1
|
Nappi F, Avtaar Singh SS, Jitendra V, Fiore A. Bridging Molecular and Clinical Sciences to Achieve the Best Treatment of Enterococcus faecalis Endocarditis. Microorganisms 2023; 11:2604. [PMID: 37894262 PMCID: PMC10609379 DOI: 10.3390/microorganisms11102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Enterococcus faecalis (E. faecalis) is a commensal bacterium that causes various infections in surgical sites, the urinary tract, and blood. The bacterium is becoming a significant concern because it tends to affect the elderly population, which has a high prevalence of undiagnosed degenerative valvular disease and is often subjected to invasive procedures and implanted medical devices. The bacterium's actions are influenced by specific characteristics like pili activity and biofilm formation. This resistance significantly impedes the effectiveness of numerous antibiotic therapies, particularly in cases of endocarditis. While current guidelines recommend antimicrobial therapy, the emergence of resistant strains has introduced complexity in managing these patients, especially with the increasing use of transcatheter therapies for those who are not suitable for surgery. Presentations of the condition are often varied and associated with generalised symptoms, which may pose a diagnostic challenge. We share our encounter with a case study that concerns an octogenarian who had a TAVI valve and developed endocarditis. We also conducted a literature review to identify the essential treatment algorithms for such cases.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| | | | - Vikram Jitendra
- Department of Cardiothoracic Surgery, Aberdeen Royal Infirmary, Aberdeen AB25 2ZN, UK;
| | - Antonio Fiore
- Department of Cardiac Surgery, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, 94000 Creteil, France;
| |
Collapse
|
2
|
Nappi F, Schoell T, Spadaccio C, Acar C, da Costa FDA. A Literature Review on the Use of Aortic Allografts in Modern Cardiac Surgery for the Treatment of Infective Endocarditis: Is There Clear Evidence or Is It Merely a Perception? Life (Basel) 2023; 13:1980. [PMID: 37895362 PMCID: PMC10608498 DOI: 10.3390/life13101980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Infective valve endocarditis is caused by different pathogens and 60% of those involve the aortic valve with valve failure. Although S. aureus is recognized as the most frequently isolated causative bacterium associated with IE in high-income countries, Gram-positive cocci nevertheless play a crucial role in promoting infection in relation to their adhesive matrix molecules. The presence of pili on the surface of Gram-positive bacteria such as in different strains of Enterococcus faecalis and Streptococcus spp., grants these causative pathogens a great offensive capacity due to the formation of biofilms and resistance to antibiotics. The indications and timing of surgery in endocarditis are debated as well as the choice of the ideal valve substitute to replace the diseased valve(s) when repair is not possible. We reviewed the literature and elaborated a systematic approach to endocarditis management based on clinical, microbiological, and anatomopathological variables known to affect postoperative outcomes with the aim to stratify the patients and orient decision making. From this review emerges significant findings on the risk of infection in the allograft used in patients with endocarditis and no endocarditis etiology suggesting that the use of allografts has proved safety and effectiveness in patients with both pathologies.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France;
| | - Thibaut Schoell
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France;
| | - Cristiano Spadaccio
- Cardiothoracic Surgery, Lancashire Cardiac Center, Blackpool Victoria Hospital, Blackpool FY3 8NP, UK;
| | - Christophe Acar
- Department of Cardiothoracic Surgery, Hôpital Pitié-Salpêtrière, Boulevard de Hôpital 47-83, 75013 Paris, France;
| | - Francisco Diniz Affonso da Costa
- Department of Cardiovascular Surgery, Instituto de Neurologia e Cardiologia de Curitiba—INC Cardio, Curitiba 81210-310, Parana, Brazil;
| |
Collapse
|
3
|
Ruemke S, Rubalskii E, Salmoukas C, Hermes K, Natanov R, Kaufeld T, Gryshkov O, Mutsenko V, Rubalsky M, Burgwitz K, Glasmacher B, Haverich A, Rustum S, Kuehn C. Combination of Bacteriophages and Antibiotics for Prevention of Vascular Graft Infections-An In Vitro Study. Pharmaceuticals (Basel) 2023; 16:ph16050744. [PMID: 37242527 DOI: 10.3390/ph16050744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: Implant-associated bacterial infections are usually hard to treat conservatively due to the resistance and tolerance of the pathogens to conventional antimicrobial therapy. Bacterial colonization of vascular grafts may lead to life-threatening conditions such as sepsis. The objective of this study is to evaluate whether conventional antibiotics and bacteriophages can reliably prevent the bacterial colonization of vascular grafts. (2) Methods: Gram-positive and Gram-negative bacterial infections were simulated on samples of woven PET gelatin-impregnated grafts using Staphylococcus aureus and Escherichia coli strains, respectively. The ability to prevent colonization was evaluated for a mixture of broad-spectrum antibiotics, for strictly lytic species-specific bacteriophage strains, and for a combination of both. All the antimicrobial agents were conventionally tested in order to prove the sensitivity of the used bacterial strains. Furthermore, the substances were used in a liquid form or in combination with a fibrin glue. (3) Results: Despite their strictly lytic nature, the application of bacteriophages alone was not enough to protect the graft samples from both bacteria. The singular application of antibiotics, both with and without fibrin glue, showed a protective effect against S. aureus (0 CFU/cm2), but was not sufficient against E. coli without fibrin glue (M = 7.18 × 104 CFU/cm2). In contrast, the application of a combination of antibiotics and phages showed complete eradication of both bacteria after a single inoculation. The fibrin glue hydrogel provided an increased protection against repetitive exposure to S. aureus (p = 0.05). (4) Conclusions: The application of antibacterial combinations of antibiotics and bacteriophages is an effective approach to the prevention of bacteria-induced vascular graft infections in clinical settings.
