles (PrNPs). The fourth group is the diabetic group that received streptozotocin (STZ) (55 mg kg/bwt) single-dose i/p. The fifth and sixth groups are diabetic rats treated with Pr and PrNPs. Both Pr and PrNPs were received at a dose (100 mg/kg bwt) orally. After 60 days, animals were euthanized, then pancreatic and testicular tissues were collected for redox status evaluation, gene expression analysis, and histopathological examination. Also, hormonal analysis (Insulin, total testosterone, and luteinizing hormone (LH) ) along with semen quality evaluation were done. Results showed that the induction of diabetes led to testicular and pancreatic redox status deterioration showing a reduction in reduced glutathione (GSH) as well as elevation of malondialdehyde (MDA), and nitric oxide (NO) levels. Also, relative transcript levels of testicular cytochrome P450 family 11 subfamily A member 1 (CYP11A1), 3β-Hydroxysteroid dehydrogenase (HSD-3β), and nuclear factor (erythroid-derived 2)-like 2 (NFE2L2) were significantly down-regulated, While the advanced glycation end-product receptor (AGER) relative gene expression was significantly upregulated. Furthermore, hormonal and semen analysis disturbances were observed. Upon treatment with Pr and PrNPs, a marked upregulation of testicular gene expression of CYP11A1, HSD-3β, and NFE2L2 as well as a downregulation of AGER, was observed. Hormones and semen analysis were improved. In addition, the testicular and pancreatic redox status was enhanced. Results were confirmed via histopathological investigations. PrNPs outperformed Pr in terms of steroidogenesis pathway improvement, testicular antioxidant defense mechanism augmentation, and prospective antidiabetic activity.
Collapse
Affiliation(s)
- Abram B Emil
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Neven H Hassan
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Sally Ibrahim
- Department of Animal Reproduction and AI, Veterinary Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Zienab E Eldin
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Science (PSAS), Beni-Suef, 62511, Egypt
| | - Sara E Ali
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
4
|
Khalaf RR, Khazaal S, Abouzeinab NS, Khalil MI. Evaluation of Selected Folk Herbs on the Fertility of Sprague Dawley Male Rats: Biochemical, Histological, and Molecular Investigations. Life (Basel) 2024; 14:1620. [PMID: 39768328 PMCID: PMC11676069 DOI: 10.3390/life14121620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Scientists have shown great interest in traditional plant extracts, particularly Lepidium sativum (LS), Origanum majorana (OM), Ferula hermonis (FH), and Eruca sativa (ES), which are frequ ently used to improve health. Recently, attention has been directed toward their influence on spermatogenesis and male fertility. Hence, the objective of this study was to explore their impact on male rats' fertility. Antioxidant activity and total phenolic content (TPC) were determined, along with the identification and quantification of phenolic compounds. Oral administration of aqueous extracts was performed individually or as a mixture (MIX) at a dose of 100 mg/kg in 28 male Sprague Dawley rats over a 60-day period. Organ weight, sex hormone concentrations, sperm parameters, oxidative stress markers, histological and morphometric analysis, and protein expression levels were investigated. OM and MIX showed the highest TPC and antioxidant activities, and MIX possessed the highest polyphenolic constituents. Elevated serum testosterone, epididymal sperm concentration, testes glutathione levels, and histomorphometric parameters were manifested in all groups, especially in MIX. MIX group also displayed elevated levels of vimentin, protein kinase B, and mTOR expression in the testes, complemented by declined expression of Phosphatase and Tensin Homolog (PTEN). In conclusion, these findings propose that these extracts, especially MIX followed by OM, enhance fertility by stimulating spermatogenesis.
Collapse
Affiliation(s)
- Rana R. Khalaf
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, P.O. Box 115020 Riad El Solh, Beirut 11072809, Lebanon; (R.R.K.); or (M.I.K.)
| | - Salma Khazaal
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, P.O. Box 115020 Riad El Solh, Beirut 11072809, Lebanon;
| | - Noura S. Abouzeinab
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, P.O. Box 115020 Riad El Solh, Beirut 11072809, Lebanon; (R.R.K.); or (M.I.K.)
| | - Mahmoud I. Khalil
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, P.O. Box 115020 Riad El Solh, Beirut 11072809, Lebanon; (R.R.K.); or (M.I.K.)
