1
|
Li J, Li W, Wang S, Zheng H, Bao J, Wang Y, Jin H. The evaluation and molecular mechanisms of hepatotoxicity induced by trans-emodin dianthrones isolated from Polygonum multiflorum Thunb. in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119916. [PMID: 40319934 DOI: 10.1016/j.jep.2025.119916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/27/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonum multiflorum Thunb. (PM) is a traditional Chinese medicine with pharmacological activities such as anti-inflammatory, anti-oxidation and anti-aging. An increasing number of reports have documented liver injury associated with PM both domestically and internationally. In our previous study, we found that dianthrones from PM showed strong hepatotoxicity in the zebrafish model and may be potential toxicity markers. However, the in vitro hepatotoxicity and molecular mechanisms of dianthrones remain to be elucidated. AIM OF THE STUDY Trans-emodin dianthrones is a dianthrones compound isolated from PM. In this study, we focused on the hepatotoxicity and molecular mechanism of the trans-emodin dianthrones. MATERIALS AND METHODS HepG2 cells were used to evaluate hepatotoxicity and study the molecular mechanism of trans-emodin dianthrones in vitro. After administration of trans-emodin dianthrones, CCK-8 was used to detect cell viability, biochemical method was used to detect hepatotoxicity and antioxidant levels, reactive oxygen species (ROS) content and mitochondrial membrane potential (MMP) were analyzed by flow cytometry, the expression levels of JNK/Bax signaling pathway, PI3K/AKT/mTOR signaling pathway and apoptosis-related proteins were detected by Western blotting. Redox and mitochondria-related gene expression levels were detected by qPCR. RESULTS Trans-emodin dianthrones reduced cell viability and activated apoptosis and the process was regulated by JNK/Bax and PI3K/AKT/mTOR pathways. Trans-emodin dianthrones activates JNK and AKT, thereby initiating the ROS-driven apoptosis cascade and increasing ROS-mediated cell damage, highlighting the importance of ROS stress in PM-induced hepatotoxicity. CONCLUSION Trans-emodin dianthrones exhibited significant hepatotoxicity at the level of HepG2 cells, and its mechanism is related to inhibiting the antioxidant system, causing mitochondrial dysfunction and inducing apoptosis induced by JNK/Bax and PI3K/AKT/mTOR pathways.
Collapse
Affiliation(s)
- Jie Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Wanfang Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing, 100176, China; NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing, 102206, China
| | - Shuting Wang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Haiyun Zheng
- Science and Technology Collaborating Center for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jie Bao
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing, 100176, China; NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing, 102206, China
| | - Ying Wang
- National Institutes for Food and Drug Control, Beijing, 100050, China.
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing, 100176, China; NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing, 102206, China.
| |
Collapse
|
2
|
Zhu J, Shen H, Li G, Chen L, Kang P, Guo Y, Li Z. Theaflavin pretreatment ameliorates renal ischemia/reperfusion injury by attenuating apoptosis and oxidative stress in vivo and in vitro. Biomed Pharmacother 2024; 171:116114. [PMID: 38171247 DOI: 10.1016/j.biopha.2023.116114] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024] Open
Abstract
Oxidative stress-induced apoptosis is an important pathological process in renal ischemia/reperfusion injury (RIRI). Theaflavin (TF) is the main active pigment and polyphenol in black tea. It has been widely reported because of its biological activity that can reduce oxidative stress and protect against many diseases. Here, we explored the role of theaflavin in the pathological process of RIRI. In the present study, the RIRI model of 45 min ischemia and 24 h reperfusion was established in C57BL/6 J male mice, and theaflavin was used as an intervention. Compared with the RIRI group, the renal filtration function, renal tissue damage and antioxidant capacity of the theaflavin intervention group were significantly improved, while the level of apoptosis was reduced. TCMK-1 cells were incubated under hypoxia for 48 h and then reoxygenated for 6 h to simulate RIRI in vitro. The application of theaflavin significantly promoted the translocation of p53 from cytoplasm to nucleus, upregulated the expression of glutathione peroxidase 1 (GPx-1) in cells, and inhibited oxidative stress damage and apoptosis. Transfection with p53 siRNA can partially inhibit the effect of theaflavin. Thus, theaflavin exerted a protective effect against RIRI by inhibiting apoptosis and oxidative stress via regulating the p53/GPx-1 pathway. We conclude that theaflavin has the potential to become a candidate drug for the prevention and treatment of RIRI.
Collapse
Affiliation(s)
- Jianning Zhu
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Hao Shen
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Guohao Li
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Lin Chen
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Peng Kang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Yonglian Guo
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China.
| | - Zhongyuan Li
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China.
| |
Collapse
|
3
|
Chu C, Delić D, Alber J, Feger M, Xiong Y, Luo T, Hasan AA, Zeng S, Gaballa MMS, Chen X, Yin L, Klein T, Elitok S, Krämer BK, Föller M, Hocher B. Head-to-head comparison of two SGLT-2 inhibitors on AKI outcomes in a rat ischemia-reperfusion model. Biomed Pharmacother 2022; 153:113357. [PMID: 35792391 DOI: 10.1016/j.biopha.2022.113357] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022] Open
Abstract
The CREDENCE trial testing canagliflozin and the EMPA-REG OUTCOME trial testing empagliflozin suggest different effects on acute kidney injury (AKI). AKI diagnosis was mainly made based on changes of serum creatinine (sCr) although this also reflect mode of action of SGLT-2 inhibitors. We analyzed both compounds in a rat AKI model. The renal ischemia-reperfusion injury (I/R) model was used. Four groups were analyzed: sham, I/R+placebo, I/R+canagliflozin (30 mg/kg/day), I/R+ empagliflozin (10 mg/kg/day). Glucose excretion was comparable in both treatment groups indicating comparable SGLT-2 inhibition. Comparing GFR surrogate markers after I/R (sCr and blood urea nitrogen (BUN)), sCr peaked 24 h after I/R, BUN after 48 h, respectively, in the placebo treated I/R group. At all investigated time points after I/R sCr and BUN was higher in the I/R + canagliflozin group as compared to placebo treated rats, whereas the empagliflozin group did not differ from the placebo group. I/R led to tubular dilatation and necrosis. Empagliflozin was able to reduce that finding whereas canagliflozin had no effect. Treatment with empagliflozin also resulted in a significant reduction in an improved inflammatory score (p = 0.006). Renal expression of kidney injury molecule-1 (KIM-1) increased after I/R and empagliflozin but not canagliflozin significantly alleviated KIM-1 expression. I/R reduced urinary miR-26a excretion. Empagliflozin but not canagliflozin was able to restore normal levels of urinary miR-26a. This study in an AKI model confirmed safety data in the EMPA-REG OUTCOME trial suggesting that empagliflozin might reduce AKI risk. The empagliflozin effects on KIM-1 and miR-26a might indicate beneficial regulation of inflammation. These data should stimulate clinical studies with AKI risk as primary endpoint.
Collapse
Affiliation(s)
- Chang Chu
- Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany; Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Germany; The First Clinical Medical College of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Denis Delić
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Germany; Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397 Biberach, Germany
| | - Jana Alber
- University of Hohenheim, Department of Physiology, Stuttgart, Germany
| | - Martina Feger
- University of Hohenheim, Department of Physiology, Stuttgart, Germany
| | - Yingquan Xiong
- Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany; Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Germany
| | - Ting Luo
- The First Clinical Medical College of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, China; Nephrology Division, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ahmed A Hasan
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Germany; Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Egypt
| | - Shufei Zeng
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Germany
| | - Mohamed M S Gaballa
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Germany; Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Xin Chen
- Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany; Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Germany; The First Clinical Medical College of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lianghong Yin
- The First Clinical Medical College of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Thomas Klein
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397 Biberach, Germany
| | - Saban Elitok
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Germany; Klinikum Ernst von Bergmann gGmbH, Potsdam, Germany
| | - Bernhard K Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Germany; European Center for Angioscience, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Michael Föller
- University of Hohenheim, Department of Physiology, Stuttgart, Germany
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Germany; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China; IMD Institut für Medizinische Diagnostik Berlin-Potsdam GbR, Berlin, Germany.