Collapse
Affiliation(s)
- Stefan Ruemke
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, 30625 Hannover, Germany
| | - Evgenii Rubalskii
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, 30625 Hannover, Germany
| | - Christina Salmoukas
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, 30625 Hannover, Germany
| | - Kristina Hermes
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, 30625 Hannover, Germany
| | - Ruslan Natanov
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Tim Kaufeld
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Oleksandr Gryshkov
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, 30625 Hannover, Germany
- Institute for Multiphase Processes, Leibniz University Hannover, 30823 Garbsen, Germany
| | - Vitalii Mutsenko
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, 30625 Hannover, Germany
- Institute for Multiphase Processes, Leibniz University Hannover, 30823 Garbsen, Germany
| | - Maxim Rubalsky
- Department of Microbiology and Virology, Astrakhan State Medical University, 414000 Astrakhan, Russia
| | - Karin Burgwitz
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, 30625 Hannover, Germany
| | - Birgit Glasmacher
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, 30625 Hannover, Germany
- Institute for Multiphase Processes, Leibniz University Hannover, 30823 Garbsen, Germany
| | - Axel Haverich
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, 30625 Hannover, Germany
| | - Saad Rustum
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Christian Kuehn
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, 30625 Hannover, Germany
| |
Collapse
|
4
|
Zia S, Djalali-Cuevas A, Pflaum M, Hegermann J, Dipresa D, Kalozoumis P, Kouvaka A, Burgwitz K, Andriopoulou S, Repanas A, Will F, Grote K, Schrimpf C, Toumpaniari S, Mueller M, Glasmacher B, Haverich A, Morticelli L, Korossis S. Development of a dual-component infection-resistant arterial replacement for small-caliber reconstructions: A proof-of-concept study. Front Bioeng Biotechnol 2023; 11:957458. [PMID: 36741762 PMCID: PMC9889865 DOI: 10.3389/fbioe.2023.957458] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Introduction: Synthetic vascular grafts perform poorly in small-caliber (<6mm) anastomoses, due to intimal hyperplasia and thrombosis, whereas homografts are associated with limited availability and immunogenicity, and bioprostheses are prone to aneurysmal degeneration and calcification. Infection is another important limitation with vascular grafting. This study developed a dual-component graft for small-caliber reconstructions, comprising a decellularized tibial artery scaffold and an antibiotic-releasing, electrospun polycaprolactone (PCL)/polyethylene glycol (PEG) blend sleeve. Methods: The study investigated the effect of nucleases, as part of the decellularization technique, and two sterilization methods (peracetic acid and γ-irradiation), on the scaffold's biological and biomechanical integrity. It also investigated the effect of different PCL/PEG ratios on the antimicrobial, biological and biomechanical properties of the sleeves. Tibial arteries were decellularized using Triton X-100 and sodium-dodecyl-sulfate. Results: The scaffolds retained the general native histoarchitecture and biomechanics but were depleted of glycosaminoglycans. Sterilization with peracetic acid depleted collagen IV and produced ultrastructural changes in the collagen and elastic fibers. The two PCL/PEG ratios used (150:50 and 100:50) demonstrated differences in the structural, biomechanical and antimicrobial properties of the sleeves. Differences in the antimicrobial activity were also found between sleeves fabricated with antibiotics supplemented in the electrospinning solution, and sleeves soaked in antibiotics. Discussion: The study demonstrated the feasibility of fabricating a dual-component small-caliber graft, comprising a scaffold with sufficient biological and biomechanical functionality, and an electrospun PCL/PEG sleeve with tailored biomechanics and antibiotic release.
Collapse
Affiliation(s)
- Sonia Zia
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Adrian Djalali-Cuevas
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Michael Pflaum
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Daniele Dipresa
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Panagiotis Kalozoumis
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Artemis Kouvaka
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Karin Burgwitz
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Sofia Andriopoulou
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Alexandros Repanas
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
| | - Fabian Will
- LLS ROWIAK LaserLabSolutions GmbH, Hannover, Germany
| | - Karsten Grote
- Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany
| | - Claudia Schrimpf
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Sotiria Toumpaniari
- Cardiopulmonary Regenerative Engineering Group (CARE), Centre for Biological Engineering, Loughborough University, Loughborough, United Kingdom,Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, United Kingdom
| | - Marc Mueller
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
| | - Birgit Glasmacher
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany,Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
| | - Axel Haverich
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Lucrezia Morticelli
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Sotirios Korossis
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany,Cardiopulmonary Regenerative Engineering Group (CARE), Centre for Biological Engineering, Loughborough University, Loughborough, United Kingdom,Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, United Kingdom,*Correspondence: Sotirios Korossis,
| |
Collapse
|
5
|
Mufty H, Van Den Eynde J, Meuris B, Metsemakers WJ, Van Wijngaerden E, Vandendriessche T, Steenackers HP, Fourneau I. Pre-clinical In Vitro Models of Vascular Graft Coating in the Prevention of Vascular Graft Infection: A Systematic Review. Eur J Vasc Endovasc Surg 2022; 63:119-137. [PMID: 34674936 DOI: 10.1016/j.ejvs.2021.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/10/2021] [Accepted: 07/25/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Vascular graft infection (VGI) is a feared complication. Prevention is of the utmost importance and vascular graft coatings (VGCs) could offer a potential to do this, with in vitro research a first crucial step. The aim of this study was to summarise key features of in vitro models investigating coating strategies to prevent VGI in order to provide guidance for the setup of future translational research. DATA SOURCES A comprehensive search was performed in MEDLINE, Embase, and Web of Science. METHODS A systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. For each database, a specific search strategy was developed. Quality was assessed with the Toxicological data Reliability Assessment Tool (ToxRTool). In vitro models using a VGC and inoculation of the graft with a pathogen were included. The type of graft, coating, and pathogen were summarised. The outcome assessment in each study was evaluated. RESULTS In total, 4 667 studies were identified, of which 45 papers met the inclusion criteria. The majority used polyester grafts (68.2%). Thirty-one studies (68.9%) included antibiotics, and nine studies (20%) used a commercial silver graft in their protocol. New antibacterial strategies (e.g., proteolytic enzymes) were investigated. A variety of testing methods was found and focused mainly on bacterial adherence, coating adherence and dilution, biofilm formation, and cytotoxicity. Ninety-three per cent of the studies (n = 41) were considered unreliable. CONCLUSION Polyester is the preferred type of graft to coat on. The majority of coating studies are based on antibiotics; however, new coating strategies (e.g., antibiofilm coating) are coming. Many in vitro setups are available. In vitro studies have great potential, they can limit the use, but cannot replace in vivo studies completely. This paper can be used as a guidance document for future in vitro research.
