1
|
Mayer MG, Fischer T. Microglia at the blood brain barrier in health and disease. Front Cell Neurosci 2024; 18:1360195. [PMID: 38550920 PMCID: PMC10976855 DOI: 10.3389/fncel.2024.1360195] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/23/2024] [Indexed: 01/24/2025] Open
Abstract
The blood brain barrier (BBB) plays a crucial role in maintaining brain homeostasis by selectively preventing the entry of substances from the peripheral blood into the central nervous system (CNS). Comprised of endothelial cells, pericytes, and astrocytes, this highly regulated barrier encompasses the majority of the brain's vasculature. In addition to its protective function, the BBB also engages in significant crosstalk with perivascular macrophages (MΦ) and microglia, the resident MΦ of the brain. These interactions play a pivotal role in modulating the activation state of cells comprising the BBB, as well as MΦs and microglia, themselves. Alterations in systemic metabolic and inflammatory states can promote endothelial cell dysfunction, reducing the integrity of the BBB and potentially allowing peripheral blood factors to leak into the CNS compartment. This may mediate activation of perivascular MΦs, microglia, and astrocytes, and initiate further immune responses within the brain parenchyma, suggesting neuroinflammation can be triggered by signaling from the periphery, without primary injury or disease originating within the CNS. The intricate interplay between the periphery and the CNS through the BBB highlights the importance of understanding the role of microglia in mediating responses to systemic challenges. Despite recent advancements, our understanding of the interactions between microglia and the BBB is still in its early stages, leaving a significant gap in knowledge. However, emerging research is shedding light on the involvement of microglia at the BBB in various conditions, including systemic infections, diabetes, and ischemic stroke. This review aims to provide a comprehensive overview of the current research investigating the intricate relationship between microglia and the BBB in health and disease. By exploring these connections, we hope to advance our understanding of the role of brain immune responses to systemic challenges and their impact on CNS health and pathology. Uncovering these interactions may hold promise for the development of novel therapeutic strategies for neurological conditions that involve immune and vascular mechanisms.
Collapse
Affiliation(s)
- Meredith G. Mayer
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Tracy Fischer
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
2
|
Endo H, Ogasawara M, Tega Y, Kubo Y, Hosoya KI, Akanuma SI. Upregulation of P-Glycoprotein and Breast Cancer Resistance Protein Activity in Newly Developed in Vitro Rat Blood-Brain Barrier Spheroids Using Advanced Glycation End-Products. Biol Pharm Bull 2024; 47:1893-1903. [PMID: 39551527 DOI: 10.1248/bpb.b24-00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The blood-brain barrier (BBB) is a dynamic interface controlling the compound translocation between the blood and the brain, thereby maintaining neural homeostasis. There is cumulative evidence that BBB impairment during diabetes mellitus (DM) takes part in the progression of cognitive dementia. As tight junction proteins and ATP-binding cassette (ABC) transporters regulate substance exchange between the circulating blood and brain, the expression and function of these molecules under DM should be fully clarified. To understand the alteration of ABC transporter function in the BBB under DM, in vitro multicellular rat BBB spheroids consisting of conditionally immortalized rat brain capillary endothelial cells, astrocytes, and pericytes were newly developed. Immunostaining and permeability analysis of paracellular transport markers suggested the construction of tight junctions on the surface of the BBB spheroids. Transport analyses using fluorescence substrates of P-glycoprotein (P-gp), the breast cancer resistance protein (BCRP), and multidrug resistance-associated protein 4 (MRP4) indicate the functional expression of these transporters in the spheroids. After treatment with advanced glycation end-products (AGEs), involved in various signals during DM, the mRNA expression of tight junction molecules and ABC transporters in the BBB spheroids was upregulated. Furthermore, the functional changes in P-gp and BCRP in the BBB spheroids exposed to AGEs were canceled by the inhibitors of the receptor for AGEs (RAGE). These results suggest that AGE-RAGE interaction upregulates P-gp and BCRP function in the BBB.