| |
Collapse
|
4
|
Plants with Therapeutic Potential for Ischemic Acute Kidney Injury: A Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6807700. [PMID: 35656467 PMCID: PMC9152371 DOI: 10.1155/2022/6807700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/30/2022] [Indexed: 11/18/2022]
Abstract
Acute kidney injury (AKI) is a complex condition which has an intricate pathology mostly involving hemodynamic, inflammatory, and direct toxic effects at the cellular level with high morbidity and mortality ratios. Renal ischemic reperfusion injury (RIRI) is the main factor responsible for AKI, most often observed in different types of shock, kidney transplantation, sepsis, and postoperative procedures. The RIRI-induced AKI is accompanied by increased reactive oxygen species generation together with the activation of various inflammatory pathways. In this context, plant-derived medicines have shown encouraging nephroprotective properties. Evidence provided in this systemic review leads to the conclusion that plant-derived extracts and compounds exhibit nephroprotective action against renal ischemic reperfusion induced-AKI by increasing endogenous antioxidants and decreasing anti-inflammatory cytokines. However, there is no defined biomarker or target which can be used for treating AKI completely. These plant-derived extracts and compounds are only tested in selected transgenic animal models. To develop the results obtained into a therapeutic entity, one should apply them in proper vertebrate multitransgenic animal models prior to further validation in humans.
Collapse
|
5
|
The Role of Osthole on TGF- β-Induced Lung Epithelium Apoptosis Injury and Epithelial-Mesenchymal Transition-Mediated Airway Remodeling in Pediatric Asthma. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:7099097. [PMID: 35368934 PMCID: PMC8970801 DOI: 10.1155/2022/7099097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/19/2021] [Accepted: 01/19/2022] [Indexed: 11/18/2022]
Abstract
Osthole, a coumarin compound derived from Fructus Cnidii, exerts anti-inflammatory effects in an asthma model. But the effect of osthole on epithelial injury and epithelial-mesenchymal transition (EMT) in asthma remains unclear. 16HBE cells were incubated with TGF-β1 with or without osthole in vitro. Ovalbumin (OVA)-induced asthmatic mouse model was established in vivo. Cell counting kit-8 was carried out to evaluate the viability of 16HBE cells. The impact of osthole on TGF-β1-evoked cell apoptosis and EMT process was measured by flow cytometry based on Annexin V-FITC/PI staining, transwell assay, immunofluorescence, and Western blot. The regulatory role of osthole in TGF-β1/Smad and p38, ERK1/2, and JNK MAPK signaling was detected via Western blot. Osthole treatment significantly suppressed TGF-β1-induced 16HBE cell apoptosis, verified by a reduced percentage of apoptotic cells, decreased expression of proapoptotic proteins (cleaved-caspase3 and Bax), and enhanced antiapoptotic factor (Bcl-2) expression. In addition, the promotive impact of TGF-β1 on the migration of 16HBE cells was reversed by osthole, accompanied by elevated E-cadherin expression and reduced Snail and N-cadherin expression. The activation of the Smad2/3 and MAPKs pathway evoked by TGF-β1 was inhibited by osthole in 16HBE cells. We also found that osthole mitigated airway epithelium injury and subepithelial fibrosis in OVA-challenged asthmatic mice in vivo. Osthole could mitigate TGF-β1-induced epithelial cell injury and EMT process by suppressing the activation of MAPK and Smad2/3 pathways separately. Our present study showed a new insight into understanding the underlying mechanism of osthole injury on epithelium injury and subepithelial fibrosis in airway remodeling. Asthma, epithelial injury, epithelial-mesenchymal transition, and airway remodeling are the effects of osthole on airway remodeling.
Collapse
|
6
|
Zheng Y, Zhang N, Bai F. Gastrodin Pretreatment Alleviates Renal Ischemia-Reperfusion Injury. Urol Int 2022; 106:630-637. [PMID: 35051947 DOI: 10.1159/000520531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 10/24/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION This study aimed to investigate the possible effect of gastrodin in renal ischemia-reperfusion injury (IRI) and the mechanisms. METHODS Forty-eight male Sprague Dawley rats were randomly divided into 3 groups: sham-operated group, saline-treated IRI group, and gastrodin-treated IRI group. Gastrodin or 0.9% saline (300 mg/kg/day) was intragastrically administrated for 8 days before operation. We analyzed renal function and histological change. The malondialdehyde level, antioxidant enzymes' activities, and markers of inflammation and apoptosis were measured. Statistical analysis was performed using 1-way analysis of variance (ANOVA) or Kruskal-Wallis ANOVA on ranks. RESULTS Gastrodin pretreatment improved IRI-induced renal dysfunction and histologic injury. Mechanistically, gastrodin reversed the elevation of malondialdehyde level and the reduction of antioxidant enzymes' activities. Gastrodin also reduced the elevated myeloperoxidase activity, TNF-α and IL-1β levels, and the activation of p38 MAPK. Moreover, gastrodin-treated rats exhibited a dramatic reduction in renal tubular apoptosis, along with a decrease in caspase-3 activation and an increase in the Bcl-2/Bax ratio. CONCLUSION Gastrodin pretreatment may alleviate renal IRI via the amelioration of oxidative injury, inflammatory response, and renal tubular apoptosis.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Urology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nan Zhang
- Department of Urology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fuding Bai
- Department of Urology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Yu Y, Chen M, Yang S, Shao B, Chen L, Dou L, Gao J, Yang D. Osthole enhances the immunosuppressive effects of bone marrow-derived mesenchymal stem cells by promoting the Fas/FasL system. J Cell Mol Med 2021; 25:4835-4845. [PMID: 33749126 PMCID: PMC8107110 DOI: 10.1111/jcmm.16459] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Thanks to the advantages of easy harvesting and escape from immune rejection, autologous bone marrow-derived mesenchymal stem cells (BMSCs) are promising candidates for immunosuppressive therapy against inflammation and autoimmune diseases. However, the therapy is still challenging because the immunomodulatory properties of BMSCs are always impaired by immunopathogenesis in patients. Because of its reliable and extensive biological activities, osthole has received increased clinical attention. In this study, we found that BMSCs derived from osteoporosis donors were ineffective in cell therapy for experimental inflammatory colitis and osteoporosis. In vivo and in vitro tests showed that because of the down-regulation of Fas and FasL expression, the ability of osteoporotic BMSCs to induce T-cell apoptosis decreased. Through the application of osthole, we successfully restored the immunosuppressive ability of osteoporotic BMSCs and improved their treatment efficacy in experimental inflammatory colitis and osteoporosis. In addition, we found the immunomodulatory properties of BMSCs were enhanced after osthole pre-treatment. In this study, our data highlight a new approach of pharmacological modification (ie osthole) to improve the immune regulatory performance of BMSCs from a healthy or inflammatory microenvironment. The development of targeted strategies to enhance immunosuppressive therapy using BMSCs may be significantly improved by these findings.
Collapse
Affiliation(s)
- Yang Yu
- Northern Department of EndodonticsStomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Meng Chen
- Northern Department of EndodonticsStomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Shiyao Yang
- Northern Department of EndodonticsStomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Bingyi Shao
- Northern Department of EndodonticsStomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Liang Chen
- Northern Department of EndodonticsStomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Lei Dou
- Northern Department of EndodonticsStomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Jing Gao
- Northern Department of EndodonticsStomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Deqin Yang
- Northern Department of EndodonticsStomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| |
Collapse
|
8
|
Osthol Ameliorates Kidney Damage and Metabolic Syndrome Induced by a High-Fat/High-Sugar Diet. Int J Mol Sci 2021; 22:ijms22052431. [PMID: 33670975 PMCID: PMC7957708 DOI: 10.3390/ijms22052431] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
Excessive intake of fructose results in metabolic syndrome (MS) and kidney damage, partly mediated by its metabolism by fructokinase-C or ketohexokinase-C (KHK-C). Osthol has antioxidant properties, is capable of regulating adipogenesis, and inhibits KHK-C activity. Here, we examined the potential protective role of osthol in the development of kidney disease induced by a Western (high-fat/high-sugar) diet. Control rats fed with a high-fat/high-sugar diet were compared with two groups that also received two different doses of osthol (30 mg/kg/d or 40 mg/kg/d body weight BW). A fourth group served as a normal control and received regular chow. At the end of the follow-up, kidney function, metabolic markers, oxidative stress, and lipogenic enzymes were evaluated. The Western diet induced MS (hypertension, hyperglycemia, hypertriglyceridemia, obesity, hyperuricemia), a fall in the glomerular filtration rate, renal tubular damage, and increased oxidative stress in the kidney cortex, with increased expression of lipogenic enzymes and increased kidney KHK expression. Osthol treatment prevented the development of MS and ameliorated kidney damage by inhibiting KHK activity, preventing oxidative stress via nuclear factor erythroid 2-related factor (Nrf2) activation, and reducing renal lipotoxicity. These data suggest that the nutraceutical osthol might be an ancillary therapy to slow the progression of MS and kidney damage induced by a Western diet.
