1
|
Huang X, Kong L, Chen W, Wang H, Zhang J, Gao Z, Xin Y, Xu W, Zuo Y. Catalytic activation of peracetic acid for pelargonic acid vanillylamide degradation by Co 3O 4 nanoparticles in-situ anchored carbon-coated MXene nanosheets: Performance and mechanism insight. J Colloid Interface Sci 2024; 657:1003-1015. [PMID: 38141470 DOI: 10.1016/j.jcis.2023.10.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 12/25/2023]
Abstract
Pelargonic acid vanillylamide (PAVA), a capsaicin-type dacryagogue agent utilized for counter-terrorism and riot control, possesses a low stimulus threshold. This characteristic can lead to environmental contamination following its application and may easily result in secondary stimulation to personnel. Cobalt-doped Ti3C2-MXene nanosheets (Co3O4/Ti3C2@C) were synthesized for the purpose of activating peracetic acid (PAA) and degrading PAVA. A carbon layer was coated on the surface of Ti3C2-MXene nanosheets to address the challenge of poor oxygen resistance in MXenes, thus preventing a significant decline in surface reactivity. The BET surface area of Co3O4/Ti3C2@C was expanded to 149.6 m2/g, significantly exceeding that of Ti3C2 (13.0 m2/g) and Co3O4 (56.4 m2/g). With 0.5 mg/mL of Co3O4/Ti3C2@C and 0.35 mM of PAA, 100 mg/L of PAVA was completely degraded within 60 min. The augmented BET surface area and the presence of more active sites confer remarkable PAA activation and catalytic degradation properties toward PAVA. Parameters such as initial pH, PAVA concentration, catalyst dosage, and PAA concentration on PAVA degradation were systematically assessed. Furthermore, the reusability and stability of the nanocomposite were substantiated through recycling tests. Radical quenching experiments and electron paramagnetic resonance analysis demonstrated the acetylperoxy radical (CH3CO3) as the primary species responsible for PAVA degradation. This research serves as an illustration of the utilization of MXene and transition metal activated PAA in wastewater treatment.
Collapse
Affiliation(s)
- Xingqi Huang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Lingce Kong
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Wenming Chen
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Haibo Wang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Jingjing Zhang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Zhimeng Gao
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Yi Xin
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Wencai Xu
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China
| | - Yanjun Zuo
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, China.
| |
Collapse
|
2
|
Chinnasamy C, Perumal N, Choubey A, Rajendran S. Recent advancements in MXene-based nanocomposites as photocatalysts for hazardous pollutant degradation - A review. ENVIRONMENTAL RESEARCH 2023; 233:116459. [PMID: 37356535 DOI: 10.1016/j.envres.2023.116459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
The recent expeditious industrialization and urbanization showcase the increasing need for renewable and non-renewable energy and the severe environmental crisis. In this regard, numerous 2-dimensional (2D) nanomaterials have been developed as a facile approach to meet the futuristic energy essentials and to resolve the crisis. In contrast, the newly explored 2D MXenes (transition metal carbide/nitrides/carbonitride) have been employed as an intriguing material for various environmental applications. This development is accredited to their unique properties, which include a vast surface area, strong electrical conductivity, fascinating photophysical properties, high mechanical properties, stability in an aqueous medium, high hydrophilicity, biocompatibility, ease of functionalization, and excellent thermal properties. MXenes act as a potential candidate in water desalination, energy storage devices such as electrodes of Li-ion batteries and pseudo capacitors, hydrogen production, sensors, and wastewater treatment. This review article deliberates the synthesis of MXene and nanocomposites of MXene and their photo-catalytic actions against various toxic pollutants such as organic dyes and heavy metals in wastewater. This review also precises the various preparation methods of MXene-based photocatalyst and the enhanced photocatalytic activity of MXene and MXene-based nanocomposites in wastewater treatment. Also, it details the attempts made to improve the photocatalytic activity of MXene-based nanocomposites in terms of their structural compositions. In addition, the merits and demerits of the MXene-based photocatalysts are deliberated, which may pave the way for future research in this arena.