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21568, Egypt
| |
Collapse
|
5
|
Fallah A, Dabbaghian FH, Jamshidi A, Akhtari E. Placebo-controlled effect of topical Qust (Costus) oil on postmenopausal women's sexual desire disorder: a double-blind, randomized clinical trial. Eur J Transl Myol 2024; 34:12660. [PMID: 39286849 PMCID: PMC11726170 DOI: 10.4081/ejtm.2024.12660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/13/2024] [Indexed: 09/19/2024] Open
Abstract
Decreased libido and anorgasmia are common problems for women after menopause that reduce the quality of life of couples. This study examined the effect of topical Qust oil on sexual desire disorder in postmenopausal women. In this double-blind, randomized, clinical trial, 110 postmenopausal women with decreased sexual desire visiting a Traditional Medicine Center and Hazrat Rasool Akram Hospital (affiliated to Iran University of Medical Sciences) were selected by convenience consecutive sampling and randomly assigned to experimental and control groups. The experimental group received qust oil, while the control group was given a placebo (liquid paraffin); they were instructed to massage the product topically on their pubic area and perineum daily. The sexual function of both groups was assessed and compared before the intervention and four weeks after the intervention using the Female Sexual Function Index. The mean and standard deviation of the improvement of sexual function post-intervention were 37.66±32.52% and 11.96±11.18% in the experimental and control groups, respectively (p<0.001). In terms of the improvement of components of sexual function, a significant difference was observed between the two groups in the sub-scales of sexual desire [57.05±42.99% vs. 21.25±27.85%, p<0.001], arousal, orgasm, and satisfaction (p<0.001 for all); however, no significant difference was observed in terms of lubrication (p=0.25) and pain during intercourse (p=0.776). In postmenopausal women with sexual dysfunction, massaging the pubic area and perineum with qust oil for at least four weeks significantly improves desire, arousal, orgasm, and sexual satisfaction.
Collapse
Affiliation(s)
- Akram Fallah
- Institute for Studies in Medical History, Persian and Complementary Medicine, Iran University of Medical Sciences, Tehran.
| | - Fattaneh Hashem Dabbaghian
- Institute for Studies in Medical History, Persian and Complementary Medicine, Iran University of Medical Sciences, Tehran.
| | - Amirhossein Jamshidi
- Institute for Studies in Medical History, Persian and Complementary Medicine, Iran University of Medical Sciences, Tehran.
| | - Elham Akhtari
- Institute for Studies in Medical History, Persian and Complementary Medicine, Iran University of Medical Sciences, Tehran.
| |
Collapse
|
6
|
Nashed MS, Hassanen EI, Issa MY, Tohamy AF, Prince AM, Hussien AM, Soliman MM. The mollifying effect of Sambucus nigra extract on StAR gene expression, oxidative stress, and apoptosis induced by fenpropathrin in male rats. Food Chem Toxicol 2024; 189:114744. [PMID: 38782235 DOI: 10.1016/j.fct.2024.114744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/03/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Fenpropathrin (FNP) is a man-made insecticide of to the pyrethroid class, commonly employed in agricultural and horticultural practices. However, it has a prolonged persistence in the environment. Sambucus nigra, also referred to as SN, is a botanical species recognized for its notable antioxidant characteristics. The objective of this study was to examine if SN extract could mitigate the reproductive toxicity induced by FNP in rats. A total of thirty rats were categorized into six distinct groups: a control group with no treatment, two groups getting SN extract at varying doses, a group receiving FNP, and two groups receiving both FNP and SN extract. The exposure to FNP led to a decline in the number and movement of sperm, lowered levels of testosterone, and reduced the activity of the StAR gene in the FNP group compared to the control group (p < 0.05). In addition, FNP resulted in a significant increase in malondialdehyde levels with a significant drop in GSH content compared to the control group (p < 0.05). Also, a significant increase in the expression of caspase 3. Nevertheless, the administration of SN extract alleviated these effects and reinstated spermatogenesis, thereby bringing the parameters closer to those observed in the control group. The data indicate that FNP can induce testicular harm and infertility, but SN extract can mitigate these detrimental consequences.