Collapse
|
9
|
Rashidpour S, Zahedipour F, Karimi G, Jamialahmadi K. Protective Effects of Osthole against Free Radical-Induced Hemolysis of Erythrocytes. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.65] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: Osthole, one of the most active components of Cnidium monnieri, has different pharmacological and biological effects such as boosting the immune system, reducing rheumatoid pain, hepatoprotective, and inhibitory effect on osteoporosis. Furthermore, it showed anti inflammatory, anti-cancer, and antioxidant properties. However, there is little information about the antioxidant effects of osthole using cell-based assays. In the current work, we used in vitro model of 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced hemolysis of erythrocytes to investigate the protective effects of osthole against oxidative damage of biological membranes. Methods: Erythrocytes were challenged with 2, 2ꞌ-azobis (2-aminopropane) dihydrochloride (AAPH) as a model oxidant in the presence and absence of osthole. The protective effects of osthole on lipid peroxidation, protein carbonyl oxidation, glutathione (GSH) content of erythrocytes were evaluated and compared with control samples. Results: It was found that osthole has protective effects on erythrocyte hemolysis induced by AAPH at different concentrations in a time-dependent manner. Osthole also suppressed lipid and protein oxidation as well as reductions in GSH content in a concentration and timedependent manner. Conclusion: Osthole showed protective effects against free radical-induced hemolysis in rat erythrocytes. Therefore, it can be considered as a supplement for the prevention or treatment of a variety of human health problems associated with oxidative stress. However, further investigations are required to illustrate other possible impacts of osthole on cells.
Collapse
Affiliation(s)
- Soroush Rashidpour
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zahedipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
miR-10a overexpression aggravates renal ischemia-reperfusion injury associated with decreased PIK3CA expression. BMC Nephrol 2020; 21:248. [PMID: 32611384 PMCID: PMC7329557 DOI: 10.1186/s12882-020-01898-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/18/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND To investigate the effect of miR-10a on renal tissues with ischemia reperfusion (I/R) injury in rats and to explore the underlying mechanisms of the effect of miR-10a on hypoxia-reoxygenation in HK-2 cells. METHODS MiR-10a level was measured in the renal tissues of rats with I/R rats using RT-PCR. In order to research the role of miR-10a in renal tissues, an miR-10 agonist and an miR-10a antagonist were used to treat I/R-injured rats. Levels of serum creatinine and blood urea nitrogen, renal histopathology, and levels of cell apoptosis were analyzed separately in renal tissues from the rats. Phosphatidylinositol 3-kinase (PI3K)/Akt pathway related proteins were measured by Western blotting. In addition, HK-2 cells were cultured in order to study the mechanism of action of miR-10a in the hypoxia-reoxygenation model being studied. Finally, the dual luciferase reporter gene assay was used to confirm that the PI3K p100 catalytic subunit α (PIK3CA) gene was targeted by miR-10a. RESULTS After renal I/R injury in rats, miR-10a expression increased significantly (p < 0.05). Injection of miR-10a agonist significantly aggravated the renal injury and raised the level of cell apoptosis in the renal tissues of I/R-injured rats (p < 0.05). However, administration of miR-10a antagonist led to obvious improvement of the renal injury, decreased renal cell apoptosis, and inhibited PI3K/Akt pathway activity (p < 0.05). In in vitro experiments, the negative relationship between PIK3CA and miR-10a levels was confirmed. Furthermore, overexpression of miR-10a significantly decreased the proliferation of HK-2 cells, and increased cell apoptosis via up-regulation of the PI3K/Akt pathway (p < 0.05). CONCLUSION The aggravation of renal I/R injury by miR-10a was associated with a decrease in the activity of PIK3CA/PI3K/Akt pathway.
Collapse
|
11
|
Xiao H, Wang Y, Wu Y, Li H, Liang X, Lin Y, Kong L, Ni Y, Deng Y, Li Y, Li W, Yang J. Osthole ameliorates cognitive impairments via augmenting neuronal population in APP / PS1 transgenic mice. Neurosci Res 2020; 164:33-45. [PMID: 32302734 DOI: 10.1016/j.neures.2020.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with notable factors of dysfunction in multiple neurological changes, encompassing neuronal loss in the frontal cortex and hippocampal regions. Dysfunction of proliferation and self-renewal of neural stem cells (NSCs) was observed in AD patients and animals. Thereby, mobilizing endogenous neurogenesis by pharmacological agents would provide a promising route for neurodegeneration. Osthole (Ost), a natural coumarin derivative, has been reported to exert extensive neuroprotective effects in AD. However, whether ost can facilitate endogenous neurogenesis against AD in vivo is still unknown. In this study, by using Morris water maze (MWM) test, hematoxylin-eosin (HE) staining, Nissl staining, immunofluorescence analysis and western blot, we demonstrated that oral administration of ost could improve the learning and memory function, inhibit neuronal apoptosis, elevate the expression of glial cell line derived neurotrophic factor (GDNF), synaptophysin (SYP) and postsynaptic density protein 95 (PSD95). Moreover, ost could remarkably enhance proliferation of NSCs and increase the amount of mature neurons in APP/PS1 transgenic mice. Together, our findings demonstrated that ost possessed the ability of promoting endogenous neurogenesis and ost could be served as a plausible agent to reverse or slow down the progress of AD.
Collapse
Affiliation(s)
- Honghe Xiao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| | - Yuying Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yutong Wu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hongyan Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Xicai Liang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yin Lin
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yingnan Ni
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yan Deng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yan Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Wanyi Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Jingxian Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| |
Collapse
|
12
|
Kang Y, Li Y, Wen H, Zhu J, Zheng J, Feng Z. Prevention of renal ischemia and reperfusion injury by penehyclidine hydrochloride through autophagy activation. Mol Med Rep 2020; 21:2182-2192. [PMID: 32186764 PMCID: PMC7115187 DOI: 10.3892/mmr.2020.11024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/29/2019] [Indexed: 11/06/2022] Open
Abstract
Penehyclidine hydrochloride (PHC) suppresses renal ischemia and reperfusion (I/R) injury (IRI); however, the underlying mechanism of action that achieves this function remains largely unknown. The present study aimed to investigate the potential role of autophagy in PHC‑induced suppression of renal IRI, as well as the involvement of cell proliferation and apoptosis. A rat IRI model and a cellular hypoxia/oxygenation (H/R) model were established; PHC, 3‑methyladenine (3‑MA) and rapamycin (Rapa) were administered to the IRI model rats prior to I/R induction and to H/R cells following reperfusion. Serum creatinine was measured using a biochemistry analyzer, whereas aspartate aminotransferase (ASAT) and alanine aminotransferase (ALAT) expression levels were detected using ELISA kits. Renal tissue injury was evaluated by histological examination. In addition, microtubule‑associated protein light chain 3B (LC3B) expression, autophagosome formation, cell proliferation and apoptosis were detected in the cellular H/R model. The results demonstrated that I/R induced renal injury in IRI model rats, upregulated serum creatinine, ALAT and ASAT expression levels, and increased autophagic processes. In contrast, pretreatment with PHC or Rapa significantly prevented these I/R‑induced changes, whereas the administration of 3‑MA enhanced I/R‑induced injuries through suppressing autophagy. PHC and Rapa increased LC3B and Beclin‑1 expression levels, but decreased sequestome 1 (p62) expression in the cellular H/R model, whereas 3‑MA prevented these PHC‑induced changes. PHC and Rapa promoted proliferation and autophagy in the cellular H/R model; these effects were accompanied by increased expression levels of LC3B and Beclin‑1, and reduced p62 expression levels, whereas these levels were inhibited by 3‑MA. Furthermore, PHC and Rapa inhibited apoptosis in the cellular H/R model through increasing Bcl‑2 expression levels, and suppressing Bax and caspase‑3 expression levels; the opposite effect was induced by 3‑MA. In conclusion, PHC suppressed renal IRI through the induction of autophagy, which in turn promoted proliferation and suppressed apoptosis in renal cells.