Collapse
Affiliation(s)
- Hiroki Endo
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Miki Ogasawara
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Yuma Tega
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Yoshiyuki Kubo
- Laboratory of Drug Disposition & Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University
| | - Ken-Ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Shin-Ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
3
|
Meng M, Jiang Y, Wang Y, Huo R, Ma N, Shen X, Chang G. β-carotene targets IP3R/GRP75/VDAC1-MCU axis to renovate LPS-induced mitochondrial oxidative damage by regulating STIM1. Free Radic Biol Med 2023; 205:25-46. [PMID: 37270031 DOI: 10.1016/j.freeradbiomed.2023.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 06/05/2023]
Abstract
Endoplasmic reticulum (ER) and mitochondria are the main sites for the storage and regulation of Ca2+ homeostasis. An imbalance of Ca2+ homeostasis can cause ER stress and mitochondrial dysfunction, thereby inducing apoptosis. The store-operated calcium entry (SOCE) is the main channel for extracellular calcium influx. Mitochondria-associated endoplasmic reticulum (MAM) is an important agent for Ca2+ transfer from the ER to the mitochondria. Therefore, regulation of SOCE and MAMs has potential therapeutic value for disease prevention and treatment. In this study, bovine mammary epithelial cells (BMECs) and mice were used as models to explore the mechanisms of β-carotene to relieve ER stress and mitochondrial dysfunction. BAPTA-AM, EGTA (Ca2+ inhibitor), and BTP2 (SOCE channel inhibitor) alleviated ER stress and mitochondrial oxidative damage induced by increased intracellular Ca2+ levels after lipopolysaccharide (LPS) stimulation. Furthermore, inhibition of ER stress by 4-PBA (ER stress inhibitor), 2-APB (IP3R inhibitor), and ruthenium red (mitochondrial calcium uniporter (MCU) inhibitor) restored mitochondrial function by reducing mitochondrial ROS. Our data also confirm that β-carotene targeted STIM1 and IP3R channels to repair LPS-induced ER stress and mitochondrial disorders. Consistent with the in vitro study, in vito experiments in mice further showed that β-carotene attenuated LPS-induced ER stress and mitochondrial oxidative damage by inhibiting the expression of STIM1 and ORAI1, and reducing the level of Ca2+ in mouse mammary glands. Therefore, ER stress-mitochondrial oxidative damage mediated by the STIM1-ER-IP3R/GRP75/VDAC1-MCU axis plays an vital role in the development of mastitis. Our results provided novel ideas and therapeutic targets for the prevention and treatment of mastitis.
Collapse
Affiliation(s)
- Meijuan Meng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Yijin Jiang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Yan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Ran Huo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Nana Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Xiangzhen Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Guangjun Chang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| |
Collapse
|
4
|
Sakasai-Sakai A, Takeda K, Takeuchi M. Involvement of Intracellular TAGE and the TAGE-RAGE-ROS Axis in the Onset and Progression of NAFLD/NASH. Antioxidants (Basel) 2023; 12:antiox12030748. [PMID: 36978995 PMCID: PMC10045097 DOI: 10.3390/antiox12030748] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The repeated excessive intake of sugar, a factor that contributes to the onset of nonalcoholic fatty liver disease (NAFLD) and its progression to the chronic form of nonalcoholic steatohepatitis (NASH), markedly increases the hepatocyte content of glyceraldehyde (GA), a glucose/fructose metabolic intermediate. Toxic advanced glycation end-products (toxic AGEs, TAGE) are synthesized by cross-linking reactions between the aldehyde group of GA and the amino group of proteins, and their accumulation has been implicated in the development of NAFLD/NASH and hepatocellular carcinoma (HCC). Our previous findings not only showed that hepatocyte disorders were induced by the intracellular accumulation of TAGE, but they also indicated that extracellular leakage resulted in elevated TAGE concentrations in circulating fluids. Interactions between extracellular TAGE and receptor for AGEs (RAGE) affect intracellular signaling and reactive oxygen species (ROS) production, which may, in turn, contribute to the pathological changes observed in NAFLD/NASH. RAGE plays a role in the effects of the extracellular leakage of TAGE on the surrounding cells, which ultimately promote the onset and progression of NAFLD/NASH. This review describes the relationships between intracellular TAGE levels and hepatocyte and hepatic stellate cell (HSC) damage as well as the TAGE-RAGE-ROS axis in hepatocytes, HSC, and HCC cells. The "TAGE theory" will provide novel insights for future research on NAFLD/NASH.