Collapse
Affiliation(s)
- Marsail S Nashed
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa Y Issa
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Adel F Tohamy
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Abdelbary M Prince
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed M Hussien
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Maher M Soliman
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
7
|
Shipa AME, Kahilo KA, Elshazly SA, Taher ES, Nasr NE, Alotaibi BS, Almadaly EA, Assas M, Abdo W, Abouzed TK, Salem AE, Kirci D, El-Seedi HR, Refaey MS, Rizk NI, Shukry M, Dorghamm DA. Protective effect of Petroselinum crispum methanolic extract against acrylamide-induced reproductive toxicity in male rats through NF-ĸB, kinesin, steroidogenesis pathways. Reprod Toxicol 2024; 126:108586. [PMID: 38614435 DOI: 10.1016/j.reprotox.2024.108586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
This study examined the protective effects of a Petroselinum crispum (P. crispum) methanolic extract on reproductive dysfunction induced by acrylamide in male rats. A total of 40 rats were divided into four groups (n=10). The control group received distilled water, the acrylamide group received 10 mg/kg of acrylamide, the P. crispum group received 100 mg/kg of P. crispum extract, and the combined group was pretreated with P. crispum for two weeks before co-administration of P. crispum and acrylamide. All administrations were administered orally using a gastric tube for eight weeks. Acrylamide decreased testosterone levels but did not affect levels of FSH or LH. It also increased testicular levels of (MDA) malondialdehyde and reduced activity of (SOD) superoxide dismutase and impairment of sperm parameters. Furthermore, the administration of acrylamide resulted in an elevation of tumor necrosis factor-alpha (TNF-α) levels and a reduction in the levels of steroidogenic acute regulatory protein (STAR) and cytochrome P450scc (P450scc). Acrylamide negatively affected the histopathological outcomes, Johnsen's score, the diameter of seminiferous tubules, and the thickness of the germinal epithelium. It also upregulated the expression of NF-ĸB P65 and downregulated the expression of kinesin motor protein. In contrast, treatment with P. crispum extract restored the levels of antioxidant enzymes, improved sperm parameters, and normalized the gene expression of TNF-α, IL-10, IL-6, iNOS, NF-ĸB, STAR, CYP17A1, 17β-HSD and P450scc. It also recovered testicular histological parameters and immunoexpression of NF-ĸB P65 and kinesin altered by acrylamide. P. crispum showed protective effects against acrylamide-induced reproductive toxicity by suppressing oxidative damage and inflammatory pathways.
Collapse
Affiliation(s)
- Ahmed M E Shipa
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Khaled A Kahilo
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Samir A Elshazly
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Ehab S Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Nasr E Nasr
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Essam A Almadaly
- Department of Theriogenology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mona Assas
- Fish Processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Walied Abdo
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El Sheikh 33516, Egypt
| | - Tarek K Abouzed
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; Faculty of Medicine, Biochemistry Department University of Misrata, Libya
| | | | - Damla Kirci
- Department of Pharmacognosy, Faculty of Pharmacy, Selçuk University, Konya, Turkiye
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Mohamed S Refaey
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Nermin I Rizk
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Doaa A Dorghamm
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
8
|
Abo El-Ela FI, Gamal A, El-Banna HA, Ibrahim MA, El-Banna AH, Abdel-Razik ARH, Abdel-Wahab A, Hassan WH, Abdelghany AK. Repro-protective activity of amygdalin and spirulina platensis in niosomes and conventional forms against aluminum chloride-induced testicular challenge in adult rats: role of CYP11A1, StAR, and HSD-3B expressions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3211-3226. [PMID: 37910183 PMCID: PMC11074051 DOI: 10.1007/s00210-023-02788-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023]
Abstract