Collapse
Affiliation(s)
- Yuqing Kang
- Department of Anesthesiology, Jinshan Branch Hospital of Shanghai Sixth People's Hospital, Shanghai 201599, P.R. China
| | - Yuebing Li
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Heng Wen
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Junfeng Zhu
- Department of Anesthesiology, Jinshan Branch Hospital of Shanghai Sixth People's Hospital, Shanghai 201599, P.R. China
| | - Jiangbo Zheng
- Department of Anesthesiology, Jinshan Branch Hospital of Shanghai Sixth People's Hospital, Shanghai 201599, P.R. China
| | - Zhaoming Feng
- Department of Anesthesiology, Jinshan Branch Hospital of Shanghai Sixth People's Hospital, Shanghai 201599, P.R. China
| |
Collapse
|
13
|
Yu H, Zhu D, Liu P, Yang Q, Gao J, Huang Y, Chen Y, Gao Y, Zhang C. Osthole stimulates bone formation, drives vascularization and retards adipogenesis to alleviate alcohol-induced osteonecrosis of the femoral head. J Cell Mol Med 2020; 24:4439-4451. [PMID: 32135036 PMCID: PMC7176840 DOI: 10.1111/jcmm.15103] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/21/2020] [Accepted: 02/12/2020] [Indexed: 12/21/2022] Open
Abstract
Characteristic pathological changes in osteonecrosis of the femoral head (ONFH) include reduced osteogenic differentiation of bone mesenchymal stem cells (BMSCs), impaired osseous circulation and increased intramedullary adipocytes deposition. Osthole is a bioactive derivative from coumarin with a wide range of pharmacotherapeutic effects. The aim of this study was to unveil the potential protective role of osthole in alcohol‐induced ONFH. In vitro, ethanol (50 mmol/L) remarkably decreased the proliferation and osteogenic differentiation of BMSCs and impaired the proliferation and tube formation capacity of human umbilical vein endothelial cell (HUVECs), whereas it substantially promoted the adipogenic differentiation of BMSCs. However, osthole could reverse the effects of ethanol on osteogenesis via modulating Wnt/β‐catenin pathway, stimulate vasculogenesis and counteract adipogenesis. In vivo, the protective role of osthole was confirmed in the well‐constructed rat model of ethanol‐induced ONFH, demonstrated by a cascade of radiographical and pathological investigations including micro‐CT scanning, haematoxylin‐eosin staining, TdT‐mediated dUTP nick end labelling, immunohistochemical staining and fluorochrome labelling. Taken together, for the first time, osthole was demonstrated to rescue the ethanol‐induced ONFH via promoting bone formation, driving vascularization and retarding adipogenesis.
Collapse
Affiliation(s)
- Hongping Yu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Daoyu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Pei Liu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qianhao Yang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Junjie Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yigang Huang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yixuan Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
14
|
Abstract
Acute kidney injury, which is caused by renal ischemia-reperfusion injury (IRI), occurs
in several clinical situations and causes severe renal damage. There is no effective
therapeutic agent available for renal IRI at present. In this study, we performed an
experiment based on an in vivo murine model of renal IRI to examine the
effect of carnosol. Thirty Sprague-Dawley rats were randomized into three groups (10 rats
in each group): the sham, IRI, and carnosol groups. Rats in the carnosol group were
injected intravenously with 3 mg/kg of carnosol, and those in the sham and IRI groups were
injected intravenously with 10% dimethyl sulfoxide 1 h before ischemia. Rats were
sacrificed after 24 h of reperfusion. The blood and kidneys were harvested, renal function
was assessed, and histologic evaluation was performed to analyze renal injury. A renal
myeloperoxidase activity assay, in-situ apoptosis examination,
enzyme-linked immunosorbent assay, immunohistochemical assay, and western blot were also
performed. Carnosol pretreatment significantly reduced renal dysfunction and histologic
damage induced by renal IRI. Carnosol pretreatment suppressed renal inflammatory cell
infiltration and pro-inflammatory cytokine expression. In addition, carnosol markedly
inhibited apoptotic tubular cell death, caspase-3 activation, and activation of the p38
pathway. Carnosol pretreatment protects rats against renal IRI by inhibiting inflammation
and apoptosis. Although future investigation is needed, carnosol may be a potential
therapeutic agent for preventing renal IRI.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Urology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Yong Zhang
- Department of Urology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Yichun Zheng
- Department of Urology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Nan Zhang
- Department of Urology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| |
Collapse
|
15
|
Khairy H, Saleh H, Badr AM, Marie MAS. Therapeutic efficacy of osthole against dinitrobenzene sulphonic acid induced-colitis in rats. Biomed Pharmacother 2018; 100:42-51. [DOI: 10.1016/j.biopha.2018.01.104] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/16/2018] [Accepted: 01/24/2018] [Indexed: 02/07/2023] Open
|
16
|
Osthole protects sepsis-induced acute kidney injury via down-regulating NF-κB signal pathway. Oncotarget 2018; 8:4796-4813. [PMID: 27902475 PMCID: PMC5354872 DOI: 10.18632/oncotarget.13592] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/08/2016] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE As a natural coumarin derivative from the Cnidium monnieri(L)Cusson fruit, osthole consists of 7-methoxy-8-isopentenoxy-coumarin. The purpose of this research is to study the mechanism and effect of osthole on sepsis-induced acute kidney injury. EXPERIMENTAL APPROACH The protective effect of osthole on mouse macrophage RAW 264.7 and HK-2 cells induced by LPS in vitro and on acute kidney injury model induced by sepsis and established by puncture and cecal ligation (CLP) in vivo were tested. KEY RESULTS Osthole (20, 40 mg·kg−1) group can greatly attenuate the changes of the score and kidney histopathology damage and enhance the survival time of septic mice. After the CLP surgery, degrees of SCr and BUN related to kidney injury were upregulated. The concentrations of SCr and BUN can be greatly reduced by treatment with osthole. Furthermore, osthole could increase bacterial killing activity and phagocytic activities of macrophages impaired after CLP partly and attenuate blood bacterial counts and leukocyte infiltration markedly. Furthermore, osthole can suppress NF-κB signal pathway through the inhibition of the nuclear translocation by regulating phosphorylation of IκBα and IKKβ and hinder the production of chemoattractant (MCP-1 and IL-8) and proinflammatory cytokines (TNF-α, IL-1β and IL-6). CONCLUSION AND IMPLICATIONS Mainly because of its immunomodulatory properties and anti-inflammatory activity, which might be closely associated with suppression of the stimulation of the NF-κB signal pathway, osthole has protective effect on sepsis-induced kidney injury. It can be seen from such evidence that osthole can be potentially applied in the treatment of acute kidney injury.
