1
|
Ozimek J, Malarz K, Mrozek-Wilczkiewicz A, Hebda E, Pielichowski K. Thermoplastic polyurethane/POSS nanohybrids: Synthesis, morphology, and biological properties. J Biomed Mater Res B Appl Biomater 2024; 112:e35381. [PMID: 38348489 DOI: 10.1002/jbm.b.35381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024]
Abstract
Recent studies show good osteoinductive properties of polyurethanes modified with polyhedral oligomeric silsesquioxanes (POSS). In this work, three types of POSS; propanediolisobutyl-POSS (PHI-POSS), disilanolisobutyl-POSS (DSI-POSS), and octahydroxybutyl-POSS (OCTA-POSS) were chemically incorporated into linear polyurethane based on an aliphatic isocyanate, hexamethylene diisocyanate (HDI), to obtain new nanohybrid PU-POSS materials. The full conversion of POSS was confirmed by Fourier transform infrared spectroscopy (FTIR-ATR) spectra of the model reactions with pure HDI. The materials obtained were investigated by FTIR, SEM-EDS, and DSC. The DSC studies showed the thermoplasticity of the obtained materials and apparently good recovery. 30-day immersion in SBF (simulated body fluid) revealed an increase in the rate of deposition of hydroxyapatite (HAp) for the highest POSS loadings, resulting in thick layers of hydroxyapatite (~60-40 μm), and the Ca/P ratio 1.67 (even 1.785). The structure and properties of the inorganic layer depend on the type of POSS, the number of hard segments, and those containing POSS, which can be tailored by changing the HDI/poly(tetramethylene glycol) (PTMG) ratio. Furthermore, the obtained composites revealed good biocompatibility, as confirmed by cytotoxicity tests conducted on two cell lines; normal human dermal fibroblasts (NHDF) and primary human osteoblasts (HOB). Adherent cells seeded on the tested materials showed viability even after a 48-h incubation. After this time, the population of viable, and proliferating cells exceeded 90%. Bioimaging studies have shown the fibroblast and osteoblast cells were well attached to the surface of the tested materials.
Collapse
Affiliation(s)
- Jan Ozimek
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Kraków, Poland
| | - Katarzyna Malarz
- Biotechnology Center, Silesian University of Technology, Gliwice, Poland
- A. Chelkowski Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, Chorzow, Poland
| | - Anna Mrozek-Wilczkiewicz
- Biotechnology Center, Silesian University of Technology, Gliwice, Poland
- A. Chelkowski Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, Chorzow, Poland
| | - Edyta Hebda
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Kraków, Poland
| | - Krzysztof Pielichowski
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Kraków, Poland
| |
Collapse
|
2
|
Chen Z, Cheng Q, Wang L, Mo Y, Li K, Mo J. Optical coherence tomography for in vivo longitudinal monitoring of artificial dermal scaffold. Lasers Surg Med 2023; 55:316-326. [PMID: 36806261 DOI: 10.1002/lsm.23645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/21/2023]
Abstract
OBJECTIVES Artificial dermal scaffold (ADS) has undergone rapid development and been increasingly used for treating skin wound in clinics due to its good biocompatibility, controllable degradation, and low risk of disease infection. To obtain good treatment efficacy, ADS needs to be monitored longitudinally during the treatment process. For example, scaffold-tissue fit, cell in-growth, vascular regeneration, and scaffold degradation are the key properties to be inspected. However, to date, there are no effective, real-time, and noninvasive techniques to meet the requirement of the scaffold monitoring above. MATERIALS AND METHODS In this study, we propose to use optical coherence tomography (OCT) to monitor ADS in vivo through three-dimensional imaging. A swept source OCT system with a handheld probe was developed for in vivo skin imaging. Moreover, a cell in-growth, vascular regeneration, and scaffold degradation rate (IRDR) was defined with the volume reduction rate of the scaffold's collagen sponge layer. To measure the IRDR, a semiautomatic image segmentation algorithm was designed based on U-Net to segment the collagen sponge layer of the scaffold from OCT images. RESULTS The results show that the scaffold-tissue fit can be clearly visualized under OCT imaging. The IRDR can be computed based on the volume of the segmented collagen sponge layer. It is observed that the IRDR appeared to a linear function of the time and in addition, the IRDR varied among different skin parts. CONCLUSION Overall, it can be concluded that OCT has a good potential to monitor ADS in vivo. This can help guide the clinicians to control the treatment with ADS to improve the therapy.