The male reproductive system is negatively influenced by Al exposure. Al represented a considerable hazard to men's reproduction capabilities. Amygdalin (AMG) and spirulina platensis (SP) have been considered to have a strong antioxidant and repro-protective activity; also, targeted drug delivery systems called niosomes improve the distribution of water-soluble medications like amygdalin and spirulina. Current study targeted to determine the effectiveness of AMG and SP against negative reproductive impact resulted by aluminum chloride (AlCl3) toxicity. Sixty adult male albino rats were separated into 6 groups, including the control group, which received distilled water; AlCl3 group, which received AlCl3; AMG+AlCl3 group, which received AlCl3+AMG; AMGLN+AlCl3 group, which received AlCl3+amygdalin-loaded niosomes; SP+AlCl3 group, which received AlCl3+SP; and SPLN+AlCl3 group, which received AlCl3+spirulina-loaded niosomes. All treatments were orally gavaged daily for 5 weeks, and rats were weighed weekly. At the termination of the experiment, some males (three from each group) were used for fertility traits via mating thirty virgin rat females (in a ratio of 1:2 and 2:3 male:female, respectively) followed by recording of birth weights and litter size (number of pups per each female) at birth to assess males' reproductive capability. Other males were euthanized for collection of serum, epididymal semen samples, and tissue samples for biochemical, sperm evaluation, gene expression, and histopathological measurements. There are a considerable number of negative impacts of AlCl3 on male fertility clarified by declined serum testosterone levels; an increased oxidative stress (MDA, TAC); deteriorated semen quality; down-regulation of CYP11A1, StAR, and HSD-3b gene expressions; and testicular tissue degenerative changes. In addition, litter size (number of pups per each female) and birth weights of pups obtained from mated females were affected. AMG and SP treatments, either in niosomal or conventional form, alleviated the AlCl3 negative effects by reducing oxidative stress; increasing testosterone levels; improving semen quality; upregulating of CYP11A1, StAR, and HSD-3b gene expressions; and reducing degenerative changes of testicular tissue. Besides, negative reproductive effect was diminished as observed by changes in the litter size (number of pups per each female) and birth weights of pups obtained from mated females. AMG and SP treatments (either in niosomal or conventional form), ameliorated the AlCl3 negative effects as they possess powerful antioxidant activity, as well as they have the ability to improve the reproductive activity of affected males.
Collapse
Affiliation(s)
- Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Amr Gamal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | | | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed H El-Banna
- Michael Sayegh Faculty of Pharmacy, Aqaba University of Technology, Aqaba, Jordan
| | - Abdel-Razik H Abdel-Razik
- Department of Histology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ahmed Abdel-Wahab
- Department of Physiology, Faculty of Veterinary Medicine, Minia University, El-Minia, Egypt
| | - Walid Hamdy Hassan
- Department of Microbiology Mycology and Immunology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Asmaa K Abdelghany
- Animal and Poultry Management and Wealth Development Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
9
|
Benchikh I, Ziani K, Gonzalez Mateos A, Khaled BM. Non-acute exposure of neonicotinoids, health risk assessment, and evidence integration: a systematic review. Crit Rev Toxicol 2024; 54:194-213. [PMID: 38470098 DOI: 10.1080/10408444.2024.2310593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 03/13/2024]
Abstract
Neonicotinoid pesticides are utilized against an extensive range of insects. A growing body of evidence supports that these neuro-active insecticides are classified as toxicants in invertebrates. However, there is limited published data regarding their toxicity in vertebrates and mammals. the current systematic review is focused on the up-to-date knowledge available for several neonicotinoid pesticides and their non-acute toxicity on rodents and human physiology. Oral lethal dose 50 (LD50) of seven neonicotinoids (i.e. imidacloprid, acetamiprid, clothianidin, dinotefuran, thiamethoxam, thiacloprid, and nitenpyram) was initially identified. Subsequently, a screening of the literature was conducted to collect information about non-acute exposure to these insecticides. 99 studies were included and assessed for their risk of bias and level of evidence according to the Office of Health and Translation (OHAT) framework. All the 99 included papers indicate evidence of reproductive toxicity, hepatotoxicity, nephrotoxicity, neurotoxicity, immunotoxicity, and oxidative stress induction with a high level of evidence in the health effect of rodents and a moderate level of evidence for human health. The most studied type of these insecticides among 99 papers was imidacloprid (55 papers), followed by acetamiprid (22 papers), clothianidin (21 papers), and thiacloprid (11 papers). While 10 of 99 papers assessed the relationship between clothianidin, thiamethoxam, dinotefuran, and nitenpyram, showing evidence of liver injury, dysfunctions of oxidative stress markers in the reproductive system, and intestinal toxicity. This systematic review provides a comprehensive overview of the potential risks caused by neonicotinoid insecticides to humans and rodents with salient health effects. However, further research is needed to better emphasize and understand the patho-physiological mechanisms of these insecticides, taking into account various factors that can influence their toxicity.