Collapse
|
17
|
Kappa-opioid receptor agonist U50448H protects against renal ischemia-reperfusion injury in rats via activating the PI3K/Akt signaling pathway. Acta Pharmacol Sin 2018; 39:97-106. [PMID: 28770825 DOI: 10.1038/aps.2017.51] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/05/2017] [Indexed: 02/06/2023]
Abstract
Renal ischemia-reperfusion injury (IRI) is regarded as a leading cause of acute kidney failure and renal dysfunction. Previous studies show that kappa opioid receptor (KOR) agonists can attenuate IRI in cardiomycytes and neuronal cells. In this study we explored the effects of a KOR agonist on renal IRI and the underlying mechanisms in vivo and in vitro. An IRI model was established in SD rats, which were intravenously pretreated with a KOR agonist U50448H (1 mg/kg), a KOR antagonist Nor-BNI (2 mg/kg) followed by U50448H (1 mg/kg), or the PI3K inhibitor wortmannin (1.4 mg/kg) followed by U50448H (1 mg/kg). U50448H pretreatment significantly decreased the serum levels of creatinine (Cr) and BUN, the renal tubular injury scores and the apoptotic index (AI) in IRI model rats. Furthermore, U50448H significantly increased SOD activity and NO levels, and reduced the MDA levels in the kidney tissues of IRI model rats. Moreover, U50448H significantly increased the phosphorylation of Akt, eNOS and PI3K in the kidney tissues of IRI model rats. All the beneficial effects of U50448H were blocked by Nor-BNI or wortmannin pre-administered. Similar results were observed in vitro in renal tubular epithelial NRK-52E cells subjected to a hypoxia-reoxygenation (HR) procedure. Our results demonstrate that the KOR agonist U50448H protects against renal IRI via activating the PI3K/Akt signaling pathway.
Collapse
|
18
|
Luteolin Treatment Protects against Renal Ischemia-Reperfusion Injury in Rats. Mediators Inflamm 2017; 2017:9783893. [PMID: 29358852 PMCID: PMC5735687 DOI: 10.1155/2017/9783893] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/28/2017] [Accepted: 10/11/2017] [Indexed: 01/07/2023] Open
Abstract
Renal ischemia-reperfusion (I/R) injury is a common but severe scientific problem. Luteolin has great anti-inflammatory and antioxidant effects. In this study, we studied the effect of luteolin on renal I/R injury in rats. Intragastric administration of luteolin or saline was performed in Sprague-Dawley rats before (40 mg/kg for three days) and after (one day) renal I/R modeling. Kidney and blood samples were harvested to detect the severity of renal injury 24 hours after operation. The results showed that luteolin-treated rats exhibited milder histomorphological changes with lower scores of renal histological lesions; lower blood urea nitrogen and creatinine levels; lower renal malondialdehyde (MDA), 8-oxo-deoxyguanosine (8-OHdG), and myeloperoxidase (MPO) levels; and higher superoxide dismutase (SOD) and catalase (CAT) activities in the kidney. Luteolin attenuated the increased levels of serum and renal tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, renal high mobility group box-1 (HMGB1), and nuclear factor kappa β (NF-κB) expression levels in I/R rats. Furthermore, luteolin treatment significantly reduced renal cell apoptosis and endoplasmic reticulum (ER) stress caused by renal I/R injury. In conclusion, luteolin improved renal function in I/R rats by reducing oxidative stress, neutrophil infiltration, inflammation, renal cell apoptosis, and expression of HMGB1 and NF-κB, and ER stress.
Collapse
|
19
|
Li WF, Yang K, Zhu P, Zhao HQ, Song YH, Liu KC, Huang WF. Genistein Ameliorates Ischemia/Reperfusion-Induced Renal Injury in a SIRT1-Dependent Manner. Nutrients 2017; 9:nu9040403. [PMID: 28425936 PMCID: PMC5409742 DOI: 10.3390/nu9040403] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/12/2017] [Accepted: 04/17/2017] [Indexed: 12/29/2022] Open
Abstract
Renal ischemia/reperfusion (I/R) injury continues to be a complicated situation in clinical practice. Genistein, the main isoflavone found in soy products, is known to possess a wide spectrum of biochemical and pharmacological activities. However, the protective effect of genistein on renal I/R injury has not been well investigated. In the current study, we explore whether genistein exhibits its renal-protective effects through SIRT1 (Sirtuin 1) in I/R-induced mice model. We found the treatment of genistein significantly reduced renal I/R-induced cell death, simultaneously stimulating renal cell proliferation. Meanwhile, SIRT1 expression was up-regulated following the administration of genistein in renal region. Furthermore, pharmacological inhibition or shRNA-mediated depletion of SIRT1 significantly reversed the protective effect of genistein on renal dysfunction, cellular damage, apoptosis, and proliferation following I/R injury, suggesting an indispensible role of the increased SIRT1 expression and activity in this process. Meanwhile, the reduced p53 and p21 expression and increased PCNA (Proliferating Cell Nuclear Antigen) expression were blocked after the depletion of SIRT1 compared with the genistein treatment group in the renal I/R process. Hence, our results provided further experimental basis for the potential use of genistein for the treatment of kidney disease with deficiency of SIRT1 activity.
Collapse
Affiliation(s)
- Wei-Fang Li
- Medical College, China Three Gorges University, Yichang 443002, China.
| | - Kang Yang
- Medical College, China Three Gorges University, Yichang 443002, China.
| | - Ping Zhu
- Department of Medicine, the First College of Clinical Medical Science, China Three Gorges University, Yichang 443002, China.
| | - Hong-Qian Zhao
- Medical College, China Three Gorges University, Yichang 443002, China.
| | - Yin-Hong Song
- Medical College, China Three Gorges University, Yichang 443002, China.
| | - Kuan-Can Liu
- Institute for Laboratory Medicine, Fuzhou General Hospital, PLA, Fuzhou 350025, China.
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.
- Dongfang Hospital, Xiamen University, Fuzhou 350025, China.
| | - Wei-Feng Huang
- Medical College, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
20
|
Protective role of fructokinase blockade in the pathogenesis of acute kidney injury in mice. Nat Commun 2017; 8:14181. [PMID: 28194018 PMCID: PMC5316807 DOI: 10.1038/ncomms14181] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 12/07/2016] [Indexed: 01/10/2023] Open
Abstract
Acute kidney injury is associated with high mortality, especially in intensive care unit patients. The polyol pathway is a metabolic route able to convert glucose into fructose. Here we show the detrimental role of endogenous fructose production by the polyol pathway and its metabolism through fructokinase in the pathogenesis of ischaemic acute kidney injury (iAKI). Consistent with elevated urinary fructose in AKI patients, mice undergoing iAKI show significant polyol pathway activation in the kidney cortex characterized by high levels of aldose reductase, sorbitol and endogenous fructose. Wild type but not fructokinase knockout animals demonstrate severe kidney injury associated with ATP depletion, elevated uric acid, oxidative stress and inflammation. Interestingly, both the renal injury and dysfunction in wild-type mice undergoing iAKI is significantly ameliorated when exposed to luteolin, a recently discovered fructokinase inhibitor. This study demonstrates a role for fructokinase and endogenous fructose as mediators of acute renal disease. The polyol pathway, which converts glucose into sorbitol and fructose, is active in chronic conditions like hepatic steatosis and chronic kidney disease. Here, Andres-Hernando et al. show that fructose production promotes renal injury and fructokinase inhibition protects against kidney damage during ischaemic acute kidney disease.
Collapse
|
21
|
Yan YH, Li SH, Li HY, Lin Y, Yang JX. Osthole Protects Bone Marrow-Derived Neural Stem Cells from Oxidative Damage through PI3K/Akt-1 Pathway. Neurochem Res 2016; 42:398-405. [DOI: 10.1007/s11064-016-2082-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/30/2016] [Accepted: 10/06/2016] [Indexed: 12/13/2022]
|
22
|
Zhao L, Xu L, Tao X, Han X, Yin L, Qi Y, Peng J. Protective Effect of the Total Flavonoids from Rosa laevigata Michx Fruit on Renal Ischemia-Reperfusion Injury through Suppression of Oxidative Stress and Inflammation. Molecules 2016; 21:952. [PMID: 27455216 PMCID: PMC6272996 DOI: 10.3390/molecules21070952] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/09/2016] [Accepted: 07/19/2016] [Indexed: 01/20/2023] Open
Abstract
Renal ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury (AKI). Our previous studies have shown that the total flavonoids (TFs) from Rosa laevigata Michx fruit has various activities, however, there were no papers reporting the role of the TFs against renal IRI. In the present work, a hypoxia/reoxygenation (H/R) model in NRK-52E cells and ischemia-reperfusion model in rats were used. The results showed that the TFs significantly attenuated cell injury and markedly decreased serum creatinine (Cr) and blood urea nitrogen (BUN) levels in rats. Further investigation revealed that the TFs markedly decreased the levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH) and glutathione peroxidase (GSH-Px) and intracellular reactive oxygen species (ROS), up-regulated the levels of silent information regulator factor 2-related enzyme 1 (Sirt1), nuclear factor erythroid 2-related factor-2 (Nrf2) and heme oxygenase-1 (HO-1), down-regulated the levels of Kelch like ECH-associated protein-1 (Keap1) and the nuclear translocation of nuclear factor-κBp65 (NF-κBp65), and decreased the mRNA levels of interleukine-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Furthermore, inhibiting Sirt1 by siRNA showed that the role of the natural product in protecting renal IRI was significantly attenuated, suggesting that the effect of the extract against renal IRI depended on Sirt1. Taken together, the TFs has significantly nephroprotective effect against IRI by affecting Sirt1/Nrf2/NF-κB signaling pathway, which should be developed as a new therapeutic agent or food additives to treat acute kidney injury in the future.