Collapse
Affiliation(s)
- Akiko Sakasai-Sakai
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Ishikawa 920-0293, Japan
| | - Kenji Takeda
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Ishikawa 920-0293, Japan
| | - Masayoshi Takeuchi
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Ishikawa 920-0293, Japan
| |
Collapse
|
5
|
Takeuchi M, Sakasai-Sakai A, Takata T, Takino JI, Koriyama Y. Effects of Toxic AGEs (TAGE) on Human Health. Cells 2022; 11:2178. [PMID: 35883620 PMCID: PMC9317028 DOI: 10.3390/cells11142178] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 02/05/2023] Open
Abstract
The habitual and excessive consumption of sugar (i.e., sucrose and high-fructose corn syrup, HFCS) is associated with the onset and progression of lifestyle-related diseases (LSRD). Advanced glycation end-products (AGEs) have recently been the focus of research on the factors contributing to LSRD. Approaches that inhibit the effects of AGEs may be used to prevent and/or treat LSRD; however, since the structures of AGEs vary depending on the type of reducing sugars or carbonyl compounds to which they respond, difficulties are associated with verifying that AGEs are an etiological factor. Cytotoxic AGEs derived from glyceraldehyde, a triose intermediate in the metabolism of glucose and fructose, have been implicated in LSRD and are called toxic AGEs (TAGE). A dietary imbalance (the habitual and excessive intake of sucrose, HFCS, or dietary AGEs) promotes the generation/accumulation of TAGE in vivo. Elevated circulating levels of TAGE have been detected in non-diabetics and diabetics, indicating a strong relationship between the generation/accumulation of TAGE in vivo and the onset and progression of LSRD. We herein outline current findings on "TAGE as a new target" for human health.
Collapse
Affiliation(s)
- Masayoshi Takeuchi
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Kahoku 920-0293, Ishikawa, Japan;
| | - Akiko Sakasai-Sakai
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Kahoku 920-0293, Ishikawa, Japan;
| | - Takanobu Takata
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Kahoku 920-0293, Ishikawa, Japan;
| | - Jun-ichi Takino
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure 737-0112, Hiroshima, Japan;
| | - Yoshiki Koriyama
- Graduate School and Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki, Suzuka 513-8670, Mie, Japan;
| |
Collapse
|
6
|
Little K, Llorián-Salvador M, Scullion S, Hernández C, Simó-Servat O, Del Marco A, Bosma E, Vargas-Soria M, Carranza-Naval MJ, Van Bergen T, Galbiati S, Viganò I, Musi CA, Schlingemann R, Feyen J, Borsello T, Zerbini G, Klaassen I, Garcia-Alloza M, Simó R, Stitt AW. Common pathways in dementia and diabetic retinopathy: understanding the mechanisms of diabetes-related cognitive decline. Trends Endocrinol Metab 2022; 33:50-71. [PMID: 34794851 DOI: 10.1016/j.tem.2021.10.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/06/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes (T2D) is associated with multiple comorbidities, including diabetic retinopathy (DR) and cognitive decline, and T2D patients have a significantly higher risk of developing Alzheimer's disease (AD). Both DR and AD are characterized by a number of pathological mechanisms that coalesce around the neurovascular unit, including neuroinflammation and degeneration, vascular degeneration, and glial activation. Chronic hyperglycemia and insulin resistance also play a significant role, leading to activation of pathological mechanisms such as increased oxidative stress and the accumulation of advanced glycation end-products (AGEs). Understanding these common pathways and the degree to which they occur simultaneously in the brain and retina during diabetes will provide avenues to identify T2D patients at risk of cognitive decline.
Collapse
Affiliation(s)
- Karis Little
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - María Llorián-Salvador
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Sarah Scullion
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Cristina Hernández
- Vall d'Hebron Research Institute and CIBERDEM (ISCIII), Barcelona, Spain
| | - Olga Simó-Servat
- Vall d'Hebron Research Institute and CIBERDEM (ISCIII), Barcelona, Spain
| | - Angel Del Marco
- Division of Physiology, School of Medicine, Instituto de Investigacion Biomedica de Cadiz (INIBICA), Universidad de Cadiz, Cadiz, Spain
| | - Esmeralda Bosma
- Ocular Angiogenesis Group, University of Amsterdam, Amsterdam, The Netherlands
| | - Maria Vargas-Soria
- Division of Physiology, School of Medicine, Instituto de Investigacion Biomedica de Cadiz (INIBICA), Universidad de Cadiz, Cadiz, Spain
| | - Maria Jose Carranza-Naval
- Division of Physiology, School of Medicine, Instituto de Investigacion Biomedica de Cadiz (INIBICA), Universidad de Cadiz, Cadiz, Spain
| | | | - Silvia Galbiati
- Complications of Diabetes Unit, Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Ilaria Viganò
- Complications of Diabetes Unit, Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Clara Alice Musi
- Università Degli Studi di Milano and Istituto di Ricerche Farmacologiche Mario Negri- IRCCS, Milano, Italy
| | - Reiner Schlingemann
- Ocular Angiogenesis Group, University of Amsterdam, Amsterdam, The Netherlands; Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Lausanne, Switzerland
| | | | - Tiziana Borsello
- Università Degli Studi di Milano and Istituto di Ricerche Farmacologiche Mario Negri- IRCCS, Milano, Italy
| | - Gianpaolo Zerbini
- Complications of Diabetes Unit, Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, University of Amsterdam, Amsterdam, The Netherlands
| | - Monica Garcia-Alloza
- Division of Physiology, School of Medicine, Instituto de Investigacion Biomedica de Cadiz (INIBICA), Universidad de Cadiz, Cadiz, Spain
| | - Rafael Simó
- Vall d'Hebron Research Institute and CIBERDEM (ISCIII), Barcelona, Spain.