Collapse
Affiliation(s)
- Hozan Mufty
- Department of Vascular Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Cardiovascular Sciences, Research Unit of Vascular Surgery, KU Leuven, Leuven, Belgium.
| | - Jef Van Den Eynde
- Department of Vascular Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Cardiovascular Sciences, Research Unit of Vascular Surgery, KU Leuven, Leuven, Belgium
| | - Bart Meuris
- Department of Cardiovascular Sciences, Research Unit of Vascular Surgery, KU Leuven, Leuven, Belgium; Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | | | - Eric Van Wijngaerden
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | | | - Hans P Steenackers
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Inge Fourneau
- Department of Vascular Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Cardiovascular Sciences, Research Unit of Vascular Surgery, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Nappi F, Iervolino A, Singh SSA. The New Challenge for Heart Endocarditis: From Conventional Prosthesis to New Devices and Platforms for the Treatment of Structural Heart Disease. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7302165. [PMID: 34222484 PMCID: PMC8219429 DOI: 10.1155/2021/7302165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/02/2021] [Indexed: 01/07/2023]
Abstract
Infective endocarditis is a sinister condition with considerable morbidity and mortality. Its relevance in the current era is compounded by the increased use of implanted devices such as replacement valves or cardiac implantable electronic devices. These infections are caused by multiple different bacteria with different virulence, pathogenicity, and antimicrobial resistance. Unlike in native endocarditis, the presence of foreign tissue permits sustenance by inflammatory and thrombotic processes as the artificial surfaces promote inflammatory responses and hypercoagulability. Prevention of these infections has been suggested with the use of homografts in combination with antibiotics. Others have attempted to use "low fouling coats" with little clinical success thus far. The use of antibiotic prophylaxis plays a pivotal part in reducing the incidence of prosthesis-related endocarditis. This remains especially crucial with the increasing use of transcatheter heart valve therapies. The widespread use of cardiac implantable electronic devices such as permanent pacemakers, implantable cardioverter defibrillators, and cardiac resynchronization therapy devices has also heralded a noticeable increase in cases of infectious endocarditis affecting complex equipment which can be difficult to treat. Multimodality strategies are needed with input from surgeons and cardiologists to ensure treatment is both prompt and successful, tailored to the individual needs of the patients.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| | - Adelaide Iervolino
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| | | |
Collapse
|
7
|
Scialla S, Martuscelli G, Nappi F, Singh SSA, Iervolino A, Larobina D, Ambrosio L, Raucci MG. Trends in Managing Cardiac and Orthopaedic Device-Associated Infections by Using Therapeutic Biomaterials. Polymers (Basel) 2021; 13:1556. [PMID: 34066192 PMCID: PMC8151391 DOI: 10.3390/polym13101556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/23/2022] Open
Abstract
Over the years, there has been an increasing number of cardiac and orthopaedic implanted medical devices, which has caused an increased incidence of device-associated infections. The surfaces of these indwelling devices are preferred sites for the development of biofilms that are potentially lethal for patients. Device-related infections form a large proportion of hospital-acquired infections and have a bearing on both morbidity and mortality. Treatment of these infections is limited to the use of systemic antibiotics with invasive revision surgeries, which had implications on healthcare burdens. The purpose of this review is to describe the main causes that lead to the onset of infection, highlighting both the biological and clinical pathophysiology. Both passive and active surface treatments have been used in the field of biomaterials to reduce the impact of these infections. This includes the use of antimicrobial peptides and ionic liquids in the preventive treatment of antibiotic-resistant biofilms. Thus far, multiple in vivo studies have shown efficacious effects against the antibiotic-resistant biofilm. However, this has yet to materialize in clinical medicine.
Collapse
Affiliation(s)
- Stefania Scialla
- Institute of Polymers, Composites and Biomaterials of National Research Council (IPCB-CNR), 80125 Naples, Italy; (S.S.); (D.L.)
| | - Giorgia Martuscelli
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 81100 Naples, Italy;
| | - Francesco Nappi
- Centre Cardiologie du Nord de Saint-Denis, Department of Cardiac Surgery, 93200 Paris, France; (F.N.); (A.I.)
| | | | - Adelaide Iervolino
- Centre Cardiologie du Nord de Saint-Denis, Department of Cardiac Surgery, 93200 Paris, France; (F.N.); (A.I.)
| | - Domenico Larobina
- Institute of Polymers, Composites and Biomaterials of National Research Council (IPCB-CNR), 80125 Naples, Italy; (S.S.); (D.L.)
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials of National Research Council (IPCB-CNR), 80125 Naples, Italy; (S.S.); (D.L.)
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials of National Research Council (IPCB-CNR), 80125 Naples, Italy; (S.S.); (D.L.)
| |
Collapse
|
8
|
Nappi F, Avtaar Singh SS, Timofeeva I. Learning From Controversy: Contemporary Surgical Management of Aortic Valve Endocarditis. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2020; 14:1179546820960729. [PMID: 33088184 PMCID: PMC7545763 DOI: 10.1177/1179546820960729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 08/30/2020] [Indexed: 12/27/2022]
Abstract
Aortic valve replacement is the commonest cardiac surgical operation performed worldwide for infective endocarditis (IE). Long-term durability and avoidance of infection relapse are goals of the procedure. However, no detailed guidelines on prosthesis selection and surgical strategies guided by the comprehensive evaluation of the extension of the infection and its microbiological characteristics, clinical profile of the patient, and risk of infection recurrence are currently available. Conventional mechanical or stented xenografts are the preferred choice for localized aortic infection. However, in cases of complex IE with the involvement of the root or the aortomitral continuity, the use of homograft is suggested according to the surgeon and center experience. Homograft use should be counterbalanced against the risk of structural degeneration. Prosthetic bioroot or prosthetic valved conduit (mechanical and bioprosthetic) are also potentially suitable alternatives. Further development of preservation techniques enabling longer durability of allogenic substitutes is required. We evaluate the current evidence for the use of valve substitutes in aortic valve endocarditis and propose an evidence-based algorithm to guide the choice of therapy. We performed a systemic review to clarify the contemporary surgical management of aortic valve endocarditis.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord de Saint-Denis, Paris, France
| | - Sanjeet Singh Avtaar Singh
- Department of Cardiac Surgery, Golden Jubilee National Hospital, Glasgow, UK
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Irina Timofeeva
- Department of Imaging, Centre Cardiologique du Nord de Saint-Denis, Paris, France
| |
Collapse
|
9
|