Collapse
Affiliation(s)
- Ziye Chen
- Department of Electronic Information, Engineering School of Electronics and Information Engineering, Soochow University, Suzhou, China
| | - Qiong Cheng
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lingyun Wang
- Department of Electronic Information, Engineering School of Electronics and Information Engineering, Soochow University, Suzhou, China
| | - Yunfeng Mo
- Department of Electronic Information, Engineering School of Electronics and Information Engineering, Soochow University, Suzhou, China
| | - Ke Li
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianhua Mo
- Department of Electronic Information, Engineering School of Electronics and Information Engineering, Soochow University, Suzhou, China
| |
Collapse
|
3
|
The Effect of Various Polyhedral Oligomeric Silsesquioxanes on Viscoelastic, Thermal Properties and Crystallization of Poly(ε-caprolactone) Nanocomposites. Polymers (Basel) 2022; 14:polym14235078. [PMID: 36501477 PMCID: PMC9737336 DOI: 10.3390/polym14235078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Polyhedral oligomeric silsesquioxane POSS nanoparticles can be applied as reinforcing additives modifying various properties of biodegradable polymers. The effects of aminopropylisobutyl POSS (amine-POSS), trisilanolisooctyl-POSS (HO-POSS) and glycidyl-POSS (Gly-POSS) on the viscoelastic, thermal properties and crystallization of biodegradable poly(ε-caprolactone) PCL were studied. The analysis of the viscoelastic properties at ambient temperature indicated that aminopropylisobutyl POSS (amine-POSS) and glycidyl-POSS (Gly-POSS) enhanced the dynamic mechanical properties of PCL. The increase in the storage shear modulus G' and loss modulus G″ was observed. The plasticizing effect of trisilanolisooctyl POSS (HO-POSS) due to the presence of long isoctyl groups was confirmed. As a result, the crystallization of PCL was facilitated and the degree of crystallinity of χc increased up to 50.9%. The damping properties and the values of tan δ for PCL/HO-POSS composition increased from 0.052 to 0.069. The TGA results point out the worsening of the PCL thermal stability, with lower values of T0.5%, T1% and T3%. Both HO-POSS and Gly-POSS facilitated the relaxation of molten PCL. The presence of Gly-POSS influenced the changes that occurred in the viscoelastic properties of the molten PCL due to the thermo-mechanical degradation of the material; a positive impact was observed.
Collapse
|
4
|
Ozimek J, Pielichowski K. Recent Advances in Polyurethane/POSS Hybrids for Biomedical Applications. Molecules 2021; 27:molecules27010040. [PMID: 35011280 PMCID: PMC8746980 DOI: 10.3390/molecules27010040] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 11/16/2022] Open
Abstract
Advanced organic-inorganic materials-composites, nanocomposites, and hybrids with various compositions offer unique properties required for biomedical applications. One of the most promising inorganic (nano)additives are polyhedral oligomeric silsesquioxanes (POSS); their biocompatibility, non-toxicity, and phase separation ability that modifies the material porosity are fundamental properties required in modern biomedical applications. When incorporated, chemically or physically, into polyurethane matrices, they substantially change polymer properties, including mechanical properties, surface characteristics, and bioactivity. Hence, this review is dedicated to POSS-PU composites that have recently been developed for applications in the biomedical field. First, different modes of POSS incorporation into PU structure have been presented, then recent developments of PU/POSS hybrids as bio-active composites for scaffolds, cardiovascular stents, valves, and membranes, as well as in bio-imaging and cancer treatment, have been described. Finally, characterization and methods of modification routes of polyurethane-based materials with silsesquioxanes were presented.