Collapse
Affiliation(s)
- Imen Benchikh
- Laboratory of Applied Hydrology and Environment, Department of Biology, Faculty of Natural Sciences and Life, Belhadj Bouchaib University, Ain Témouchent, Algeria
- Laboratoire de Nutrition, Pathologie, Agro-Biotechnologie et Santé (Lab-NuPABS), Department of Biology, Faculty of Natural Sciences and Life, Djillali Liabès University, Sidi-Bel-Abbès, Algeria
| | - Kaddour Ziani
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants, Department of Biology, University of Saida-Dr. Taher Moulay, Saida, Algeria
| | - Antonio Gonzalez Mateos
- Department of Physiology, Cell Biology and Communication Research Group, University of Extremadura, Caceres, Spain
| | - Boumediène Méghit Khaled
- Laboratoire de Nutrition, Pathologie, Agro-Biotechnologie et Santé (Lab-NuPABS), Department of Biology, Faculty of Natural Sciences and Life, Djillali Liabès University, Sidi-Bel-Abbès, Algeria
| |
Collapse
|
10
|
Yan S, Sun W, Tian S, Meng Z, Diao J, Zhou Z, Li L, Zhu W. Pre-mating nitenpyram exposure in male mice leads to depression-like behavior in offspring by affecting tryptophan metabolism in gut microbiota. J Environ Sci (China) 2024; 137:120-130. [PMID: 37980001 DOI: 10.1016/j.jes.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 11/20/2023]
Abstract
Several studies have confirmed that the health status of the paternal affects the health of the offspring, however, it remains unknown whether paternal exposure to pesticides affect the offspring health. Here, we used untargeted metabolomics and 16S rRNA sequencing technology, combined with tail suspension test and RT-qPCR to explore the effects of paternal exposure to nitenpyram on the neurotoxicity of offspring. Our results found that the paternal exposure to nitenpyram led to the offspring's depressive-like behaviors, accompanied by the reduction of tryptophan content and the disorder of microbial abundance in the gut of the offspring. Further, we determined the expression of tryptophan metabolism-related genes tryptophanase (tnaA) and tryptophan hydroxylase 1 (TpH1) in gut bacteria and colonic tissues. We found that tryptophan is metabolized to indoles rather than being absorbed into colonocytes, which coursed the reduce of tryptophan availability after nitenpyram exposure. In conclusion, our study deepens our understanding of the intergenerational toxic effects of pesticides.
Collapse
Affiliation(s)
- Sen Yan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Sinuo Tian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiyuan Meng
- College of Plant Protection/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Jinling Diao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Li Li
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
11
|
Mohamed WA, Hassanen EI, Mansour HA, Ibrahim MA, Azouz RA, Mahmoud MA. Novel insights on the probable mechanism associated with histamine oral model-inducing neuropathological and behavioral toxicity in rats. J Biochem Mol Toxicol 2024; 38:e23653. [PMID: 38348711 DOI: 10.1002/jbt.23653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/29/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024]
Abstract
Histamine (HIS) is an important chemical mediator that causes vasodilation and contributes to anaphylactic reactions. Recently, HIS is an understudied neurotransmitter in the central nervous system, and its potential role in neuroinflammation and neurodegeneration is a critical area of research. So, the study's goal is to investigate the consequences of repeated oral intake of HIS on the rat's brain and explore the mechanistic way of its neurotoxicity. Thirty male rats were divided into three groups (n = 10). The following treatments were administered orally to all rats every day for 14 days. Group (1) was given distilled water, whereas groups (2 & 3) were given HIS at dosage levels 250 and 500 mg/kg body weight (BWT), respectively. Brain tissue samples were collected at 7- and 14-days from the beginning of the experiment. Our results revealed that continuous oral administration of HIS at both doses for 14 days significantly reduced the BWT and induced severe neurobehavioral changes, including depression, dullness, lethargy, tremors, abnormal walking, and loss of spatial learning and memory in rats. In all HIS receiving groups, HPLC data showed a considerable raise in the HIS contents of the brain. Additionally, the daily consumption of HIS causes oxidative stress that is dose- and time-dependent which is characterized by elevation of malondialdehyde levels along with reduction of catalase activity and reduced glutathione levels. The neuropathological lesions were commonly observed in the cerebrum, striatum, and cerebellum and confirmed by the immunohistochemistry staining that demonstrating moderate to strong caspase-3 and inducible nitric oxide synthase expressions in all HIS receiving groups, mainly those receiving 500 mg/kg HIS. NF-κB, TNF-α, and IL-1β gene levels were also upregulated at 7- and 14-days in all HIS groups, particularly in those getting 500 mg/kg. We concluded that ROS-induced apoptosis and inflammation was the essential mechanism involved in HIS-mediated neurobehavioral toxicity and histopathology.