Collapse
Affiliation(s)
- Lisha Zhao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Xufeng Tao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Xu Han
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| |
Collapse
|
23
|
WITHDRAWN: Osthole attenuated myocardial ischemia/reperfusion via a mitochondrial apoptosis. Curr Res Transl Med 2016. [DOI: 10.1016/j.retram.2016.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Li K, Ding D, Zhang M. Neuroprotection of Osthole against Cerebral Ischemia/Reperfusion Injury through an Anti-apoptotic Pathway in Rats. Biol Pharm Bull 2016; 39:336-42. [DOI: 10.1248/bpb.b15-00699] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kang Li
- Department of Radiology, First Affiliated Hospital of Xi’an Jiaotong University
| | - Dun Ding
- Department of Radiology, First Affiliated Hospital of Xi’an Jiaotong University
| | - Ming Zhang
- Department of Radiology, First Affiliated Hospital of Xi’an Jiaotong University
| |
Collapse
|
25
|
Tsai YF, Yu HP, Chung PJ, Leu YL, Kuo LM, Chen CY, Hwang TL. Osthol attenuates neutrophilic oxidative stress and hemorrhagic shock-induced lung injury via inhibition of phosphodiesterase 4. Free Radic Biol Med 2015; 89:387-400. [PMID: 26432981 DOI: 10.1016/j.freeradbiomed.2015.08.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 10/23/2022]
Abstract
Oxidative stress caused by neutrophils is an important pathogenic factor in trauma/hemorrhagic (T/H)-induced acute lung injury (ALI). Osthol, a natural coumarin found in traditional medicinal plants, has therapeutic potential in various diseases. However, the pharmacological effects of osthol in human neutrophils and its molecular mechanism of action remain elusive. In this study, our data showed that osthol potently inhibited the production of superoxide anion (O2(•-)) and reactive oxidants derived therefrom as well as expression of CD11b in N-formylmethionylleucylphenylalanine (FMLP)-activated human neutrophils. However, osthol inhibited neutrophil degranulation only slightly and it failed to inhibit the activity of subcellular NADPH oxidase. FMLP-induced phosphorylation of extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) was inhibited by osthol. Notably, osthol increased the cAMP concentration and protein kinase A (PKA) activity in activated neutrophils. PKA inhibitors reversed the inhibitory effects of osthol, suggesting that these are mediated through cAMP/PKA-dependent inhibition of ERK and Akt activation. Furthermore, the activity of cAMP-specific phosphodiesterase (PDE) 4, but not PDE3 or PDE7, was significantly reduced by osthol. In addition, osthol reduced myeloperoxidase activity and pulmonary edema in rats subjected to T/H shock. In conclusion, our data suggest that osthol has effective anti-inflammatory activity in human neutrophils through the suppression of PDE4 and protects significantly against T/H shock-induced ALI in rats. Osthol may have potential for future clinical application as a novel adjunct therapy to treat lung inflammation caused by adverse circulatory conditions.
Collapse
Affiliation(s)
- Yung-Fong Tsai
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Huang-Ping Yu
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Pei-Jen Chung
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Yann-Lii Leu
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Liang-Mou Kuo
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of General Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Chun-Yu Chen
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; Department of Cosmetic Science and Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
| |
Collapse
|
26
|
Duan J, Yang Y, Liu H, Dou PC, Tan SY. Osthole ameliorates acute myocardial infarction in rats by decreasing the expression of inflammatory-related cytokines, diminishing MMP-2 expression and activating p-ERK. Int J Mol Med 2015; 37:207-16. [PMID: 26549213 DOI: 10.3892/ijmm.2015.2402] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/23/2015] [Indexed: 11/06/2022] Open
Abstract
Osthole, the active constituent of Cnidium monnieri extracts, has been shown to have a diverse range of pharmacological properties. In the present study, we aimed to evaluate the cardioprotective effects of osthole in a rat model of acute myocardial infarction (AMI). The rats with AMI were treated with 1, 3 and 10 mg/kg of osthole or the vehicle for 4 weeks. The infarct size of the rats with AMI was measured, and casein kinase (CK), the MB isoenzyme of creatine kinase (CK-MB), lactate dehydrogenase (LDH) and cardiac troponin T (cTnT) activities in the rats with AMI were analyzed using commercially available kits. The nuclear factor-κB (NF-κB), tumor necrosis factor‑α (TNF-α), interleukin (IL)-1β and IL-6 levels in whole blood from rats with AMI were also detected using commercially available kits. The levels of Toll-like receptors 2/4 (TLR2/4) and nucleotide-binding oligomerization domain-containing protein 1/2 (NOD1/2) were also detected by RT-qPCR. Moreover, the protein expression levels of endothelial nitric oxide synthase (eNOS) and mitogen-activated protein kinase (MAPK) cascades, including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38, cyclooxygenase-2 (COX-2), as well as matrix metalloproteinase-2 (MMP-2) were all assayed by western blot analysis. Our results revealed that osthole markedly reduced the infarct size, and the levels of CK, CK-MB, LDH and cTnT in the rats with AMI, and that these cardioprotective effects may be associated with the inhibition of inflammatory reactions, the reduction in MMP-2 activity and the activation of MAPK cascades.
Collapse
Affiliation(s)
- Juan Duan
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yu Yang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Hong Liu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Peng-Cheng Dou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Sheng-Yu Tan
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
27
|
Qi M, Zheng L, Qi Y, Han X, Xu Y, Xu L, Yin L, Wang C, Zhao Y, Sun H, Liu K, Peng J. Dioscin attenuates renal ischemia/reperfusion injury by inhibiting the TLR4/MyD88 signaling pathway via up-regulation of HSP70. Pharmacol Res 2015; 100:341-352. [PMID: 26348276 DOI: 10.1016/j.phrs.2015.08.025] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 11/21/2022]
Abstract
We previously reported the effect of dioscin against hepatic ischemia/reperfusion injury (IRI) in rats. However, little is known concerning the role of dioscin in renal IRI. In the present study, rats were subjected to IRI and dioscin was intragastrically administered for seven consecutive days before surgery. In vitro models of hypoxia/reoxygenation were developed in NRK-52E and HK-2 cells, which were prophylactically treated with or without dioscin. The results showed that dioscin significantly decreased serum BUN and Cr levels, and markedly attenuated cell injury. Mechanistic studies showed that dioscin significantly increased HSP70 levels, decreased the levels of TLR4, MyD88, TRAF6, COX-2, JNK, ERK and p38 MAPK phosphorylation, suppressed the nuclear translocation of NF-κB and HMGB1, and subsequently decreased the mRNA levels of IL-1β, IL-6, TNF-α, ICAM-1 and IFN-γ. Moreover, HSP70 siRNA or TLR4 DNA reversed the nephroprotective effects of dioscin, while dioscin still significantly down-regulated the TLR4 signaling pathway. Furthermore, by inhibiting MyD88 with ST2825 (a MyD88 inhibitor), renal IRI was significantly attenuated, suggesting that the effect of dioscin against renal IRI depended on MyD88. Our results suggested that dioscin had a potent effect against renal IRI through suppressing the TLR4/MyD88 signaling pathway by up-regulating HSP70. These data provide new insights for investigating the natural product with the nephroprotective effect against IRI, which should be developed as a new therapeutic agent for the treatment of acute kidney injury in the future.