Collapse
|
5
|
Amna T, Hassan MS, El-Newehy MH, Alghamdi T, Moydeen Abdulhameed M, Khil MS. Biocompatibility Computation of Muscle Cells on Polyhedral Oligomeric Silsesquioxane-Grafted Polyurethane Nanomatrix. NANOMATERIALS 2021; 11:nano11112966. [PMID: 34835731 PMCID: PMC8620573 DOI: 10.3390/nano11112966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 11/16/2022]
Abstract
This study was performed to appraise the biocompatibility of polyhedral oligomeric silsesquioxane (POSS)-grafted polyurethane (PU) nanocomposites as potential materials for muscle tissue renewal. POSS nanoparticles demonstrate effectual nucleation and cause noteworthy enhancement in mechanical and thermal steadiness as well as biocompatibility of resultant composites. Electrospun, well-aligned, POSS-grafted PU nanofibers were prepared. Physicochemical investigation was conducted using several experimental techniques, including scanning electron microscopy, energy dispersive X-ray spectroscopy, electron probe microanalysis, Fourier transform infrared spectroscopy, and X-ray diffraction pattern. Adding POSS molecules to PU did not influence the processability and morphology of the nanocomposite; however, we observed an obvious mean reduction in fiber diameter, which amplified specific areas of the POSS-grafted PU. Prospective biomedical uses of nanocomposite were also appraised for myoblast cell differentiation in vitro. Little is known about C2C12 cellular responses to PU, and there is no information regarding their interaction with POSS-grafted PU. The antimicrobial potential, anchorage, proliferation, communication, and differentiation of C2C12 on PU and POSS-grafted PU were investigated in this study. In conclusion, preliminary nanocomposites depicted superior cell adhesion due to the elevated free energy of POSS molecules and anti-inflammatory potential. These nanofibers were non-hazardous, and, as such, biomimetic scaffolds show high potential for cellular studies and muscle regeneration.
Collapse
Affiliation(s)
- Touseef Amna
- Department of Biology, Albaha University, Albaha 65779, Saudi Arabia;
- Correspondence: (T.A.); (M.-S.K.)
| | - Mallick Shamshi Hassan
- Department of Chemistry, Faculty of Science, Albaha University, Albaha 65779, Saudi Arabia;
| | - Mohamed H. El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.H.E.-N.); (M.M.A.)
| | - Tariq Alghamdi
- Department of Biology, Albaha University, Albaha 65779, Saudi Arabia;
| | - Meera Moydeen Abdulhameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.H.E.-N.); (M.M.A.)
| | - Myung-Seob Khil
- Department of Organic Materials and Fiber Engineering, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: (T.A.); (M.-S.K.)
| |
Collapse
|
6
|
Tallá Ferrer C, Vilariño-Feltrer G, Rizk M, Sydow HG, Vallés-Lluch A. Nanocomposites based on poly(glycerol sebacate) with silica nanoparticles with potential application in dental tissue engineering. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1616197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- C. Tallá Ferrer
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
| | - G. Vilariño-Feltrer
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
| | - M. Rizk
- Department for Preventive Dentistry, Parodontology and Cariology, University Medical Center, Göttingen, Germany
| | - H. G. Sydow
- Institute of Anatomy and Embryology, University Medical Center, Göttingen, Germany
| | - A. Vallés-Lluch
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
- Biomaterials and Nanomedicine (CIBER-BBN), Biomedical Research Networking Centre in Bioengineering, Valencia, Spain
| |
Collapse
|
7
|
Wismayer K, Mehrban N, Bowen J, Birchall M. Improving cellular migration in tissue-engineered laryngeal scaffolds. J Laryngol Otol 2019; 133:135-148. [PMID: 30898188 DOI: 10.1017/s0022215119000082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To modify the non-porous surface membrane of a tissue-engineered laryngeal scaffold to allow effective cell entry. METHODS The mechanical properties, surface topography and chemistry of polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane were characterised. A laser technique introduced surface perforations. Micro computed tomography generated porosity data. Scaffolds were seeded with cells, investigated histologically and proliferation studied. Incubation and time effects were assessed. RESULTS Laser cutting perforated the polymer, connecting the substructure with the ex-scaffold environment and increasing porosity (porous, non-perforated = 87.9 per cent; porous, laser-perforated at intensities 3 = 96.4 per cent and 6 = 89.5 per cent). Cellular studies confirmed improved cell viability. Histology showed cells adherent to the scaffold surface and cells within perforations, and indicated that cells migrated into the scaffolds. After 15 days of incubation, scanning electron microscopy revealed an 11 per cent reduction in pore diameter, correlating with a decrease in Young's modulus. CONCLUSION Introducing surface perforations presents a viable method of improving polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane as a tissue-engineered scaffold.
Collapse
Affiliation(s)
- K Wismayer
- Division of Surgery,Ear Institute,University College London,UK
| | - N Mehrban
- Division of Surgery,Ear Institute,University College London,UK
| | - J Bowen
- School of Engineering and Innovation,Open University,Milton Keynes,UK
| | - M Birchall
- Ear Institute,University College London,UK
| |
Collapse
|
8
|
Strong AL, Neumeister MW, Levi B. Stem Cells and Tissue Engineering: Regeneration of the Skin and Its Contents. Clin Plast Surg 2017; 44:635-650. [PMID: 28576253 DOI: 10.1016/j.cps.2017.02.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this review, the authors discuss the stages of skin wound healing, the role of stem cells in accelerating skin wound healing, and the mechanism by which these stem cells may reconstitute the skin in the context of tissue engineering.