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK.
| | | |
Collapse
|
7
|
Takeuchi M, Sakasai-Sakai A, Takata T, Takino JI, Koriyama Y, Kikuchi C, Furukawa A, Nagamine K, Hori T, Matsunaga T. Intracellular Toxic AGEs (TAGE) Triggers Numerous Types of Cell Damage. Biomolecules 2021; 11:biom11030387. [PMID: 33808036 PMCID: PMC8001776 DOI: 10.3390/biom11030387] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
The habitual intake of large amounts of sugar, which has been implicated in the onset/progression of lifestyle-related diseases (LSRD), induces the excessive production of glyceraldehyde (GA), an intermediate of sugar metabolism, in neuronal cells, hepatocytes, and cardiomyocytes. Reactions between GA and intracellular proteins produce toxic advanced glycation end-products (toxic AGEs, TAGE), the accumulation of which contributes to various diseases, such as Alzheimer’s disease, non-alcoholic steatohepatitis, and cardiovascular disease. The cellular leakage of TAGE affects the surrounding cells via the receptor for AGEs (RAGE), thereby promoting the onset/progression of LSRD. We demonstrated that the intracellular accumulation of TAGE triggered numerous cellular disorders, and also that TAGE leaked into the extracellular space, thereby increasing extracellular TAGE levels in circulating fluids. Intracellular signaling and the production of reactive oxygen species are affected by extracellular TAGE and RAGE interactions, which, in turn, facilitate the intracellular generation of TAGE, all of which may contribute to the pathological changes observed in LSRD. In this review, we discuss the relationships between intracellular TAGE levels and numerous types of cell damage. The novel concept of the “TAGE theory” is expected to open new perspectives for research into LSRD.
Collapse
Affiliation(s)
- Masayoshi Takeuchi
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Ishikawa 920-0293, Japan; (A.S.-S.); (T.T.)
- Correspondence: ; Tel.: +81-76-218-8456
| | - Akiko Sakasai-Sakai
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Ishikawa 920-0293, Japan; (A.S.-S.); (T.T.)
| | - Takanobu Takata
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Ishikawa 920-0293, Japan; (A.S.-S.); (T.T.)
| | - Jun-ichi Takino
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan; (J.-i.T.); (T.H.)
| | - Yoshiki Koriyama
- Graduate School and Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki, Suzuka, Mie 513-8670, Japan; (Y.K.); (A.F.)
| | - Chigusa Kikuchi
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan; (C.K.); (T.M.)
| | - Ayako Furukawa
- Graduate School and Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki, Suzuka, Mie 513-8670, Japan; (Y.K.); (A.F.)
| | - Kentaro Nagamine
- Department of Clinical Nutrition, Faculty of Health Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan;
| | - Takamitsu Hori
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan; (J.-i.T.); (T.H.)
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan; (C.K.); (T.M.)
| |
Collapse
|
8
|
Dobi A, Rosanaly S, Devin A, Baret P, Meilhac O, Harry GJ, d'Hellencourt CL, Rondeau P. Advanced glycation end-products disrupt brain microvascular endothelial cell barrier: The role of mitochondria and oxidative stress. Microvasc Res 2020; 133:104098. [PMID: 33075405 DOI: 10.1016/j.mvr.2020.104098] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/06/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022]
Abstract
During diabetes mellitus, advanced glycation end-products (AGEs) are major contributors to the development of alterations in cerebral capillaries, leading to the disruption of the blood-brain barrier (BBB). Consequently, this is often associated with an amplified oxidative stress response in microvascular endothelial cells. As a model to mimic brain microvasculature, the bEnd.3 endothelial cell line was used to investigate cell barrier function. Cells were exposed to native bovine serum albumin (BSA) or modified BSA (BSA-AGEs). In the presence or absence of the antioxidant compound, N-acetyl-cysteine, cell permeability was assessed by FITC-dextran exclusion, intracellular free radical formation was monitored with H2DCF-DA probe, and mitochondrial respiratory and redox parameters were analyzed. We report that, in the absence of alterations in cell viability, BSA-AGEs contribute to an increase in endothelial cell barrier permeability and a marked and prolonged oxidative stress response. Decreased mitochondrial oxygen consumption was associated with these alterations and may contribute to reactive oxygen species production. These results suggest the need for further research to explore therapeutic interventions to restore mitochondrial functionality in microvascular endothelial cells to improve brain homeostasis in pathological complications associated with glycation.