Nappi F, Singh SSA, Spadaccio C, Acar C. Revisiting the guidelines and choice the ideal substitute for aortic valve endocarditis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:952. [PMID: 32953752 PMCID: PMC7475423 DOI: 10.21037/atm-20-1522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aortic valve replacement is the most commonly performed cardiac surgical operation worldwide for infective endocarditis (IE). Long-term durability and avoidance of infection relapse are the treatment goals. However, no detailed guidelines on prosthesis selection and surgical strategy are available. Management should be guided by a comprehensive evaluation of infection extension and its microbiological characteristics, the clinical profile of the patient and the risk of infection recurrence. We conducted a literature search of the PubMed database, EMBASE and Cochrane Library (through November 2019) for studies reporting to the use of biological substitutes in aortic valve endocarditis (AVE). Studies comparing long-term outcomes in the use of allogenic and autologous with conventional prostheses were investigated. Conventional mechanical or stented xenografts are the preferred choice for localized aortic infection. In cases of complex IE with the involvement of the root or the aorto-mitral continuity, the use of homografts are recommended, according to surgeon's and center experience. Homograft use needs to be balanced against the risk of structural degeneration. Prosthetic bioroot or prosthetic valved conduit with a mechanical or bioprosthetic valve are acceptable alternatives. The choice of aortic valves substitute and surgical strategy in IE is multifaceted. Principles guiding the selection of prosthesis and surgical approach rely on the long-term durability and the avoidance of infection relapse. A decisional algorithm considering the extension of the infection and its microbiological characteristics, the clinical profile of the patient and the risk of infection recurrence is provided. A multidisciplinary effort is required to achieve consistent outcomes.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, North Cardiological Center, Saint-Denis, Paris, France
| | - Sanjeet Singh Avtaar Singh
- Department of Cardiac Surgery, Golden Jubilee National Hospital, Glasgow, UK.,University of Glasgow Institute of Cardiovascular and Medical Sciences, Glasgow, UK
| | - Cristiano Spadaccio
- Department of Cardiac Surgery, Golden Jubilee National Hospital, Glasgow, UK.,University of Glasgow Institute of Cardiovascular and Medical Sciences, Glasgow, UK
| | - Christophe Acar
- Department of Cardiovascular Surgery, Heart Institute, la Pitie Salpetriere Hospital, Paris, France
| |
Collapse
|
10
|
Salmoukas C, Ruemke S, Rubalskii E, Burgwitz K, Haverich A, Kuehn C. Vascular Graft Pre-Treatment with Daptomycin Prior to Implantation Prevents Graft Infection with Staphylococcus aureus in an In Vivo Model. Surg Infect (Larchmt) 2020; 21:161-168. [DOI: 10.1089/sur.2019.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Christina Salmoukas
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- NIFE - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany
| | - Stefan Ruemke
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- NIFE - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany
| | - Evgenii Rubalskii
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- NIFE - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany
| | - Karin Burgwitz
- NIFE - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany
| | - Axel Haverich
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- NIFE - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany
| | - Christian Kuehn
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- NIFE - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany
| |
Collapse
|
11
|
Serine Protease Inhibitors-New Molecules for Modification of Polymeric Biomaterials. Biomolecules 2020; 10:biom10010082. [PMID: 31947983 PMCID: PMC7023003 DOI: 10.3390/biom10010082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/25/2019] [Accepted: 12/31/2019] [Indexed: 12/20/2022] Open
Abstract
Three serine protease inhibitors (AEBSF, soy inhibitor, α1-antitrypsin) were covalently immobilized on the surface of three polymer prostheses with the optimized method. The immobilization efficiency ranged from 11 to 51%, depending on the chosen inhibitor and biomaterial. The highest activity for all inhibitors was observed in the case of immobilization on the surface of the polyester Uni-Graft prosthesis, and the preparations obtained showed high stability in the environment with different pH and temperature values. Modification of the Uni-Graft prosthesis surface with the synthetic AEBSF inhibitor and human α1-antitrypsin inhibited the adhesion and multiplication of Staphylococcus aureus subs. aureus ATCC® 25923TM and Candida albicans from the collection of the Department of Genetics and Microbiology, UMCS. Optical profilometry analysis indicated that, after the immobilization process on the surface of AEBSF-modified Uni-Graft prostheses, there were more structures with a high number of protrusions, while the introduction of modifications with a protein inhibitor led to the smoothing of their surface.
Collapse
|
12
|
Nappi F, Singh SSA, Lusini M, Nenna A, Gambardella I, Chello M. The use of allogenic and autologous tissue to treat aortic valve endocarditis. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:491. [PMID: 31700927 PMCID: PMC6803205 DOI: 10.21037/atm.2019.08.76] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 08/15/2019] [Indexed: 01/18/2023]
Abstract
The surgical treatment of aortic valve endocarditis (AVE) is generally performed using conventional mechanical or biological xenograft prosthesis, with limited use of aortic homograft (Ao-Homo) or pulmonary autograft (PA). Clinical evidence has demonstrated a clear contradiction between the proven benefits of Ao-Homo and PA in the context of infection and the very limited use of allogenic or autologous tissue in everyday clinical practice. This review aims to summarize the most recent and relevant literature in order to foster the scientific debate on the use of the use of allogenic and autologous tissue to treat AVE. The decisional process of the Heart Team should also include the preferences of the patient, his/her family, the general cardiologist or primary care physician. The use of allogenic or autologous valve substitute is beneficial if there is a high risk of recurrence of infection, avoiding extensive adhesiolysis and debridement of synthetic material. In any case, those procedures should be performed by highly trained centers to optimize outcomes.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, Saint-Denis, Paris, France
| | | | - Mario Lusini
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Antonio Nenna
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | | | - Massimo Chello
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
13
|
Fibrin glue as a local drug-delivery system for bacteriophage PA5. Sci Rep 2019; 9:2091. [PMID: 30765740 PMCID: PMC6376040 DOI: 10.1038/s41598-018-38318-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/06/2018] [Indexed: 01/25/2023] Open
Abstract
Fibrin glue has been used clinically for decades in a wide variety of surgical specialties and is now being investigated as a medium for local, prolonged drug delivery. Effective local delivery of antibacterial substances is important perioperatively in patients with implanted medical devices or postoperatively for deep wounds. However, prolonged local application of antibiotics is often not possible or simply inadequate. Biofilm formation and antibiotic resistance are also major obstacles to antibacterial therapy. In this paper we test the biocompatibility of bacteriophages incorporated within fibrin glue, track the release of bacteriophages from fibrin scaffolds, and measure the antibacterial activity of released bacteriophages. Fibrin glue polymerized in the presence of the PA5 bacteriophage released high titers of bacteriophages during 11 days of incubation in liquid medium. Released PA5 bacteriophages were effective in killing Pseudomonas aeruginosa PA01. Overall, our results show that fibrin glue can be used for sustained delivery of bacteriophages and this strategy holds promise for many antibacterial applications.