Collapse
Affiliation(s)
- Wafaa A Mohamed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hayam A Mansour
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Rehab A Azouz
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mahmoud A Mahmoud
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
12
|
AbdElrazek DA, Hassan NH, Ibrahim MA, Hassanen EI, Farroh KY, Abass HI. Ameliorative effects of rutin and rutin-loaded chitosan nanoparticles on testicular oxidative stress and histological damage induced by cyclophosphamide in male rats. Food Chem Toxicol 2024; 184:114436. [PMID: 38211767 DOI: 10.1016/j.fct.2024.114436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Cyclophosphamide (CP) is broadly used to kill various tumor cells; however, its repeated uses have been reported to cause reproductive dysfunction and infertility. Natural flavonoid, rutin (RUT), possesses strong antioxidant and antiapoptotic activity that is attributed to ameliorate the reproductive dysfunction induced by CP. Many previous studies proved that the formulation of flavonoids in nanoemulsion has a promising perspective in mitigating the side effects of chemotherapy. Therefore, the main objective of this study was to investigate the ameliorative effects of RUT and RUT-loaded chitosan nanoparticles (RUT-CH NPs) against CP-induced reproductive dysfunction in male rats. For this aim, thirty-six male albino rats were randomly allocated into six groups as follows: control, RUT, RUT-CH NPs, CP, CP + RUT, and CP + RUT-CH NPs. In the CP groups, a single intraperitoneal injection of CP (150 mg/kg bwt) was administered on the first day of the experiment. RUT and RUT-CH NPs were orally administered either alone or with CP injection at a dose of 10 mg/kg bwt per day for 60 days. The results revealed that CP administration caused significant testicular oxidative stress damage through increasing the nitric oxide and malondialdehyde levels as well as decreasing the total antioxidant capacity and reduced glutathione contents. It also impaired spermatogenesis and steroidogenesis via altering the transcription levels of CYP11A1, HSD-3b, StAR, Bax, bcl-2, and Nrf-2 genes. Otherwise, the oral intake of either RUT or RUT-CH NPs with CP injection effectively attenuated these alterations and significantly improved the microscopic appearance of testicular tissue. In conclusion, this study highlights the potential of RUT either free or NPs in mitigating CP-induced testicular dysfunction via its antioxidant and anti-apoptotic properties.
Collapse
Affiliation(s)
- Dina A AbdElrazek
- Physiology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Neven H Hassan
- Physiology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa A Ibrahim
- Biochemistry Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Eman I Hassanen
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Khaled Y Farroh
- Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza, Egypt
| | - H I Abass
- Physiology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
13
|
Aziz RLA, Abdel-Wahab A, Abdel-Razik ARH, Kamel S, Farghali AA, Saleh R, Mahmoud R, Ibrahim MA, Nabil TM, El-Ela FIA. Physiological roles of propolis and red ginseng nanoplatforms in alleviating dexamethasone-induced male reproductive challenges in a rat model. Mol Biol Rep 2024; 51:72. [PMID: 38175282 PMCID: PMC10766727 DOI: 10.1007/s11033-023-08991-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/07/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Red ginseng and propolis are well-known antioxidants that have been related to a reduction in oxidative stress. OBJECTIVE This study evaluated the efficiency of red ginseng and propolis, either in powder or as nano-forms against dexamethasone-induced testicular oxidative challenges in adult male albino rats. METHODS Forty rats were divided into 8 equal groups including control negative group that was given vehicle (DMSO), control positive group that was administered dexamethasone in addition to the nano-propolis, nano-ginseng, nano-propolis + dexamethasone, nano ginseng+dexamethasone, propolis+dexamethasone and ginseng + dexamethasone groups. Serum, semen and tissue samples were obtained. RESULTS Lower testosterone levels, higher levels of MDA, and lower levels of total antioxidant capacity in serum, as well as impaired semen quality and a disturbed histopathological picture of both the testis and seminal glands, were all observed as significant negative effects of dexamethasone. These findings were confirmed by lower gene expression profiles of CYP11A1, StAR, HSD-3b, Nrf-2 and ACTB-3b in testicular and seminal gland tissues. The most powerful anti-dexamethasone effects were obtained with either propolis in nanoform or conventional ginseng. CONCLUSION Propolis nano-formulation and ginseng in conventional form could be considered excellent candidates to ameliorate the oxidative stress provoked by dexamethasone, however, neither nano-ginseng nor conventional propolis showed such effects.