Collapse
Affiliation(s)
- Chandraleka Chinnasamy
- Department of Physics, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - Nagapandiselvi Perumal
- Department of Physics, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - Akanksha Choubey
- Department of Physics, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - Saravanan Rajendran
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, 1000000, Chile.
| |
Collapse
|
3
|
He X, Liu Y, Wang Q, Wang T, He J, Peng A, Qi K. Facile fabrication of Eu-based metal-organic frameworks for highly efficient capture of tetracycline hydrochloride from aqueous solutions. Sci Rep 2023; 13:11107. [PMID: 37429960 DOI: 10.1038/s41598-023-38425-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023] Open
Abstract
The tetracycline hydrochloride (TCH) removal from wastewater is important for the environment and human health yet challenging. Herein, the Eu-based MOF, Eu(BTC) (BTC represents 1,3,5-trimesic acid) was prepared by an efficient and environmental-friendly strategy, and then was used for the TCH capture for the first time. The Eu(BTC) was characterized by different methods such as X-ray diffraction, scanning electron microscopy and Fourier-transform infrared spectroscopy. The TCH uptake of Eu(BTC) was investigated systematically. The influences of experiment conditions such as solution pH value, adsorption time and initial concentration on TCH capacity of Eu(BTC) were also studied. The Eu(BTC) obtained exhibited remarkable TCH uptake (qm was up to 397.65 mg/g), which was much higher than those of most materials such as UiO-66/PDA/BC (184.30 mg/g), PDA-NFsM (161.30 mg/g) and many carbon-based materials reported till now. Besides, the TCH adsorption behavior on Eu(BTC) was explored by Freundlich and Langmuir equations, and the adsorption mechanism was further analyzed. The experimental results suggested that the TCH adsorption mechanism of Eu(BTC) included the π-π interaction, electrostatic interaction and coordinate bonds. The excellent TCH adsorption performance and the efficient fabrication strategy make the Eu(BTC) prepared promising in TCH removal.
Collapse
Affiliation(s)
- Xue He
- College of Pharmacy, Dali University, Dali, 671003, People's Republic of China
| | - Yong Liu
- College of Pharmacy, Dali University, Dali, 671003, People's Republic of China
| | - Qicui Wang
- College of Pharmacy, Dali University, Dali, 671003, People's Republic of China
| | - Tao Wang
- College of Pharmacy, Dali University, Dali, 671003, People's Republic of China
| | - Jieli He
- College of Pharmacy, Dali University, Dali, 671003, People's Republic of China
| | - Anzhong Peng
- College of Pharmacy, Dali University, Dali, 671003, People's Republic of China.
| | - Kezhen Qi
- College of Pharmacy, Dali University, Dali, 671003, People's Republic of China.
| |
Collapse
|
4
|
Wang C, Zhang Y, Liu H, Wu M, Chen R. Construction of Z-scheme Si−Fe2O3/Ti3C2/CdS composites for improved visible-light-responsive photocatalytic performance. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
5
|
Khosla A, Sonu, Awan HTA, Singh K, Gaurav, Walvekar R, Zhao Z, Kaushik A, Khalid M, Chaudhary V. Emergence of MXene and MXene-Polymer Hybrid Membranes as Future- Environmental Remediation Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203527. [PMID: 36316226 PMCID: PMC9798995 DOI: 10.1002/advs.202203527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/20/2022] [Indexed: 07/26/2023]
Abstract
The continuous deterioration of the environment due to extensive industrialization and urbanization has raised the requirement to devise high-performance environmental remediation technologies. Membrane technologies, primarily based on conventional polymers, are the most commercialized air, water, solid, and radiation-based environmental remediation strategies. Low stability at high temperatures, swelling in organic contaminants, and poor selectivity are the fundamental issues associated with polymeric membranes restricting their scalable viability. Polymer-metal-carbides and nitrides (MXenes) hybrid membranes possess remarkable physicochemical attributes, including strong mechanical endurance, high mechanical flexibility, superior adsorptive behavior, and selective permeability, due to multi-interactions between polymers and MXene's surface functionalities. This review articulates the state-of-the-art MXene-polymer hybrid membranes, emphasizing its fabrication routes, enhanced physicochemical properties, and improved adsorptive behavior. It comprehensively summarizes the utilization of MXene-polymer hybrid membranes for environmental remediation applications, including water purification, desalination, ion-separation, gas separation and detection, containment adsorption, and electromagnetic and nuclear radiation shielding. Furthermore, the review highlights the associated bottlenecks of MXene-Polymer hybrid-membranes and its possible alternate solutions to meet industrial requirements. Discussed are opportunities and prospects related to MXene-polymer membrane to devise intelligent and next-generation environmental remediation strategies with the integration of modern age technologies of internet-of-things, artificial intelligence, machine-learning, 5G-communication and cloud-computing are elucidated.