Collapse
|
14
|
Hayder J, Chaouch MA, Amira N, Ben Mansour M, Majdoub H, Chaubet F, Maaroufi RM. Co-immobilization of chitosan and dermatan sulfate from Raja montagui skin on polyethylene terephthalate surfaces: Characterization and antibiofilm activity. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2017.1320664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jihane Hayder
- University of Monastir, Laboratory of Genetics, Biodiversity and Bioresources Valorization (LR11ES41), High Institute of Biotechnology of Monastir, Monastir, Tunisia
| | - Mohamed Aymen Chaouch
- University of Monastir, Laboratory of interfaces and advanced materials (LIMA), Faculty of Sciences of Monastir, Monastir, Tunisia
| | - Noumi Amira
- University of Monastir, Laboratory of Contagious Diseases and Biologically Active Substances (LR99ES27), Faculty of Pharmacy, Monastir, Tunisia
| | - Mohamed Ben Mansour
- Galilee Institute, University of Paris 13, Paris-Sorbonne University, Laboratory for Vascular Translational Science, Villetaneuse, France
| | - Hatem Majdoub
- University of Monastir, Laboratory of interfaces and advanced materials (LIMA), Faculty of Sciences of Monastir, Monastir, Tunisia
| | - Frédéric Chaubet
- Galilee Institute, University of Paris 13, Paris-Sorbonne University, Laboratory for Vascular Translational Science, Villetaneuse, France
| | - Raoui Mounir Maaroufi
- University of Monastir, Laboratory of Genetics, Biodiversity and Bioresources Valorization (LR11ES41), High Institute of Biotechnology of Monastir, Monastir, Tunisia
| |
Collapse
|
15
|
Arnaiz de Las Revillas F, Fernandez-Sampedro M, Arnaiz-García AM, Gutierrez-Cuadra M, Armiñanzas C, Pulitani I, Ponton A, Tascon V, García I, Fariñas MC. Daptomycin treatment in Gram-positive vascular graft infections. Int J Infect Dis 2018; 68:69-73. [PMID: 29373845 DOI: 10.1016/j.ijid.2018.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Daptomycin is a bactericidal antibiotic approved for the treatment of skin and soft tissue infections and right-side endocarditis. However, there is a lack of published data outlining its usefulness in vascular graft infections (VGI). The aim of this study was to describe the clinical experience of daptomycin use in the treatment of VGI caused by Gram-positive bacteria. METHODS This was a retrospective cohort study of patients diagnosed with VGI receiving daptomycin at a tertiary care hospital during the period January 2010 to December 2012. RESULTS Of a total 1066 consecutive patients who had undergone vascular grafts (VG), 25 were diagnosed with VGI. Fifteen of these patients (11 prosthetic VG, three autologous VG, one both types) received daptomycin (median dose 6.7mg/kg/day, range 4.1-7.1mg/kg/day; median age 69 years, range 45-83 years; 80% male). The infected bypass was removed in 13 cases. The most common reason for selecting daptomycin was kidney failure (53%). The Gram-positive organisms isolated were coagulase-negative Staphylococcus (n=10), Staphylococcus aureus (n=3) (two methicillin-resistant S. aureus), Enterococcus faecium (n=2), and Enterococcus faecalis (n=1). The mean follow-up was 69 months (interquartile range 48-72 months). Ten patients (66.7%) achieved complete healing of the VGI. A recurrence of the infection was observed in 100% of patients in whom the bypass was not removed. Among patients who did not achieve complete healing, one needed a supracondylar amputation and one died as a consequence of infection. Five patients received treatment with rifampicin in addition to daptomycin and they were all cured. CONCLUSIONS The use of daptomycin and surgery for Gram-positive VGI was effective and well tolerated, and this may be a good alternative for the treatment of VGI in patients with peripheral arterial disease in whom renal insufficiency is common.
Collapse
Affiliation(s)
| | - Marta Fernandez-Sampedro
- Infectious Diseases Unit, Department of Internal Medicine, Hospital Universitario Marqués de Valdecilla, Santander, Spain.
| | - Ana María Arnaiz-García
- Infectious Diseases Unit, Department of Internal Medicine, Hospital Universitario Marqués de Valdecilla, Santander, Spain.
| | - Manuel Gutierrez-Cuadra
- Infectious Diseases Unit, Department of Internal Medicine, Hospital Universitario Marqués de Valdecilla, Santander, Spain.
| | - Carlos Armiñanzas
- Infectious Diseases Unit, Department of Internal Medicine, Hospital Universitario Marqués de Valdecilla, Santander, Spain.
| | - Ivana Pulitani
- Cardiovascular Surgery Service, Hospital Universitario Marqués de Valdecilla, Santander, Spain.
| | - Alejandro Ponton
- Cardiovascular Surgery Service, Hospital Universitario Marqués de Valdecilla, Santander, Spain.
| | - Valentin Tascon
- Cardiovascular Surgery Service, Hospital Universitario Marqués de Valdecilla, Santander, Spain.
| | - Ivan García
- Cardiovascular Surgery Service, Hospital Universitario Marqués de Valdecilla, Santander, Spain.
| | - María Carmen Fariñas
- Infectious Diseases Unit, Department of Internal Medicine, Hospital Universitario Marqués de Valdecilla, Santander, Spain.
| |
Collapse
|
16
|
Herten M, Bisdas T, Knaack D, Becker K, Osada N, Torsello GB, Idelevich EA. Rapid in Vitro Quantification of S. aureus Biofilms on Vascular Graft Surfaces. Front Microbiol 2017; 8:2333. [PMID: 29259580 PMCID: PMC5723318 DOI: 10.3389/fmicb.2017.02333] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/13/2017] [Indexed: 12/28/2022] Open
Abstract
Objectives: Increasing resistance of microorganisms and particularly tolerance of bacterial biofilms against antibiotics require the need for alternative antimicrobial substances. S. aureus is the most frequent pathogen causing vascular graft infections. In order to evaluate the antimicrobial efficacy, quantification of the bacterial biofilms is necessary. Aim of the present study was the validation of an in vitro model for quantification of bacterial biofilm on vascular graft surfaces using three different assays. Methods: Standardized discs of vascular graft material (Dacron or PTFE) or polystyrene (PS) as control surface with 0.25 cm2 surface area were inoculated with 10-3 diluted overnight culture of three biofilm-producing S. aureus isolates (BEB-029, BEB-295, SH1000) in 96-well PS culture plates. After incubation for 4 and 18 h, the biofilm was determined by three different methods: (a) mitochondrial ATP concentration as measure of bacterial viability (ATP), (b) crystal violet staining (Cry), and (c) vital cell count by calculation of colony-forming units (CFU). The experiments were performed three times. Quadruplicates were used for each isolate, time point, and method. In parallel, bacterial biofilms were documented via scanning electron microscopy. Results: All three methods could quantify biofilms on the PS control. Time needed was 0:40, 13:10, and 14:30 h for ATP, Cry, and CFU, respectively. The Cry assay could not be used for vascular graft surfaces due to high unspecific background staining. However, ATP assay and CFU count showed comparable results on vascular graft material and control. The correlations between ATP and CFU assay differed according to the surface and incubation time and were significant only after 4 h on Dacron (BEB-029, p = 0.013) and on PS (BEB-029, p < 0.001). Between ATP and Cry assay on PS, a significant correlation could be detected after 4 h (BEB-295, p = 0.027) and after 18 h (all three strains, p < 0.026). The reproducibility of the ATP-assay presented as inter-assay-variance of 2.1 and as intra-assay variance of 8.1 on polystyrene. Conclusion: The in-vitro model reproducibly quantifies biofilm on standardized vascular graft surfaces with ATP assay as detection system. The ATP assay allows accelerated microbial quantification, however the correlation with the CFU assay may be strain- and surface-dependent.