Collapse
Affiliation(s)
- Amy L Strong
- Division of Plastic Surgery, Department of Surgery, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Michael W Neumeister
- Department of Surgery, Institute for Plastic Surgery, Southern Illinois University School of Medicine, 747 North Rutledge Street, Springfield, IL 62702, USA
| | - Benjamin Levi
- Division of Plastic Surgery, Department of Surgery, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA; Burn Wound and Regenerative Medicine Laboratory, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Alshomer F, Chaves C, Serra T, Ahmed I, Kalaskar DM. Micropatterning of nanocomposite polymer scaffolds using sacrificial phosphate glass fibers for tendon tissue engineering applications. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1267-1277. [DOI: 10.1016/j.nano.2017.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 12/12/2016] [Accepted: 01/04/2017] [Indexed: 12/19/2022]
|
10
|
Naderi N, Combellack EJ, Griffin M, Sedaghati T, Javed M, Findlay MW, Wallace CG, Mosahebi A, Butler PEM, Seifalian AM, Whitaker IS. The regenerative role of adipose-derived stem cells (ADSC) in plastic and reconstructive surgery. Int Wound J 2017; 14:112-124. [PMID: 26833722 PMCID: PMC7949873 DOI: 10.1111/iwj.12569] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/24/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022] Open
Abstract
The potential use of stem cell-based therapies for the repair and regeneration of various tissues and organs offers a paradigm shift in plastic and reconstructive surgery. The use of either embryonic stem cells (ESC) or induced pluripotent stem cells (iPSC) in clinical situations is limited because of regulations and ethical considerations even though these cells are theoretically highly beneficial. Adult mesenchymal stem cells appear to be an ideal stem cell population for practical regenerative medicine. Among these cells, adipose-derived stem cells (ADSC) have the potential to differentiate the mesenchymal, ectodermal and endodermal lineages and are easy to harvest. Additionally, adipose tissue yields a high number of ADSC per volume of tissue. Based on this background knowledge, the purpose of this review is to summarise and describe the proliferation and differentiation capacities of ADSC together with current preclinical data regarding the use of ADSC as regenerative tools in plastic and reconstructive surgery.
Collapse
Affiliation(s)
- Naghmeh Naderi
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Sciences (ILS)Swansea University Medical SchoolSwanseaUK
- Welsh Centre for Burns & Plastic SurgeryABMU Health BoardSwanseaUK
| | - Emman J Combellack
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Sciences (ILS)Swansea University Medical SchoolSwanseaUK
- Welsh Centre for Burns & Plastic SurgeryABMU Health BoardSwanseaUK
| | - Michelle Griffin
- UCL Centre for Nanotechnology and Regenerative MedicineUniversity College LondonLondonUK
| | - Tina Sedaghati
- UCL Centre for Nanotechnology and Regenerative MedicineUniversity College LondonLondonUK
| | - Muhammad Javed
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Sciences (ILS)Swansea University Medical SchoolSwanseaUK
- Welsh Centre for Burns & Plastic SurgeryABMU Health BoardSwanseaUK
| | - Michael W Findlay
- Plastic & Reconstructive SurgeryStanford University Medical CentreStanfordCAUSA
| | | | - Afshin Mosahebi
- UCL Centre for Nanotechnology and Regenerative MedicineUniversity College LondonLondonUK
- Department of Plastic SurgeryRoyal Free NHS Foundation TrustLondonUK
| | - Peter EM Butler
- Department of Plastic SurgeryRoyal Free NHS Foundation TrustLondonUK
| | - Alexander M Seifalian
- UCL Centre for Nanotechnology and Regenerative MedicineUniversity College LondonLondonUK
| | - Iain S Whitaker
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Sciences (ILS)Swansea University Medical SchoolSwanseaUK
- Welsh Centre for Burns & Plastic SurgeryABMU Health BoardSwanseaUK
| |
Collapse
|
11
|
Ye Q, Zhou H, Xu J. Cubic Polyhedral Oligomeric Silsesquioxane Based Functional Materials: Synthesis, Assembly, and Applications. Chem Asian J 2016; 11:1322-37. [DOI: 10.1002/asia.201501445] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Qun Ye
- Institute of Materials Research and Engineering; Agency for Science, Research and Engineering (A*STAR); 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Hui Zhou
- Institute of Materials Research and Engineering; Agency for Science, Research and Engineering (A*STAR); 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Jianwei Xu
