1
|
Hara M, Saburi S, Uehara N, Tsujikawa T, Kubo M, Furukawa T, Teshima M, Shinomiya H, Hirano S, Nibu KI. Induction of Immunological Antitumor Effects by the Combination of Adenovirus-Mediated Gene Transfer of B7-1 and Anti-Programmed Cell Death-1 Antibody in a Murine Squamous Cell Carcinoma Model. Cancers (Basel) 2024; 16:1359. [PMID: 38611038 PMCID: PMC11010972 DOI: 10.3390/cancers16071359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND The goal of this study was to evaluate the antitumor immune effects of B7-1 gene expression in addition to immune checkpoint inhibitor against squamous cell carcinoma. METHODS A murine SCC cell line, KLN205, was infected with adenoviral vector carrying B7-1 (AdB7). Infected cells were injected subcutaneously in the flanks of DBA/2 mice. Three weeks after implantation, anti-mouse PD-1 antibody (antiPD1) was intraperitonially administrated twice a week for a total of six times. RESULTS CD80 was significantly overexpressed in the AdB7-infected tumors. IFN-gamma in the T cells in the spleen was significantly increased and tumor size was significantly reduced in the mice treated with both AdB7 and antiPD1. Targeted tumors treated with both AdB7 and antiPD1 exhibited significantly increased cell densities of total immune cells as well as Ki-67+ CD8+ T cells and decreased regulatory T cells. CONCLUSIONS These results suggest that the B7-1 gene transfer may enhance the antitumor effect of anti-PD1 antibody against SCC.
Collapse
Affiliation(s)
- Makiko Hara
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.H.); (M.K.); (T.F.); (M.T.); (H.S.); (K.-i.N.)
| | - Sumiyo Saburi
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (S.S.); (T.T.); (S.H.)
| | - Natsumi Uehara
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.H.); (M.K.); (T.F.); (M.T.); (H.S.); (K.-i.N.)
| | - Takahiro Tsujikawa
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (S.S.); (T.T.); (S.H.)
| | - Mie Kubo
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.H.); (M.K.); (T.F.); (M.T.); (H.S.); (K.-i.N.)
| | - Tatsuya Furukawa
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.H.); (M.K.); (T.F.); (M.T.); (H.S.); (K.-i.N.)
| | - Masanori Teshima
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.H.); (M.K.); (T.F.); (M.T.); (H.S.); (K.-i.N.)
| | - Hirotaka Shinomiya
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.H.); (M.K.); (T.F.); (M.T.); (H.S.); (K.-i.N.)
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (S.S.); (T.T.); (S.H.)
| | - Ken-ichi Nibu
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.H.); (M.K.); (T.F.); (M.T.); (H.S.); (K.-i.N.)
| |
Collapse
|
2
|
Liu K, Yuan S, Wang C, Zhu H. Resistance to immune checkpoint inhibitors in gastric cancer. Front Pharmacol 2023; 14:1285343. [PMID: 38026944 PMCID: PMC10679741 DOI: 10.3389/fphar.2023.1285343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Gastric cancer (GC) is one of the most common gastrointestinal malignancies worldwide. In the past decade, with the development of early diagnostic techniques, a clear decline in GC incidence has been observed, but its mortality remains high. The emergence of new immunotherapies such as immune checkpoint inhibitors (ICIs) has changed the treatment of GC patients to some extent. However, only a small number of patients with advanced GC have a durable response to ICI treatment, and the efficacy of ICIs is very limited. Existing studies have shown that the failure of immunotherapy is mainly related to the development of ICI resistance in patients, but the understanding of the resistance mechanism is still insufficient. Therefore, clarifying the mechanism of GC immune resistance is critical to improve its treatment and clinical benefit. In this review, we focus on summarizing the mechanisms of primary or acquired resistance to ICI immunotherapy in GC from both internal and external aspects of the tumor. At the same time, we also briefly discuss some other possible resistance mechanisms in light of current studies.