Collapse
Affiliation(s)
- Monika Herten
- Clinic for Vascular and Endovascular Surgery, University Hospital Münster, Münster, Germany
| | - Theodosios Bisdas
- Department of Vascular Surgery, St. Franziskus-Hospital Münster, Münster, Germany
| | - Dennis Knaack
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Karsten Becker
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Nani Osada
- Clinic for Vascular and Endovascular Surgery, University Hospital Münster, Münster, Germany
| | - Giovanni B Torsello
- Clinic for Vascular and Endovascular Surgery, University Hospital Münster, Münster, Germany.,Department of Vascular Surgery, St. Franziskus-Hospital Münster, Münster, Germany
| | - Evgeny A Idelevich
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
17
|
Herten M, Idelevich EA, Sielker S, Becker K, Scherzinger AS, Osada N, Torsello GB, Bisdas T. Vascular Graft Impregnation with Antibiotics: The Influence of High Concentrations of Rifampin, Vancomycin, Daptomycin, and Bacteriophage Endolysin HY-133 on Viability of Vascular Cells. Med Sci Monit Basic Res 2017; 23:250-257. [PMID: 28652563 PMCID: PMC5498120 DOI: 10.12659/msmbr.902879] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Rifampin-soaked synthetic prosthetic grafts have been widely used for prevention or treatment of vascular graft infections (VGIs). This in vitro study investigated the effect of the antibiotics daptomycin and vancomycin and the new recombinant bacteriophage endolysin HY-133 on vascular cells, as potential alternatives compared to rifampin. Material/Methods Primary human ECs, vascular smooth muscle cells (vSMC), and fibroblasts were cultivated in 96-well plates and incubated with rifampin, daptomycin, vancomycin, and endolysin HY-133 for 24 h. Subsequently, after washing, cell viability was determined by measuring mitochondrial ATP concentration. Antibiotics were used in their corresponding minimum and maximum serum concentrations, in decimal multiples and in maximum soaking concentration. The experiments were performed in triplicate. Results The 10-fold max serum concentrations of rifampin, daptomycin, and vancomycin did not influence viability of EC and vSMC (100 μg/ml, p>0.170). Higher concentrations of rifampin (>1 mg/ml) significantly (p<0.001) reduced cell viability of all cell types. For the other antibiotics, high concentrations (close to maximum soaking concentration) were most cytotoxic for EC and vSMC and fibroblasts (p<0.001). Endolysin did not display any cytotoxicity towards vascular cells. Conclusions Results of this in vitro study show the high cytotoxicity of rifampin against vascular cells, and may re-initiate the discussion about the benefit of prophylactic pre-soaking in high concentrations of rifampin. Further studies are necessary to determine the influence of rifampin on the restoration of vessel functionality versus its prophylactic effect against VGIs. Future use of recombinant phage endolysins for alternative prophylactic strategies needs further investigations.
Collapse
Affiliation(s)
- Monika Herten
- Clinic for Vascular and Endovascular Surgery, University Hospital Muenster, Muenster, Germany
| | - Evgeny A Idelevich
- Institute of Medical Microbiology, University Hospital Muenster, Muenster, Germany
| | - Sonja Sielker
- Department of Cranio-Maxillofacial Surgery, University Hospital Muenster, Muenster, Germany
| | - Karsten Becker
- Institute of Medical Microbiology, University Hospital Muenster, Muenster, Germany
| | | | - Nani Osada
- Clinic for Vascular and Endovascular Surgery, University Hospital Münster, Muenster, Germany
| | - Giovanni B Torsello
- Clinic for Vascular and Endovascular Surgery, University Hospital Muenster, Muenster, Germany.,Department of Vascular Surgery, St. Franziskus-Hospital GmbH, Muenster, Germany
| | - Theodosios Bisdas
- Department of Vascular Surgery, St. Franziskus-Hospital GmbH, Muenster, Germany
| |
Collapse
|
18
|
Van de Vyver H, Bovenkamp PR, Hoerr V, Schwegmann K, Tuchscherr L, Niemann S, Kursawe L, Grosse C, Moter A, Hansen U, Neugebauer U, Kuhlmann MT, Peters G, Hermann S, Löffler B. A Novel Mouse Model of Staphylococcus aureus Vascular Graft Infection: Noninvasive Imaging of Biofilm Development in Vivo. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:268-279. [PMID: 28088288 DOI: 10.1016/j.ajpath.2016.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/20/2016] [Accepted: 10/04/2016] [Indexed: 10/20/2022]
Abstract
Staphylococcus aureus causes very serious infections of vascular grafts. Knowledge of the molecular mechanisms of this disease is largely lacking because of the absence of representable models. Therefore, the aim of this study was to set up a mouse model of vascular graft infections that closely mimics the human situation. A catheter was inserted into the right carotid artery of mice, which acted as a vascular graft. Mice were infected i.v. using 8 different S. aureus strains, and development of the infection was followed up. Although all strains had varying abilities to form biofilm in vitro and different levels of virulence in mice, they all caused biofilm formation on the grafts. This graft infection was monitored using magnetic resonance imaging (MRI) and 18F-fluordeoxyglucose positron emission tomography (FDG-PET). MRI allowed the quantification of blood flow through the arteries, which was decreased in the catheter after infection. FDG-PET revealed high inflammation levels at the site of the catheter after infection. This model closely resembles the situation in patients, which is characterized by a tight interplay between pathogen and host, and can therefore be used for the testing of novel treatment, diagnosis, and prevention strategies. In addition, combining MRI and PET with microscopic techniques provides an appropriate way to characterize the course of these infections and to precisely analyze biofilm development.