- Institute of Materials Research and Engineering; Agency for Science, Research and Engineering (A*STAR); 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| |
Collapse
|
12
|
Crowley C, Klanrit P, Butler CR, Varanou A, Platé M, Hynds RE, Chambers RC, Seifalian AM, Birchall MA, Janes SM. Surface modification of a POSS-nanocomposite material to enhance cellular integration of a synthetic bioscaffold. Biomaterials 2016; 83:283-93. [PMID: 26790147 PMCID: PMC4762251 DOI: 10.1016/j.biomaterials.2016.01.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/27/2015] [Accepted: 01/01/2016] [Indexed: 12/20/2022]
Abstract
Polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU) is a versatile nanocomposite biomaterial with growing applications as a bioscaffold for tissue engineering. Integration of synthetic implants with host tissue can be problematic but could be improved by topographical modifications. We describe optimization of POSS-PCU by dispersion of porogens (sodium bicarbonate (NaHCO3), sodium chloride (NaCl) and sucrose) onto the material surface, with the principle aim of increasing surface porosity, thus providing additional opportunities for improved cellular and vascular ingrowth. We assess the effect of the porogens on the material's mechanical strength, surface chemistry, wettability and cytocompatibilty. Surface porosity was characterized by scanning electron microscopy (SEM). There was no alteration in surface chemistry and wettability and only modest changes in mechanical properties were detected. The size of porogens correlated well with the porosity of the construct produced and larger porogens improved interconnectivity of spaces within constructs. Using primary human bronchial epithelial cells (HBECs) we demonstrate moderate in vitro cytocompatibility for all surface modifications; however, larger pores resulted in cellular aggregation. These cells were able to differentiate on POSS-PCU scaffolds. Implantation of the scaffold in vivo demonstrated that larger pore sizes favor cellular integration and vascular ingrowth. These experiments demonstrate that surface modification with large porogens can improve POSS-PCU nanocomposite scaffold integration and suggest the need to strike a balance between the non-porous surfaces required for epithelial coverage and the porous structure required for integration and vascularization of synthetic scaffolds in future construct design.
Collapse
Affiliation(s)
- Claire Crowley
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK; UCL Centre of Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, Royal Free London NHS Foundation Trust Hospital and University College London, London, UK
| | - Poramate Klanrit
- UCL Centre of Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, Royal Free London NHS Foundation Trust Hospital and University College London, London, UK
| | - Colin R Butler
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Aikaterini Varanou
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Manuela Platé
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK; Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK
| | - Robert E Hynds
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Rachel C Chambers
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK
| | - Alexander M Seifalian
- UCL Centre of Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, Royal Free London NHS Foundation Trust Hospital and University College London, London, UK
| | - Martin A Birchall
- UCL Ear Institute, Royal National Throat Nose and Ear Hospital and University College London, London, UK.
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK.
| |
Collapse
|
13
|
Sedaghati T, Seifalian AM. Nanotechnology and bio-functionalisation for peripheral nerve regeneration. Neural Regen Res 2015; 10:1191-1194. [PMID: 26487832 PMCID: PMC4590217 DOI: 10.4103/1673-5374.162678] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2015] [Indexed: 12/21/2022] Open
Abstract
There is a high clinical demand for new smart biomaterials, which stimulate neuronal cell proliferation, migration and increase cell-material interaction to facilitate nerve regeneration across these critical-sized defects. This article briefly reviews several up-to-date published studies using Arginine-Glycine-Aspartic acid peptide sequence, nanocomposite based on polyhedral oligomeric silsesquioxane nanoparticle and nanofibrous scaffolds as promising strategies to enhance peripheral nerve regeneration by influencing cellular behaviour such as attachment, spreading and proliferation. The aim is to establish the potent manipulations, which are simple and easy to employ in the clinical conditions for nerve regeneration and repair.