Collapse
Affiliation(s)
- Meng Qi
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lingli Zheng
- Department of Pharmaceuticals, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Xu Han
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Youwei Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Changyuan Wang
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yanyan Zhao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Huijun Sun
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Kexin Liu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| |
Collapse
|
28
|
Li YM, Jia M, Li HQ, Zhang ND, Wen X, Rahman K, Zhang QY, Qin LP. Cnidium monnieri: A Review of Traditional Uses, Phytochemical and Ethnopharmacological Properties. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:835-77. [PMID: 26243582 DOI: 10.1142/s0192415x15500500] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cnidium monnieri (L.) Cuss., an annual plant of the Umbelliferae species is one of the most widely used traditional herbal medicines and its fruits have been used to treat a variety of diseases in China, Vietnam, and Japan. The aim of this review is to provide an up-to-date and comprehensive analysis of the botany, traditional uses, phytochemistry, pharmacology, toxicity and contraindication of Cnidium monnieri (L.) Cuss. and to provide future directions of research on this plant. To date, 350 compounds have been isolated and identified from Cnidium monnieri (L.) Cuss., including the main active constituent, coumarins. In vitro and in vivo studies suggest that osthole and other coumarin compounds possess wide range of pharmacological properties for the treatment of female genitals, male impotence, frigidity, skin-related diseases, and exhibit strong antipruritic, anti-allergic, antidermatophytic, antibacterial, antifungal, anti-osteoporotic effects. Although coumarins have been identified as the main active constituents responsible for the observed pharmacological effects, the molecular mechanisms of their actions are still unknown. Therefore, further studies are still required to reveal the structure-activity relationship of these active constituents. In addition, toxicological and clinical studies are also required to provide further data for pharmaceutical use.
Collapse
Affiliation(s)
- Yi-Min Li
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Min Jia
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Hua-Qiang Li
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.,Department of Botany, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Nai-Dan Zhang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xian Wen
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.,Department of Chemistry of Medicinal Plants, College of Life Science, Inner Mongolia University, Inner Mongolia 010020, China
| | - Khalid Rahman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Qiao-Yan Zhang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lu-Ping Qin
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
29
|
Liu YW, Chiu YT, Fu SL, Huang YT. Osthole ameliorates hepatic fibrosis and inhibits hepatic stellate cell activation. J Biomed Sci 2015; 22:63. [PMID: 26231226 PMCID: PMC4522080 DOI: 10.1186/s12929-015-0168-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/16/2015] [Indexed: 12/15/2022] Open
Abstract
Background Hepatic fibrosis is a dynamic process which ultimately leads to cirrhosis in almost patients with chronic hepatic injury. However, progressive fibrosis is a reversible scarring response. Activation of hepatic stellate cells (HSCs) is the prevailing process during hepatic fibrosis. Osthole is an active component majorly contained in the fruit of Cnidium monnieri (L.) Cusson. This present study investigated the therapeutic effects of osthole on rat liver fibrosis and HSC activation. Results We established the thioacetamide (TAA)-model of Sprague–Dawley (SD) rats to induce hepatic fibrosis. Rats were divided into three groups: control, TAA, and TAA + osthole (10 mg/kg). In vivo, osthole significantly reduced liver injury by diminishing levels of plasma AST and ALT, improving histological architecture, decreasing collagen and α-SMA accumulation, and improving hepatic fibrosis scores. Additionally, osthole reduced the expression of fibrosis-related genes significantly. Osthole also suppressed the production of fibrosis-related cytokines and chemokines. Moreover, nuclear translocation of p65 was significantly suppressed in osthole-treated liver. Osthole also ameliorated TAA-induced injury through reducing cellular oxidation. Osthole showed inhibitory effects in inflammation-related genes and chemokines production as well. In vitro, we assessed osthole effects in activated HSCs (HSC-T6 and LX-2). Osthole attenuated TGF-β1-induced migration and invasion in HSCs. Furthermore, osthole decreased TNF-α-triggered NF-κB activities significantly. Besides, osthole alleviated TGF-β1- or ET-1-induced HSCs contractility. Conclusions Our study demonstrated that osthole improved TAA-caused liver injury, fibrogenesis and inflammation in rats. In addition, osthole suppressed HSCs activation in vitro significantly. Electronic supplementary material The online version of this article (doi:10.1186/s12929-015-0168-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ya-Wei Liu
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, No. 155, Li-Nong Street, Sec. 2, Taipei, 11221, Taiwan.
| | - Yung-Tsung Chiu
- Department of Medical Research and Education, Taichung Veterans General Hospital, No. 1650, Taiwan Boulevard Sec. 4, Taichung, 40705, Taiwan.
| | - Shu-Ling Fu
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, No. 155, Li-Nong Street, Sec. 2, Taipei, 11221, Taiwan.
| | - Yi-Tsau Huang
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, No. 155, Li-Nong Street, Sec. 2, Taipei, 11221, Taiwan. .,National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No. 155-1, Li-Nong Street, Sec. 2, Taipei, 11221, Taiwan.
| |
Collapse
|
30
|
Yang SM, Chan YL, Hua KF, Chang JM, Chen HL, Tsai YJ, Hsu YJ, Chao LK, Feng-Ling Y, Tsai YL, Wu SH, Wang YF, Tsai CL, Chen A, Ka SM. Osthole improves an accelerated focal segmental glomerulosclerosis model in the early stage by activating the Nrf2 antioxidant pathway and subsequently inhibiting NF-κB-mediated COX-2 expression and apoptosis. Free Radic Biol Med 2014; 73:260-9. [PMID: 24858719 DOI: 10.1016/j.freeradbiomed.2014.05.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 05/03/2014] [Accepted: 05/06/2014] [Indexed: 01/06/2023]
Abstract
Inflammatory reactions and oxidative stress are implicated in the pathogenesis of focal segmental glomerulosclerosis (FSGS), a common chronic kidney disease with relatively poor prognosis and unsatisfactory treatment regimens. Previously, we showed that osthole, a coumarin compound isolated from the seeds of Cnidium monnieri, can inhibit reactive oxygen species generation, NF-κB activation, and cyclooxygenase-2 expression in lipopolysaccharide-activated macrophages. In this study, we further evaluated its renoprotective effect in a mouse model of accelerated FSGS (acFSGS), featuring early development of proteinuria, followed by impaired renal function, glomerular epithelial cell hyperplasia lesions (a sensitive sign that precedes the development of glomerular sclerosis), periglomerular inflammation, and glomerular hyalinosis/sclerosis. The results show that osthole significantly prevented the development of the acFSGS model in the treated group of mice. The mechanisms involved in the renoprotective effects of osthole on the acFSGS model were mainly a result of an activated Nrf2-mediated antioxidant pathway in the early stage (proteinuria and ischemic collapse of the glomeruli) of acFSGS, followed by a decrease in: (1) NF-κB activation and COX-2 expression as well as PGE2 production, (2) podocyte injury, and (3) apoptosis. Our data support that targeting the Nrf2 antioxidant pathway may justify osthole being established as a candidate renoprotective compound for FSGS.