Collapse
Affiliation(s)
- Ajit Khosla
- Department of Applied ChemistrySchool of Advanced Materials and NanotechnologyXidian UniversityXi'an710126P. R. China
| | - Sonu
- School Advanced of Chemical SciencesShoolini University of Biotechnology and Management SciencesBajholSolanHP173212India
| | - Hafiz Taimoor Ahmed Awan
- Graphene and Advanced 2D Materials Research Group (GAMRG)School of Engineering and TechnologySunway UniversityNo. 5Jalan UniversityBandar SunwayPetaling JayaSelangor47500Malaysia
| | - Karambir Singh
- School of Physics and Material scienceShoolini University of Biotechnology and Management SciencesBajholSolanHP173212India
| | - Gaurav
- Department of BotanyRamjas CollegeUniversity of DelhiDelhi110007India
- SUMAN Laboratory (SUstainable Materials and Advanced Nanotechnology Lab)University of DelhiNew Delhi110072India
| | - Rashmi Walvekar
- Department of Chemical EngineeringSchool of New Energy and Chemical EngineeringXiamen University MalaysiaJalan Sunsuria, Bandar SunsuriaSepangSelangor43900Malaysia
| | - Zhenhuan Zhao
- Department of Applied ChemistrySchool of Advanced Materials and NanotechnologyXidian UniversityXi'an710126P. R. China
| | - Ajeet Kaushik
- NanoBioTech LaboratoryHealth System EngineeringDepartment of Environmental EngineeringFlorida Polytechnic UniversityLakelandFL33805USA
- School of EngineeringUniversity of Petroleum and Energy Studies (UPES)DehradunUttarakhand248007India
| | - Mohammad Khalid
- Graphene and Advanced 2D Materials Research Group (GAMRG)School of Engineering and TechnologySunway UniversityNo. 5Jalan UniversityBandar SunwayPetaling JayaSelangor47500Malaysia
- Sunway Materials Smart Science and Engineering (SMS2E) Research ClusterSunway UniversityNo. 5Jalan UniversitiBandar SunwayPetaling JayaSelangor47500Malaysia
| | - Vishal Chaudhary
- Research Cell and Department of PhysicsBhagini Nivedita CollegeUniversity of DelhiNew DelhiIndia
- SUMAN Laboratory (SUstainable Materials and Advanced Nanotechnology Lab)University of DelhiNew Delhi110072India
| |
Collapse
|
6
|
Synergistic removal of organic pollutants by Co-doped MIL-53(Al) composite through the integrated adsorption/photocatalysis. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Li X, Wang R, Liu L, Hun X. Ti3C2@WSe2 as photoelectractive materials coupling with recombinase polymerase amplification for nucleic acid detection. Anal Chim Acta 2022; 1214:339961. [DOI: 10.1016/j.aca.2022.339961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/01/2022]
|
8
|
Zhang L, Ma P, Dai L, Bu Z, Li X, Yu W, Cao Y, Guan J. Removal of pollutants via synergy of adsorption and photocatalysis over MXene-based nanocomposites. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
9
|
Zhang R, Jin J, Jia L, Shi B, Chen R. Fabrication of CdS/Ti 3C 2/g-C 3N 4NS Z-scheme composites with enhanced visible light-driven photocatalytic activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16371-16382. [PMID: 34648154 DOI: 10.1007/s11356-021-16942-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
The Ti3C2 and g-C3N4NS were obtained first, and the CdS/Ti3C2/g-C3N4NS Z-scheme composites were prepared via a facile hydrothermal synthesis, and their photocatalytic properties were investigated. The g-C3N4NS with a high surface area displayed higher adsorption and degradation capacity. Compared with Ti3C2/g-C3N4NS and CdS, the visible light photocatalytic activity of CdS/Ti3C2/g-C3N4NS composites was improved. The as-synthesized CTN-4:1 composite exhibited outstanding photocatalytic performance for degradation of orange II, approximately 3.2 and 10.7 times higher than that of Ti3C2/g-C3N4NS and CdS, respectively. The fabrication of CdS/Ti3C2/g-C3N4NS Z-scheme heterostructure using Ti3C2 as electron transfer medium improved the separation ability of the photoinduced e--h+ pairs, thereby leading to the improvement of visible light-driven photocatalytic activity. This finding provides new insights into the construction of high efficiency Z-scheme heterostructure photocatalyst.