Collapse
Affiliation(s)
- Hélène Van de Vyver
- Institute of Medical Microbiology, University Hospital Muenster, Muenster, Germany.
| | - Philipp R Bovenkamp
- Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany
| | - Verena Hoerr
- Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany; Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Katrin Schwegmann
- European Institute for Molecular Imaging, University Hospital Muenster, Muenster, Germany
| | - Lorena Tuchscherr
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital Muenster, Muenster, Germany
| | - Laura Kursawe
- Biofilmcenter, German Heart Institute Berlin, Berlin, Germany
| | - Christina Grosse
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany; Leibniz Institute of Photonic Technology, Jena, Germany
| | - Annette Moter
- Biofilmcenter, German Heart Institute Berlin, Berlin, Germany
| | - Uwe Hansen
- Institute of Experimental Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
| | - Ute Neugebauer
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany; Leibniz Institute of Photonic Technology, Jena, Germany; Institute of Physical Chemistry, University of Jena, Jena, Germany
| | - Michael T Kuhlmann
- European Institute for Molecular Imaging, University Hospital Muenster, Muenster, Germany
| | - Georg Peters
- Institute of Medical Microbiology, University Hospital Muenster, Muenster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging, University Hospital Muenster, Muenster, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| |
Collapse
|
19
|
Steffen V, Marsch G, Burgwitz K, Kuehn C, Teebken OE. Resistance to infection of long-term cryopreserved human aortic valve allografts. J Thorac Cardiovasc Surg 2015; 151:1251-9. [PMID: 26725710 DOI: 10.1016/j.jtcvs.2015.11.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 10/18/2015] [Accepted: 11/18/2015] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To analyze the in vitro antimicrobial activity of 3 antibiotic regimens (group A, gentamicin-piperacillin-vancomycin-metronidazole-amphotericin B; group B, gentamicin-piperacillin-flucloxacillin-metronidazole-amphotericin B; and group C, meropenem-vancomycin-tobramycin-colistin-amphotericin B) used in the processing of cryopreserved human ascending aortic tissue and aortic valves against Staphylococcus epidermidis and Staphylococcus aureus. The results were additionally compared with the infection resistance of cryopreserved ascending aortic tissue against Escherichia coli and Pseudomonas aeruginosa. MATERIALS Each of 10 cryopreserved human allografts (CHAs) was divided into 25 pieces (separating aortic wall and valve). Eighteen segments were microbiologically tested, and 7 pieces underwent scanning electron microscopy. A bacterial solution (4 mL; optical density, 0.20 ± 0.02) was used for contamination. After incubation, the optical density of the solution was measured. CHAs underwent sonication to release viable adherent bacteria. The number of attached bacteria was quantified by the colony forming units per square centimeter of CHA surface. RESULTS Antibiotic regimen groups B and C were more efficient than group A in eradicating gram-positive organisms adherent to the aortic wall (P < .001). Group C showed enhanced resistance against E coli compared with group A or B (P < .001), whereas group B appeared to be more effective against P aeruginosa (P < .001). With reference to each antibiotic regimen, ascending aortic tissue showed significantly less bacterial contamination with staphylococcal bacteria than valve grafts (P ≤ .01). CONCLUSIONS CHAs possess antibacterial activity despite long-term storage over 5 years. Antibiotic combinations applied during CHA processing have a significant influence on their infection resistance. Ascending aortic tissue shows a significantly enhanced bacterial resistance against staphylococcal bacteria compared with aortic valves.
Collapse
Affiliation(s)
- Viola Steffen
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany; CrossBIT Research Center for Biocompatibility and Immunology of Medical Implants, Hannover Medical School, Hannover, Germany
| | - Georg Marsch
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Karin Burgwitz
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany; CrossBIT Research Center for Biocompatibility and Immunology of Medical Implants, Hannover Medical School, Hannover, Germany
| | - Christian Kuehn
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany; CrossBIT Research Center for Biocompatibility and Immunology of Medical Implants, Hannover Medical School, Hannover, Germany
| | - Omke E Teebken
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
20
|
Seligson D, Berling S. Antibiotic-laden PMMA bead chains for the prevention of infection in compound fractures: current state of the art. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2015; 25:969-74. [DOI: 10.1007/s00590-015-1652-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/07/2015] [Indexed: 11/30/2022]
|
21
|
Pretreatment of pericardial patches with antibiotics does not alter patch healing in vivo. J Vasc Surg 2014; 63:1063-73. [PMID: 25454213 DOI: 10.1016/j.jvs.2014.09.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/26/2014] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pretreatment with antibiotics is commonly performed before surgical implantation of prosthetic materials. We previously showed that pericardial patches are infiltrated by macrophages and arterial stem cells after implantation into an artery. We hypothesized that antibiotic pretreatment would diminish the number of cells infiltrating into the patch, potentially affecting early neointimal formation. METHODS Bovine pericardial patches were pretreated with saline, bacitracin (500 U/mL), or cephalexin (10 mg/mL) for 30 minutes before implantation into the Wistar rat infrarenal aorta. Patches were retrieved on day 7 or day 30 and analyzed for histology and cell infiltration. Markers of proliferation, apoptosis, vascular cell identity, and M1 and M2 macrophage subtypes were examined using immunofluorescence and immunohistochemistry. Extracted proteins were analyzed by Western blot. RESULTS At day 7, pericardial patches pretreated with bacitracin or cephalexin showed similar amounts of neointimal thickening (P = .55) and cellular infiltration (P = .42) compared with control patches. Patches pretreated with antibiotics showed similar proliferation (P = .09) and apoptosis (P = .84) as control patches. The cell composition of the neointima in pretreated patches was similar to control patches, with a thin endothelial layer overlying a thin layer of smooth muscle cells (P = .45), and containing similar numbers of CD34-positive (P = .26) and vascular endothelial growth factor receptor 2-positive (P = .31) cells. Interestingly, within the body of the patch, there were fewer macrophages (P = .0003) and a trend towards fewer endothelial progenitor cells (P = .051). No M1 macrophages were found in or around any of the patches. M2 macrophages were present around the patches, and there was no difference in numbers of M2 macrophages surrounding control patches and patches pretreated with antibiotics (P = .24). There was no difference in neointimal thickness at day 30 between control patches and patches pretreated with antibiotics (P = .52). CONCLUSIONS Pretreatment of bovine pericardial patches with the antibiotics bacitracin or cephalexin has no detrimental effect on early patch healing, with similar neointimal thickness, cellular infiltration, and numbers of M2 macrophages compared with control patches. These results suggest that the host vessel response to patch angioplasty using pericardial patches is adaptive remodeling (eg, arterial healing).