Collapse
Affiliation(s)
- Tina Sedaghati
- Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, UK
| | - Alexander M. Seifalian
- Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, UK
- Royal Free NHS Trust Foundation Hospital, London, UK
- NanoRegMed Ltd, London, UK
| |
Collapse
|
14
|
Wang F, Wang M, She Z, Fan K, Xu C, Chu B, Chen C, Shi S, Tan R. Collagen/chitosan based two-compartment and bi-functional dermal scaffolds for skin regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 52:155-62. [PMID: 25953553 DOI: 10.1016/j.msec.2015.03.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 01/26/2015] [Accepted: 03/09/2015] [Indexed: 01/03/2023]
Abstract
Inspired from the sophisticated bilayer structures of natural dermis, here, we reported collagen/chitosan based two-compartment and bi-functional dermal scaffolds. Two functions refer to mediating rapid angiogenesis based on recombinant human vascular endothelial growth factor (rhVEGF) and antibacterial from gentamicin, which were encapsulated in PLGA microspheres. The gentamicin and rhVEGF encapsulated PLGA microspheres were further combined with collagen/chitosan mixtures in low (lower layer) and high (upper layer) concentrations, and molded to generate the two-compartment and bi-functional scaffolds. Based on morphology and pore structure analyses, it was found that the scaffold has a distinct double layered porous and connective structure with PLGA microspheres encapsulated. Statistical analysis indicated that the pores in the upper layer and in the lower layer have great variations in diameter, indicative of a two-compartment structure. The release profiles of gentamicin and rhVEGF exceeded 28 and 49 days, respectively. In vitro culture of mouse fibroblasts showed that the scaffold can facilitate cell adhesion and proliferation. Moreover, the scaffold can obviously inhibit proliferation of Staphylococcus aureus and Serratia marcescens, exhibiting its unique antibacterial effect. The two-compartment and bi-functional dermal scaffolds can be a promising candidate for skin regeneration.
Collapse
Affiliation(s)
- Feng Wang
- Department of Plastic Surgery and Burns, Shenzhen Second People's Hospital, Shenzhen 518035, PR China
| | - Mingbo Wang
- Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, PR China
| | - Zhending She
- Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, PR China; Shenzhen Lando Biomaterials Co., Ltd., Shenzhen 518057, PR China
| | - Kunwu Fan
- Department of Plastic Surgery and Burns, Shenzhen Second People's Hospital, Shenzhen 518035, PR China
| | - Cheng Xu
- Department of Plastic Surgery and Burns, Shenzhen Second People's Hospital, Shenzhen 518035, PR China
| | - Bin Chu
- Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, PR China
| | - Changsheng Chen
- Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, PR China
| | - Shengjun Shi
- The Burns Department of Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China.
| | - Rongwei Tan
- Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, PR China; Shenzhen Lando Biomaterials Co., Ltd., Shenzhen 518057, PR China.
| |
Collapse
|
15
|
G N, Tan A, Gundogan B, Farhatnia Y, Nayyer L, Mahdibeiraghdar S, Rajadas J, De Coppi P, Davies AH, Seifalian AM. Tissue engineering vascular grafts a fortiori: looking back and going forward. Expert Opin Biol Ther 2014; 15:231-44. [PMID: 25427995 DOI: 10.1517/14712598.2015.980234] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Cardiovascular diseases such as coronary heart disease often necessitate the surgical repair using conduits. Although autografts still remain the gold standard, the inconvenience of harvesting and/or insufficient availability in patients with atherosclerotic disease has given impetus to look into alternative sources for vascular grafts. AREAS COVERED There are four main techniques to produce tissue-engineered vascular grafts (TEVGs): i) biodegradable synthetic scaffolds; ii) gel-based scaffolds; iii) decellularised scaffolds and iv) self-assembled cell-sheet-based techniques. The first three techniques can be grouped together as scaffold-guided approach as it involves the use of a construct to function as a supportive framework for the vascular graft. The most significant advantages of TEVGs are that it possesses the ability to grow, remodel and respond to environmental factors. Cell sources for TEVGs include mature somatic cells, stem cells, adult progenitor cells and pluripotent stem cells. EXPERT OPINION TEVG holds great promise with advances in nanotechnology, coupled with important refinements in tissue engineering and decellularisation techniques. This will undoubtedly be an important milestone for cardiovascular medicine when it is eventually translated to clinical use.
Collapse
Affiliation(s)
- Natasha G
- University College London (UCL), Centre for Nanotechnology and Regenerative Medicine, UCL Division of Surgery and Interventional Science, Research Department of Nanotechnology , London NW3 2QG , UK +44 207 830 2901 ;
| | | | | | | | | | | | | | | | | | | |
Collapse
|