Collapse
Affiliation(s)
- Rabie L Abdel Aziz
- Department of Theriogenology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ahmed Abdel-Wahab
- Physiology Department, Faculty of Veterinary Medicine, Minia University, El-Minia, 61519, Egypt.
| | - Abdel-Razik H Abdel-Razik
- Department of Histology, Faculty of Veterinary Medicine, Beni-Suef University, Beni- Suef, 62512, Egypt
| | - Shaimaa Kamel
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed A Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Romaissaa Saleh
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Rehab Mahmoud
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Taghred M Nabil
- Department of Histology, Faculty of Veterinary Medicine, Beni-Suef University, Beni- Suef, 62512, Egypt
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
14
|
Zou Y, Zhang L, Yue M, Zou Z, Wu X, Zhang Q, Huang Y, Zeng S, Chen C, Gao J. Reproductive effects of pubertal exposure to neonicotinoid thiacloprid in immature male mice. Toxicol Appl Pharmacol 2023; 474:116629. [PMID: 37468076 DOI: 10.1016/j.taap.2023.116629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
Thiacloprid (THIA) is a kind of neonicotinoid, a widely used insecticide class. Animal studies of adult and prenatal exposure to THIA have revealed deleterious effects on mammalian sperm fertility and embryonic development. A recent cross-sectional study linked higher THIA concentrations to delayed genitalia development stages in adolescent boys, suggesting that pubertal exposure to THIA may adversely affect reproductive development in immature males. Hence, this study aimed to investigate the effects of daily oral administration of THIA during puberty on the reproductive system of developing male mice. Young male C57 BL/6 J mice aged 21 days were administrated with THIA at concentrations of 10 (THIA-10), 50 (THIA-50) and 100 mg/kg (THIA-100) for 4 weeks by oral gavage. It is found that exposure to 100 mg/kg THIA diminished sexual behavior in immature male mice, caused a decrease in the spermatogenic cell layers and irregular arrangement of the seminiferous epithelium, and down-regulated the mRNA levels of spermatogenesis-related genes Ddx4, Scp3, Atg5, Crem, and Ki67, leading to an increase of sperm abnormality rate. In addition, THIA exposure at 50 and 100 mg/kg reduced the serum levels of testosterone and FSH, and decreased the expression levels of Star and Cyp11a1 related to testosterone biosynthesis. THIA exposure at 10 mg/kg did not produce any of the above significant changes. In conclusion, the high dose of THIA exposure impaired reproductive function in immature mice. It seems that THIA has no detrimental effects on the reproductive system of mice at low dose of 10 mg/kg.
Collapse
Affiliation(s)
- Yong Zou
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Liyu Zhang
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Min Yue
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Zhen Zou
- Dongsheng Lung-Brain Disease Joint Lab, Chongqing Medical University, Chongqing 400016, People's Republic of China; Molecular Biology Laboratory of Respiratory Diseases, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xu Wu
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Qiuyan Zhang
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yue Huang
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Shaohua Zeng
- China Coal Technology & Engineering Group Chongqing Research Institute, Chongqing 400039, People's Republic of China
| | - Chengzhi Chen
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Dongsheng Lung-Brain Disease Joint Lab, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Jieying Gao
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
15
|
Hassanen EI, Issa MY, Hassan NH, Ibrahim MA, Fawzy IM, Fahmy SA, Mehanna S. Potential Mechanisms of Imidacloprid-Induced Neurotoxicity in Adult Rats with Attempts on Protection Using Origanum majorana L. Oil/Extract: In Vivo and In Silico Studies. ACS OMEGA 2023; 8:18491-18508. [PMID: 37273614 PMCID: PMC10233680 DOI: 10.1021/acsomega.2c08295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/19/2023] [Indexed: 06/06/2023]
Abstract