Collapse
Affiliation(s)
- Shun-Min Yang
- Department of Pathology and National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Yi-Lin Chan
- Department of Pathology and National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan, Republic of China
| | - Jia-Ming Chang
- Institute for Drug Evaluation Platform, Development Center for Biotechnology, Taipei, Taiwan, Republic of China
| | - Hui-Ling Chen
- Institute for Drug Evaluation Platform, Development Center for Biotechnology, Taipei, Taiwan, Republic of China
| | - Yung-Jen Tsai
- Institute for Drug Evaluation Platform, Development Center for Biotechnology, Taipei, Taiwan, Republic of China
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital; National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Louis Kuoping Chao
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan, Republic of China
| | - Yang Feng-Ling
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yu-Ling Tsai
- Graduate Institute of Life Sciences; and National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yih-Fuh Wang
- Graduate Institute of Electrical Engineering and Computer Science, National Penghu University of Science and Technology, Penghu, Taiwan, Republic of China
| | - Change-Ling Tsai
- Graduate Institute of Electrical Engineering and Computer Science, National Penghu University of Science and Technology, Penghu, Taiwan, Republic of China
| | - Ann Chen
- Department of Pathology and National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, School of Medicine; National Defense Medical Center, Taipei 114, Taiwan, Republic of China.
| |
Collapse
|
31
|
Mo LQ, Chen Y, Song L, Wu GM, Tang N, Zhang YY, Wang XB, Liu KX, Zhou J. Osthole prevents intestinal ischemia-reperfusion-induced lung injury in a rodent model. J Surg Res 2014; 189:285-94. [PMID: 24726060 DOI: 10.1016/j.jss.2014.03.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 02/09/2014] [Accepted: 03/11/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND Intestinal ischemia-reperfusion (II/R) is associated with high morbidity and mortality. The aim of this study was to investigate the effects of osthole on lung injury and mortality induced by II/R. METHODS A rat model of II/R was induced by clamping the superior mesenteric artery for 90 min followed by reperfusion for 240 min. Osthole was administrated intraperitoneally at 30 min before intestinal ischemia (10 or 50 mg/kg). The survival rate and mean arterial pressure were observed. Blood samples were obtained for blood gas analyses. Lung injury was assessed by the histopathologic changes (hematoxylin and eosin staining), lung wet-to-dry weight ratio, and pulmonary permeability index. The levels of reactive oxygen species, malondialdehyde, interleukin 6, and tumor necrosis factor α, as well as the activities of superoxide dismutase and myeloperoxidase in lung were measured. RESULTS The survival rate, ratio of arterial oxygen tension to fraction of inspired oxygen, and mean arterial pressure decreased significantly after II/R. Results also indicated that II/R-induced severe lung injury evidenced by increase in pathologic scores, lung wet-to-dry weight ratio, and pulmonary permeability index, which was accompanied by increases in the levels of pulmonary reactive oxygen species, malondialdehyde, interleukin 6, tumor necrosis factor α, and the pulmonary myeloperoxidase activity and a decrease in superoxide dismutase activity. Osthole could significantly ameliorate lung injury and improve the previously mentioned variables. CONCLUSIONS These findings indicated that osthole could attenuate the lung injury induced by II/R in rats, at least in part, by inhibiting inflammatory response and oxidative stress.
Collapse
Affiliation(s)
- Li-Qun Mo
- Department of Anesthesiology, Affiliated Hospital of Luzhou Medical College, Luzhou, People's Republic of China
| | - Ye Chen
- Department of Traditional Chinese Medicine, Affiliated Hospital of Luzhou Medical College, Luzhou, People's Republic of China
| | - Li Song
- Department of Anesthesiology, Affiliated Hospital of Luzhou Medical College, Luzhou, People's Republic of China
| | - Gang-Ming Wu
- Department of Anesthesiology, Affiliated Hospital of Luzhou Medical College, Luzhou, People's Republic of China
| | - Ni Tang
- Department of Anesthesiology, Affiliated Hospital of Luzhou Medical College, Luzhou, People's Republic of China
| | - Ying-Ying Zhang
- Department of Anesthesiology, Affiliated Hospital of Luzhou Medical College, Luzhou, People's Republic of China
| | - Xiao-Bin Wang
- Department of Anesthesiology, Affiliated Hospital of Luzhou Medical College, Luzhou, People's Republic of China
| | - Ke-Xuan Liu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jun Zhou
- Department of Anesthesiology, Affiliated Hospital of Luzhou Medical College, Luzhou, People's Republic of China.
| |
Collapse
|
32
|
Wang YP, Li G, Ma LL, Zheng Y, Zhang SD, Zhang HX, Qiu M, Ma X. Penehyclidine hydrochloride ameliorates renal ischemia–reperfusion injury in rats. J Surg Res 2014; 186:390-7. [DOI: 10.1016/j.jss.2013.07.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/07/2013] [Accepted: 07/19/2013] [Indexed: 12/17/2022]
|
33
|
Human adipose-derived stem cells modified by HIF-1α accelerate the recovery of cisplatin-induced acute renal injury in vitro. Biotechnol Lett 2013; 36:667-76. [DOI: 10.1007/s10529-013-1389-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 10/08/2013] [Indexed: 12/16/2022]
|
34
|
Wang Z, Liu Y, Han Y, Guan W, Kou X, Fu J, Yang D, Ren H, He D, Zhou L, Zeng C. Protective effects of aliskiren on ischemia-reperfusion-induced renal injury in rats. Eur J Pharmacol 2013; 718:160-6. [PMID: 24041923 DOI: 10.1016/j.ejphar.2013.08.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/24/2013] [Accepted: 08/27/2013] [Indexed: 01/08/2023]
Abstract
The protective effect of aliskiren on ischemia-reperfusion (I/R) injury in the heart and brain has been reported. Whether or not this protective effect extends into the alleviation of renal I/R injury is not known. Therefore, we investigated the protective effect of aliskiren in the kidney in this study. Sprague-Dawley rats were randomly divided into four groups: sham control group; sham control with aliskiren pretreatment; I/R group and I/R with aliskiren pretreatment. Aliskiren (3mg/kg) or vehicle was administrated intravenously via vena cava. Blood samples and the left kidneys were then collected to check for renal function, angiotensin II (Ang II), apoptosis and oxidative stress levels. Compared with the sham rats, serum creatinine (SCR) and blood urea nitrogen (BUN) were significantly increased in the I/R rats, accompanied by histopathological damage to the kidney, which included tubular cell swelling, desquamation, and cast formation. There were also more apoptotic cells and leukocyte infiltration in the I/R rats than in the sham rats. Pretreatment with aliskiren ameliorated I/R induced renal injury, i.e. reduced SCR and BUN levels, ameliorated renal histopathological changes, and decreased the apoptosis of cells and leukocyte infiltration in kidney. I/R injury also decreased superoxide dismutase (SOD) and glutathione (GSH-reduced form) levels, which were blocked with the aliskiren pretreatment. Aliskiren pretreatment exerts a protective effect on ischemia/reperfusion injury in the kidney, via amelioration of oxidative stress, and reduction in leukocyte infiltration and cellular apoptosis.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, China; Chongqing Institute of Cardiology, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yu HP, Liu FC, Tsai YF, Hwang TL. Osthole attenuates hepatic injury in a rodent model of trauma-hemorrhage. PLoS One 2013; 8:e65916. [PMID: 23755293 PMCID: PMC3675024 DOI: 10.1371/journal.pone.0065916] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/30/2013] [Indexed: 01/14/2023] Open
Abstract
Recent evidences show that osthole possesses anti-inflammatory properties and protective effects following shock-like states, but the mechanism of these effects remains unknown. The p38 mitogen-activated protein kinase (p38 MAPK) pathway exerts anti-inflammatory effects in injury. The aim of this study was to investigate whether p38 MAPK plays any role in the osthole-mediated attenuation of hepatic injury after trauma-hemorrhage. Male Sprague-Dawley rats underwent trauma-hemorrhage (mean blood pressure maintained at approximately 35-40 mmHg for 90 minutes), followed by fluid resuscitation. During resuscitation, a single dose of osthole (3 mg/kg, intravenously) with and without a p38 MAPK inhibitor SB-203580 (2 mg/kg, intravenously), SB-203580 or vehicle was administered. Plasma alanine aminotransferase (ALT) with aspartate aminotransferase (AST) concentrations and various hepatic parameters were measured (n = 8 rats/group) at 24 hours after resuscitation. The results showed that trauma-hemorrhage increased hepatic myeloperoxidase activity, intercellular adhesion molecule-1 and interleukin-6 levels, and plasma ALT and AST concentrations. These parameters were significantly improved in the osthole-treated rats subjected to trauma-hemorrhage. Osthole treatment also increased hepatic phospho-p38 MAPK expression compared with vehicle-treated trauma-hemorrhaged rats. Co-administration of SB-203580 with osthole abolished the osthole-induced beneficial effects on the above parameters and hepatic injury. These results suggest that the protective effect of osthole administration on alleviation of hepatic injury after trauma-hemorrhage, which is, at least in part, through p38 MAPK-dependent pathway.
Collapse
Affiliation(s)
- Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- * E-mail: (HPY); (TLH)
| | - Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yung-Fong Tsai
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
- * E-mail: (HPY); (TLH)
| |
Collapse
|