Collapse
Affiliation(s)
- Ranran Zhang
- Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Materials Science, National Experimental Chemistry Teaching Center, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Jiaying Jin
- Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Materials Science, National Experimental Chemistry Teaching Center, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Lumeng Jia
- Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Materials Science, National Experimental Chemistry Teaching Center, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Bo Shi
- Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Materials Science, National Experimental Chemistry Teaching Center, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China.
| | - Rufen Chen
- Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Materials Science, National Experimental Chemistry Teaching Center, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China.
| |
Collapse
|
10
|
Ibrahim Y, Meslam M, Eid K, Salah B, Abdullah AM, Ozoemena KI, Elzatahry A, Sharaf MA, Sillanpää M. A review of MXenes as emergent materials for dye removal from wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Hydrothermal growth of ZnCdS/TiO2 nanoparticles on the surface of the Ti3C2 MXene sheet to enhance photocatalytic performance under visible light. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122750] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Saravanan P, Rajeswari S, Kumar JA, Rajasimman M, Rajamohan N. Bibliometric analysis and recent trends on MXene research - A comprehensive review. CHEMOSPHERE 2022; 286:131873. [PMID: 34411934 DOI: 10.1016/j.chemosphere.2021.131873] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
MXene, identified as a high performance material with superior properties, has gained significant importance in the field of applications including energy storage, photo catalysis, sensing of components and environmental pollution control. This review article is a comprehensive study on scientometric review on the research studies involving MXene and its derivatives for various applications. The aim of this study is to identify the areas of priority focused during the study period (2012-2020) and evaluate the impact of the studies in terms of different parameters. Using the suitable key words, a total of 3332 documents are identified and screened with respect to yearly count of literature, type of literature, language of publication, authors, Web of science (WoS) categories, most cited literature, author contribution, name of the affiliated institution, country of author affiliation, journals and key words. In addition, collaboration behavior and citation network are reviewed using the mapping tool. The total local citation score (TLCS) and total global citation score (TGCS) are evaluated. Based on the review data, the developments in the field of MXene applications are presented with more focus on sensing applications and photocatalysis. The top two contributing countries in the chosen field of MXene research are China and USA. Based on the number of documents published, ACS Applied Materials & Interfaces and Journal of Materials Chemistry "A" are identified as the best two journals.
Collapse
Affiliation(s)
- Panchamoorthy Saravanan
- Department of Petrochemical Technology, UCE - BIT Campus, Anna University, Tiruchirappalli, Tamil Nadu, India
| | - Shanmugam Rajeswari
- Department of Library, UCE - BIT Campus, Anna University, Tiruchirappalli, Tamil Nadu, India
| | - Jagadeesan Aravind Kumar
- Department of Chemical Engineering, Sathyabama Institute of Science of Technology, Chennai, India
| | | | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, Oman.
| |
Collapse
|
13
|
Zhang Y, Cao P, Zhu X, Li B, He Y, Song P, Wang R. Facile construction of BiOBr ultra-thin nano-roundels for dramatically enhancing photocatalytic activity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113636. [PMID: 34467862 DOI: 10.1016/j.jenvman.2021.113636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/01/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
BiOBr is a kind of promising photocatalyst because of excellent photoelectric separation efficiency and chemical stability. In order to improving practical application performance, a novel BiOBr ultra-thin nano-roundel (BiOBr-nR) was constructed in water-in-oil (WIO) emulsion microspheres, and prepared by hydrothermal reaction. Its specific surface area was increased by changing microtopography and downsizing. After being characterized by FT-IR, X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET), UV-Vis diffuse reflectance spectra (UV-Vis DRS) and photoluminescence (PL), it indicated the BiOBr-nR, being doped by C and N, is 4-5 times smaller and thinner than that of conventional BiOBr. It was also found that BiOBr-nR has narrower band gap energy (2.78 eV), excellent photocatalytic activity, significant reusability, and stability. The obtained BiOBr-nR photocatalysts were applied to remove organics. It presented excellent photocatalytic activity, the degradation rate of organics got to 99.2%. The mechanism of photodegradation was investigated, which indicated superoxide radicals and holes play a major role in the degradation of organics. Therefore, BiOBr-nR is a kind of environmentally friendly photocatalyst with stable photocatalytic activity, the removal rate still more than 97% after recycling for 10 times. In summary, we found a novel insight for designing and preparation of efficient and recyclable BiOBr photocatalytic materials, which exhibits high photoresponse for purifying the wastewater.