Imidacloprid (IMI) insecticide is rapidly metabolized in mammals and contributes to neurotoxicity via the blocking of nicotinic acetylcholine receptors, as in insects. Origanum majorana retains its great antioxidant potential in both fresh and dry forms. No data is available on the neuroprotective effect of this plant in laboratory animals. In this context, aerial parts of O. majorana were used to prepare the essential oil (OMO) and methanol extract (OME). The potential neuroprotective impact of both OMO and OME against IMI-induced neurotoxicity in rats was explored. Forty-two rats were divided into 6 groups, with 7 rats in each one. Rats were daily administered the oral treatments: normal saline, OMO, OME, IMI, IMI + OMO, and IMI + OME. Our results revealed the identification of 55 components in O. majorana essential oil, most belonging to the oxygenated and hydrocarbon monoterpenoid group. Moreover, 37 constituents were identified in the methanol extract, mostly phenolics. The potent neurotoxic effect of IMI on rats was confirmed by neurobehavioral and neuropathological alterations and a reduction of both acetylcholine esterase (AchE) activity and dopamine (DA), serotonin (5HT), and γ-aminobutyric acid (GABA) levels in the brain. Exposure of rats to IMI elevates the malondialdehyde (MDA) levels and reduces the antioxidant capacity. IMI could upregulate the transcription levels of nuclear factor-κB (NF-κB), interleukin-1 β (IL-1β), and tumor necrosis factor (TNF-α) genes and express strong caspase-3 and inducible nitric oxide synthase (iNOS) immunostaining in most examined brain areas. On the other hand, rats coadministered OMO or OME with IMI showed a marked improvement in all of the studied toxicological parameters. In conclusion, cotreatment of O. majorana extracts with IMI can protect against IMI neurotoxicity via their potent antioxidant, anti-inflammatory, and anti-apoptotic effects. Thus, we recommend a daily intake of O. majorana to protect against insecticide's oxidative stress-mediated neuroinflammatory stress and apoptosis. The molecular docking study of linalool, rosmarinic acid, γ-terpene, and terpene-4-ol justify the observed normalization of the elevated iNOS and TNF-α levels induced after exposure to IMI.
Collapse
Affiliation(s)
- Eman I. Hassanen
- Department
of Pathology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Marwa Y. Issa
- Department
of Pharmacognosy, Faculty of Pharmacy, Cairo
University, Kasr El-Aini
Street, 11562 Cairo, Egypt
| | - Neven H. Hassan
- Department
of Physiology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Marwa A. Ibrahim
- Department
of Biochemistry, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Iten M. Fawzy
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, 11835 Cairo, Egypt
| | - Sherif Ashraf Fahmy
- Department
of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Administrative
Capital, 11835 Cairo, Egypt
| | - Sally Mehanna
- Department
of Animal Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| |
Collapse
|
16
|
Hassanen EI, Kamel S, Mohamed WA, Mansour HA, Mahmoud MA. The potential mechanism of histamine-inducing cardiopulmonary inflammation and apoptosis in a novel oral model of rat intoxication. Toxicology 2023; 484:153410. [PMID: 36565801 DOI: 10.1016/j.tox.2022.153410] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Histamine (HIS) is a potent vasodilator that contributes to anaphylactic reactions. Our investigation aims to study the possible toxic impact of repeated oral administration of histamine on the target organs of HIS poisoning (lung & heart) in rats as a model of scombroid poisoning. We used 15 rats that were separated into three groups with 5 rats in each. All rats received the treatments orally for 14 days as follows; (1): distilled water, (2) HIS at a dosage level of 250 mg/kg BWT daily and (3) HIS at a dosage level of 1750 mg/kg BWT weekly. Our results revealed that the consumption of HIS either daily or weekly could cause marked cardiopulmonary toxicity in rats. HIS can trigger inflammatory reactions in the cardiopulmonary tissues and induce oxidative stress damage along with apoptosis of such organs. HIS was markedly increase the MDA levels and decrease the CAT and GSH activity in both lung and heart tissues. The main pathological lesion observed is inflammation which was confirmed by immunohistochemistry and demonstrated strong iNOS and TNF-α protein expressions. Cardiac muscles showed extensive degeneration and necrosis and displayed strong casp-3 protein expression. Additionally, all HIS receiving groups noticed marked elevation of the pulmonary transcription levels of Cox2, TNF-α, and IL1β along with substantial elevation of casp-3 and bax genes and downregulation of Bcl2 gene in the cardiac tissue. We concluded that the oral administration of HIS either daily or weekly can induce cardiopulmonary toxicity via the upregulation of proinflammatory cytokines resulting in ROS overgeneration and inducing both oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Shaimaa Kamel
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Wafaa A Mohamed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Hayam A Mansour
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mahmoud A Mahmoud
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|