Collapse
Affiliation(s)
- Kai Liu
- The Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Shiman Yuan
- The Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Chenyu Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hong Zhu
- Cancer Center, Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Chen Y, Zheng A, Zhang Y, Xiao M, Zhao Y, Wu X, Li M, Du F, Chen Y, Chen M, Li W, Li X, Sun Y, Gu L, Xiao Z, Shen J. Dysregulation of B7 family and its association with tumor microenvironment in uveal melanoma. Front Immunol 2022; 13:1026076. [PMID: 36311731 PMCID: PMC9615147 DOI: 10.3389/fimmu.2022.1026076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Background Uveal melanoma (UVM) is the most common primary intraocular malignancy in adults with a poor prognosis. B7 family is an important modulator of the immune response. However, its dysregulation and underlying molecular mechanism in UVM still remains unclear. Methods Data were derived from TCGA and GEO databases. The prognosis was analyzed by Kaplan-Meier curve. The ESTIMATE algorithm, CIBERSORT algorithm, and TIMER database were used to demonstrate the correlation between B7 family and tumor immune microenvironment in UVM. Single-cell RNA sequencing was used to detect the expression levels of the B7 family in different cell types of UVM. UVM was classified into different types by consistent clustering. Enrichment analysis revealed downstream signaling pathways of the B7 family. The interaction between different cell types was visualized by cell chat. Results The expression level of B7 family in UVM was significantly dysregulated and negatively correlated with methylation level. The expression of B7 family was associated with prognosis and immune infiltration, and B7 family plays an important role in the tumor microenvironment (TME). B7 family members were highly expressed in monocytes/macrophages of UVM compared with other cell types. Immune response and visual perception were the main functions affected by B7 family. The result of cell chat showed that the interaction between photoreceptor cells and immune-related cells was mainly generated by HLA-C-CD8A. CABP4, KCNJ10 and RORB had the strongest correlation with HLA-C-CD8A, and their high expression was significantly correlated with poor prognosis. CABP4 and RORB were specifically expressed in photoreceptor cells. Conclusions Dysregulation of the B7 family in UVM is associated with poor prognosis and affects the tumor immune microenvironment. CABP4 and RORB can serve as potential therapeutic targets for UVM, which can be regulated by the B7 family to affect the visual perception and immune response function of the eye, thus influencing the prognosis of UVM.
Collapse
Affiliation(s)
- Yao Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Pidu District People’s Hospital, Chengdu, Sichuan, China
| | - Anfu Zheng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yao Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Mintao Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Jing Shen, ; Zhangang Xiao,
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
- *Correspondence: Jing Shen, ; Zhangang Xiao,
| |
Collapse
|
4
|
Bolandi N, Derakhshani A, Hemmat N, Baghbanzadeh A, Asadzadeh Z, Afrashteh Nour M, Brunetti O, Bernardini R, Silvestris N, Baradaran B. The Positive and Negative Immunoregulatory Role of B7 Family: Promising Novel Targets in Gastric Cancer Treatment. Int J Mol Sci 2021; 22:ijms221910719. [PMID: 34639059 PMCID: PMC8509619 DOI: 10.3390/ijms221910719] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/30/2022] Open
Abstract
Gastric cancer (GC), with a heterogeneous nature, is the third leading cause of death worldwide. Over the past few decades, stable reductions in the incidence of GC have been observed. However, due to the poor response to common treatments and late diagnosis, this cancer is still considered one of the lethal cancers. Emerging methods such as immunotherapy with immune checkpoint inhibitors (ICIs) have transformed the landscape of treatment for GC patients. There are presently eleven known members of the B7 family as immune checkpoint molecules: B7-1 (CD80), B7-2 (CD86), B7-H1 (PD-L1, CD274), B7-DC (PDCD1LG2, PD-L2, CD273), B7-H2 (B7RP1, ICOS-L, CD275), B7-H3 (CD276), B7-H4 (B7x, B7S1, Vtcn1), B7-H5 (VISTA, Gi24, DD1α, Dies1 SISP1), B7-H6 (NCR3LG1), B7-H7 (HHLA2), and Ig-like domain-containing receptor 2 (ILDR2). Interaction of the B7 family of immune-regulatory ligands with the corresponding receptors resulted in the induction and inhibition of T cell responses by sending co-stimulatory and co-inhibitory signals, respectively. Manipulation of the signals provided by the B7 family has significant potential in the management of GC.
Collapse
Affiliation(s)
- Nadia Bolandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 571478334, Iran
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
| | - Mina Afrashteh Nour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 571478334, Iran
| | - Oronzo Brunetti
- Medical Oncology Unit—IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95100 Catania, Italy;
| | - Nicola Silvestris
- Medical Oncology Unit—IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari, 70124 Bari, Italy
- Correspondence: (N.S.); (B.B.); Tel.: +98-413-3371440 (B.B.); Fax: +98-413-3371311 (B.B.)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 516615731, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran
- Correspondence: (N.S.); (B.B.); Tel.: +98-413-3371440 (B.B.); Fax: +98-413-3371311 (B.B.)