Collapse
|
22
|
Comprehensive evaluation of fibrin glue as a local drug-delivery system—efficacy and safety of sustained release of vancomycin by fibrin glue against local methicillin-resistant Staphylococcus aureus infection. J Artif Organs 2013; 17:42-9. [DOI: 10.1007/s10047-013-0746-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 11/08/2013] [Indexed: 10/26/2022]
|
23
|
Nakaminami H, Suzuki Y, Suzuki R, Saito A, Motomura N, Noguchi N. In vitro antimicrobial activity of fibrin sealants containing antimicrobial agents. Surg Infect (Larchmt) 2013; 15:29-35. [PMID: 24283761 DOI: 10.1089/sur.2012.224] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Antimicrobial prophylaxis is required to prevent surgical site infections (SSIs). However, it is difficult to maintain prolonged antimicrobial activity in the surgical incision. Fibrin sealants are used primarily for hemostasis, suture support, or the adhesion of tissues. The aim of this study was to develop fibrin sealants that exhibit antimicrobial activity due to the addition of an antimicrobial agent. METHODS We determined the potencies and activities of cefazolin, ampicillin-sulbactam, vancomycin, teicoplanin, and arbekacin eluted from fibrin sealants. The antimicrobial activity was evaluated using methicillin-resistant Staphylococcus aureus (MRSA), multi-drug-resistant Pseudomonas aeruginosa (MDRP), and multi-drug-resistant Acinetobacter baumannii (MDRAB), which are the major pathogens responsible for hospital-acquired infections. RESULTS Each antimicrobial agent eluted continuously from the fibrin clots for approximately two weeks. All eluates from fibrin clots containing antimicrobial agents maintained antimicrobial activity against MRSA for at least 7 d. The eluates from fibrin clots containing ampicillin-sulbactam inhibited the growth of both MDRP and MDRAB for at least 5 d. CONCLUSION Our data suggest that the addition of an antimicrobial agent to fibrin sealants is a useful method to prevent SSIs caused by bacteria, including antimicrobial-resistant strains.
Collapse
Affiliation(s)
- Hidemasa Nakaminami
- 1 Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences , Hachioji, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Sasaki Y. The in vitro research of bacterial invasion of prosthetic vascular grafts: comparison of elastomer-sealed and gelatin-coated Dacron vascular grafts. Surg Today 2013; 44:1542-7. [PMID: 24142134 PMCID: PMC4097199 DOI: 10.1007/s00595-013-0761-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 08/20/2013] [Indexed: 11/29/2022]
Abstract
Purpose To investigate the process of bacterial invasion from the surface to inside prosthetic vascular grafts. Methods Elastomer-sealed Dacron vascular grafts (ESDVGs) and gelatin-coated Dacron vascular grafts (GCDVGs) were cut into 6-cm segments and placed in a U-shaped configuration on culture plates. Physiological saline was poured inside the grafts and a suspension of Pseudomonas aeruginosa was added to the outside. Samples taken from inside the grafts at nine time points for up to 60 h were spread on agar. Bacterial colonies were then analyzed. The grafts were also examined using scanning electron microscopy (SEM). Results Contaminated vascular graft models were produced in 18 ESDVGs (group T) and 12 GCDVGs (group G). The bacterial counts inside the vascular grafts in both groups increased over time. Bacterial colonies were confirmed in all samples from group G by 30 h, whereas bacteria appeared inside the grafts from group T at various times between 0 and 60 h. Bacteria were undetectable in one model from group T throughout the study. SEM revealed that the elastomeric membrane in the ESDVG was uneven. Conclusion Bacterial invasion of vascular grafts does not always occur immediately after contamination. ESDVGs may be more resistant to bacterial invasion as they have a thicker and evenly enriched elastomeric membrane.
Collapse
Affiliation(s)
- Yuki Sasaki
- Division of Cardiovascular Surgery, Department of Surgery, School of Medicine, Faculty of Medicine, Toho University, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan,
| |
Collapse
|
25
|
Zhang K, Liu T, Li JA, Chen JY, Wang J, Huang N. Surface modification of implanted cardiovascular metal stents: From antithrombosis and antirestenosis to endothelialization. J Biomed Mater Res A 2013; 102:588-609. [PMID: 23520056 DOI: 10.1002/jbm.a.34714] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Kun Zhang
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | | | | | | | | | | |
Collapse
|
26
|
Sedivy P, Spacek M, El Samman K, Belohlavek O, Mach T, Jindrak V, Rohn V, Stadler P. Endovascular Treatment of Infected Aortic Aneurysms. Eur J Vasc Endovasc Surg 2012; 44:385-94. [DOI: 10.1016/j.ejvs.2012.07.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 07/02/2012] [Indexed: 10/28/2022]
|
27
|
Bisdas T, Beckmann E, Marsch G, Burgwitz K, Wilhelmi M, Kuehn C, Haverich A, Teebken O. Prevention of Vascular Graft Infections with Antibiotic Graft Impregnation Prior to Implantation: In Vitro Comparison between Daptomycin, Rifampin and Nebacetin. Eur J Vasc Endovasc Surg 2012; 43:448-56. [DOI: 10.1016/j.ejvs.2011.12.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 12/28/2011] [Indexed: 10/14/2022]
|
28
|
Ulery BD, Nair LS, Laurencin CT. Biomedical Applications of Biodegradable Polymers. JOURNAL OF POLYMER SCIENCE. PART B, POLYMER PHYSICS 2011; 49:832-864. [PMID: 21769165 PMCID: PMC3136871 DOI: 10.1002/polb.22259] [Citation(s) in RCA: 1233] [Impact Index Per Article: 88.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Utilization of polymers as biomaterials has greatly impacted the advancement of modern medicine. Specifically, polymeric biomaterials that are biodegradable provide the significant advantage of being able to be broken down and removed after they have served their function. Applications are wide ranging with degradable polymers being used clinically as surgical sutures and implants. In order to fit functional demand, materials with desired physical, chemical, biological, biomechanical and degradation properties must be selected. Fortunately, a wide range of natural and synthetic degradable polymers has been investigated for biomedical applications with novel materials constantly being developed to meet new challenges. This review summarizes the most recent advances in the field over the past 4 years, specifically highlighting new and interesting discoveries in tissue engineering and drug delivery applications.
Collapse
Affiliation(s)
- Bret D. Ulery
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut 06030
- Institute of Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Lakshmi S. Nair
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut 06030
- Institute of Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030
- Department of Chemical, Materials & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06268
| | - Cato T. Laurencin
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut 06030
- Institute of Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030
- Department of Chemical, Materials & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06268
| |
Collapse
|