Collapse
Affiliation(s)
- Yaping Zhang
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Peiyu Cao
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Xinhua Zhu
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Bozhen Li
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Yufeng He
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Pengfei Song
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Rongmin Wang
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
14
|
Fang L, Jiang R, Zhang Y, Munthali RM, Huang X, Wu X, Liu Z. Enhanced photocatalytic activity for 4-nitrophenol degradation using visible-light-driven In2S3/α-Fe2O3 composite. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122461] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Khandelwal N, Darbha GK. A decade of exploring MXenes as aquatic cleaners: Covering a broad range of contaminants, current challenges and future trends. CHEMOSPHERE 2021; 279:130587. [PMID: 33901892 DOI: 10.1016/j.chemosphere.2021.130587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Clean water, the elixir of life, is of tremendous importance in achieving environmental sustainability and the balanced functioning of our ecosystem. Coupled with population growth, several anthropogenic activities and environmental catastrophes have together contributed to an alarming increase in the concentration of toxic pollutants in water bodies. Diversified physiochemical conditions of water matrices, ranging from mining drainage to seawater, is the critical challenge in designing adsorbents. MXenes, a new class of 2D layered materials, are transition metal nitrides, carbides, carbonitrides or borides formed through selective etching process. MXenes are known to have high surface area and activity with biological compatibility and chemical stability and therefore are promising adsorbents and have been explored for a broad range of contaminants. This review starts with a brief about environmental contaminants followed by synthesis and modifications of MXenes. It then revolves around their so far explored adsorbing and degradation properties for different contaminants ranging from toxic metals, inorganic ions, and radionuclides to various organic pollutants, including dyes, pharmaceuticals, aromatic hydrocarbons, and pesticides, etc. Finally, we have discussed associated toxicity, secondary contamination, future trends, and challenges in ascertaining scalability and wide-range applicability of MXenes in natural environmental conditions to make them a warrior of water sustainability.
Collapse
Affiliation(s)
- Nitin Khandelwal
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India, 741246
| | - Gopala Krishna Darbha
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India, 741246; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India.
| |
Collapse
|
16
|
Wang J, Cai Z, Lin D, Chen K, Zhao L, Xie F, Su R, Xie W, Liu P, Zhu R. Plasma Oxidized Ti 3C 2T x MXene as Electron Transport Layer for Efficient Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32495-32502. [PMID: 34185990 DOI: 10.1021/acsami.1c07146] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, the two-dimensional material Ti3C2Tx MXene has attracted interest from researchers in perovskite solar cells (PSCs) with its great advantages in terms of high transmittance, high conductivity, tunable work function, and solution processability. However, the MXene-based PSC performance has still been inferior to that of the traditional TiO2- or SnO2-based counterpart up until now. Some critical issues regarding to the MXene/perovskite interface still have not been well addressed. Herein, we used the Ti3C2Tx MXene as electron transport layer in PSCs via a room-temperature solution process followed by oxygen plasma treatment. Various characterization techniques were taken to establish the correlation between the surface properties and termination groups of MXene. We showed that oxygen plasma treatment could break parts of Ti-C bonds and generate abundant Ti-O bonds randomly distributed on MXene. The surface modification resulted in tunable work functions of MXene, as well as reduced trap states and improved electron transport close to the interface. In addition, the surface tension of MXene and corresponding perovskite morphology were thoroughly investigated by the contact angle and topography measurements. High-resolution XPS spectra indicated the Pb-O interactions between perovskite and MXene, which contributed to the device stability improvement.
Collapse
Affiliation(s)
- Jiming Wang
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhizhao Cai
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| | - Dongxu Lin
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ke Chen
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| | - Lichen Zhao
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, China
| | - Fangyan Xie
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Rui Su
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, China
| | - Weiguang Xie
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| | - Pengyi Liu
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| | - Rui Zhu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, China
| |
Collapse
|
17
|
Im JK, Sohn EJ, Kim S, Jang M, Son A, Zoh KD, Yoon Y. Review of MXene-based nanocomposites for photocatalysis. CHEMOSPHERE 2021; 270:129478. [PMID: 33418219 DOI: 10.1016/j.chemosphere.2020.129478] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 05/27/2023]
Abstract
Since multilayered MXenes (Ti3C2Tx, a new family of two-dimensional materials) were initially introduced by researchers at Drexel University in 2011, various MXene-based nanocomposites have received increased attention as photocatalysts owing to their exceptional properties (e.g., rich surface chemistry, adjustable bandgap structures, high electrical conductivity, hydrophilicity, thermal stability, and large specific surface area). Therefore, we present a comprehensive review of recent studies on fabrication methods for MXene-based photocatalysts and photocatalytic performance for contaminant degradation, CO2 reduction, H2 evolution, and N2 fixation with various MXene-based nanocomposites. In addition, this review briefly discusses the stability of MXene-based nanophotocatalysts, current limitations, and future research needs, along with the various corresponding challenges, in an effort to reveal the unique properties of MXene-based nanocomposites.