| |
Collapse
|
5
|
Li D, Xiang S, Shen J, Xiao M, Zhao Y, Wu X, Du F, Ji H, Li M, Zhao Q, Kaboli PJ, Yang X, Xiao Z, Qin B, Wen Q. Comprehensive understanding of B7 family in gastric cancer: expression profile, association with clinicopathological parameters and downstream targets. Int J Biol Sci 2020; 16:568-582. [PMID: 32025206 PMCID: PMC6990920 DOI: 10.7150/ijbs.39769] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
Objectives: B7 family members were identified as co-stimulators or co-inhibitors of the immune response and played important roles in cancer immunotherapy; however, their dysregulation in gastric cancer is still unclear. Methods: Data were obtained from TCGA and GTEX database. B7 mutations, association with DNA methylation and affected proteins were analyzed in cBioportal. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and Gene Ontology (GO) project was studied by DAVID to find the downstream signaling pathway and important metabolic process, respectively. Protein-protein interaction network was analyzed in STRING and Cytoscape. A total of 160 paired specimens in tissue microarray from patients with gastric cancer were used to detect the expression levels of seven B7 family members via immunohistochemical analysis. Results: Bioinformatics studies revealed dysregulation of B7 members in gastric cancer. Gene and protein alteration were found in B7 family members. Furthermore, DNA methylation and gene alteration may be both involved in B7 member dysregulation in gastric cancer. Importantly, the high expression of B7-H6 is associated with good overall patient survival. B7 family members primarily affect the EGFR tyrosine kinase inhibitor resistance signaling pathway in gastric cancer and TP53 may be an important target of the family. The low expression of B7-1 and high expression of B7-H3 and B7-H7 were validated by IHC staining. Conclusions: Our results provide insight into B7 family member expression in gastric cancer and stress their importance in stomach tumorigenesis, which may be beneficial for designing future cancer treatments.
Collapse
Affiliation(s)
- Dan Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Shixin Xiang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Mingtao Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Huijiao Ji
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| | - Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Xiao Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Bo Qin
- Shenzhen Aier Aye Hospital, Shenzhen, 518032, Guangdong, PR China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
6
|
Schmudde M, Braun A, Pende D, Sonnemann J, Klier U, Beck JF, Moretta L, Bröker BM. Histone deacetylase inhibitors sensitize tumour cells for cytotoxic effects of natural killer cells. Cancer Lett 2008; 272:110-21. [DOI: 10.1016/j.canlet.2008.06.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 06/25/2008] [Accepted: 06/30/2008] [Indexed: 11/29/2022]
|
7
|
Mir MA, Agrewala JN. Signaling through CD80: an approach for treating lymphomas. Expert Opin Ther Targets 2008; 12:969-79. [DOI: 10.1517/14728222.12.8.969] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Dang LH, Chen F, Knock SA, Huang EH, Feng J, Appelman HD, Dang DT. CDX2 does not suppress tumorigenicity in the human gastric cancer cell line MKN45. Oncogene 2006; 25:2048-59. [PMID: 16331267 DOI: 10.1038/sj.onc.1209243] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CDX2 is a Drosophila caudal-related homeobox transcription factor that is expressed specifically in the intestine. In mice, ectopic expression of CDX2 in the gastric mucosa gives rise to intestinal metaplasia and in one model, gastric carcinoma. In humans, increased CDX2 expression is associated with gastric intestinal metaplasia and tubular adenocarcinomas. These patterns of expression have shown that CDX2 is important for the initiation of intestinal metaplasia in the gastric mucosa, but the role of CDX2 in established gastric cancer remains unclear. We sought to determine whether CDX2 contributes to tumorigenic potential in established gastric cancer. The CDX2 gene in MKN45 gastric carcinoma cells was disrupted using targeted homologous recombination. The resulting CDX2-/- cells are essentially identical to their parental cells, with the exception of CDX2 ablation. We found no significant differences in the proliferation of CDX2-/- cells compared to CDX2+/+ cells, in vitro or in vivo. Molecular analyses show that loss of CDX2 predominantly altered the expression of genes involved in intestinal glandular differentiation and adhesion. However, there were no microscopic differences in tumor differentiation. We conclude that disruption of CDX2 in MKN45 cells does not significantly affect their tumorigenic potential.
Collapse
Affiliation(s)
- L H Dang
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109-0682, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Souba WW, McFadden DW. Re: "A not so modest proposal for sustaining the American clinical research enterprise". J Surg Res 2005; 125:1-2. [PMID: 15836842 DOI: 10.1016/j.jss.2005.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 02/24/2005] [Accepted: 02/24/2005] [Indexed: 10/25/2022]
|
10
|
McFadden DW. Temporal changes in the management of diverticulitis. J Surg Res 2005; 124:159. [PMID: 15820242 DOI: 10.1016/j.jss.2005.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|