Collapse
Affiliation(s)
- Jong Kwon Im
- National Institute of Environmental Research, Han River Environment Research Center, 42, Dumulmeori-gil 68beon-gil, Yangseo-myeon, Yangpyeong-gun, Gyeonggi-do, 12585, Republic of Korea
| | - Erica Jungmin Sohn
- Department of Environmental Health, School of Public Health, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Sewoon Kim
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Ahjeong Son
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Kyung-Duk Zoh
- Department of Environmental Health, School of Public Health, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA.
| |
Collapse
|
18
|
Vigneshwaran S, Park CM, Meenakshi S. Designed fabrication of sulfide-rich bi-metallic-assembled MXene layered sheets with dramatically enhanced photocatalytic performance for Rhodamine B removal. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Zhang L, Ma P, Dai L, Li S, Yu W, Guan J. In situ crystallization and growth of TiO 2 nanospheres between MXene layers for improved adsorption and visible light photocatalysis. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00239b] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In situ crystallization and growth of TiO2 nanospheres between MXene layers, which exhibited an intense adsorption capacity and improved visible light photocatalysis.
Collapse
Affiliation(s)
- Li Zhang
- Research Center of Resource Recycling Science and Engineering
- School of Environmental and Materials Engineering
- Shanghai Polytechnic University
- Shanghai 201209
- People's Republic of China
| | - Pingping Ma
- Research Center of Resource Recycling Science and Engineering
- School of Environmental and Materials Engineering
- Shanghai Polytechnic University
- Shanghai 201209
- People's Republic of China
| | - Li Dai
- Research Center of Resource Recycling Science and Engineering
- School of Environmental and Materials Engineering
- Shanghai Polytechnic University
- Shanghai 201209
- People's Republic of China
| | - Shijie Li
- Innovation & Application Institute
- Zhejiang Ocean University
- Zhoushan 316022
- People's Republic of China
| | - Wei Yu
- Research Center of Resource Recycling Science and Engineering
- School of Environmental and Materials Engineering
- Shanghai Polytechnic University
- Shanghai 201209
- People's Republic of China
| | - Jie Guan
- Research Center of Resource Recycling Science and Engineering
- School of Environmental and Materials Engineering
- Shanghai Polytechnic University
- Shanghai 201209
- People's Republic of China
| |
Collapse
|
20
|
Biswal L, Nayak S, Parida K. Recent progress on strategies for the preparation of 2D/2D MXene/g-C3N4 nanocomposites for photocatalytic energy and environmental applications. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02156c] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This review summarizes the possible synthetic routes, optical and morphological features to explore the 2D/2D interface and mechanism path in 2D/2D MXene/g-C3N4 nanocomposites for photocatalytic applications.
Collapse
Affiliation(s)
- Lijarani Biswal
- Centre for Nano Science and Nano Technology
- Siksha ‘O’ Anusandhan Deemed to be University
- Bhubaneswar-751030
- India
| | - Susanginee Nayak
- Centre for Nano Science and Nano Technology
- Siksha ‘O’ Anusandhan Deemed to be University
- Bhubaneswar-751030
- India
| | - Kulamani Parida
- Centre for Nano Science and Nano Technology
- Siksha ‘O’ Anusandhan Deemed to be University
- Bhubaneswar-751030
- India
| |
Collapse
|
21
|
Liu H, Yang C, Jin X, Zhong J, Li J. One-pot hydrothermal synthesis of MXene Ti3C2/TiO2/BiOCl ternary heterojunctions with improved separation of photoactivated carries and photocatalytic behavior toward elimination of contaminants. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125239] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Sun S, Yang Z, Cao J, Wang Y, Xiong W. Copper-doped ZIF-8 with high adsorption performance for removal of tetracycline from aqueous solution. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121219] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Recent advances in MXenes supported semiconductors based photocatalysts: Properties, synthesis and photocatalytic applications. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.12.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|