Collapse
Affiliation(s)
- Anthony Dobi
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, 97490 Sainte-Clotilde, France; Université de La Réunion, UMR 1188, 97490 Sainte-Clotilde, France
| | - Sarah Rosanaly
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, 97490 Sainte-Clotilde, France; Université de La Réunion, UMR 1188, 97490 Sainte-Clotilde, France
| | - Anne Devin
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Université de Bordeaux, F-33000 Bordeaux, France
| | - Pascal Baret
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, 97490 Sainte-Clotilde, France; Université de La Réunion, UMR 1188, 97490 Sainte-Clotilde, France
| | - Olivier Meilhac
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, 97490 Sainte-Clotilde, France; Université de La Réunion, UMR 1188, 97490 Sainte-Clotilde, France; CHU de La Réunion, Centre d'Investigation Clinique, 97400 Saint-Denis, France
| | - G Jean Harry
- Neurotoxicology Group, National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, 27709 Research Triangle Park, NC, USA
| | - Christian Lefebvre d'Hellencourt
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, 97490 Sainte-Clotilde, France; Université de La Réunion, UMR 1188, 97490 Sainte-Clotilde, France; Neurotoxicology Group, National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, 27709 Research Triangle Park, NC, USA.
| | - Philippe Rondeau
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, 97490 Sainte-Clotilde, France; Université de La Réunion, UMR 1188, 97490 Sainte-Clotilde, France.
| |
Collapse
|
9
|
RAGE-Specific Inhibitor FPS-ZM1 Attenuates AGEs-Induced Neuroinflammation and Oxidative Stress in Rat Primary Microglia. Neurochem Res 2017; 42:2902-2911. [DOI: 10.1007/s11064-017-2321-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/22/2017] [Accepted: 06/02/2017] [Indexed: 12/13/2022]
|
10
|
Takeuchi M, Takino JI, Sakasai-Sakai A, Takata T, Tsutsumi M. Toxic AGE (TAGE) Theory for the Pathophysiology of the Onset/Progression of NAFLD and ALD. Nutrients 2017; 9:E634. [PMID: 28632197 PMCID: PMC5490613 DOI: 10.3390/nu9060634] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/06/2017] [Accepted: 06/16/2017] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) are among the most common causes of chronic liver diseases in the westernized world. NAFLD and ALD are frequently accompanied by extrahepatic complications, including hepatocellular carcinoma and cardiovascular diseases, which have a negative impact on patient survival. The chronic ingestion of an excessive daily diet containing sugar/high-fructose corn syrup increases the level of the fructose/glucose metabolite, glyceraldehyde (GA), while the chronic consumption of an excessive number of alcoholic beverages increases the level of the alcohol metabolite, acetaldehyde (AA) in the liver. GA and AA are known to react non-enzymatically with the ε- or α-amino groups of proteins, thereby generating advanced glycation end-products (AGEs, GA-AGEs, and AA-AGEs, respectively) in vivo. The interaction between GA-AGEs and the receptor for AGEs (RAGE) alters intracellular signaling, gene expression, and the release of pro-inflammatory molecules and also elicits the production of reactive oxygen species by human hepatocytes and hepatic stellate cells, all of which may contribute to the pathological changes associated with chronic liver diseases. We herein discuss the pathophysiological roles of GA-AGEs and AA-AGEs (toxic AGEs, TAGE) and a related novel theory for preventing the onset/progression of NAFLD and ALD.
Collapse
Affiliation(s)
- Masayoshi Takeuchi
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa 920-0293, Japan.
| | - Jun-Ichi Takino
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1, Hirokoshingai, Kure, Hiroshima 737-0112, Japan.
| | - Akiko Sakasai-Sakai
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa 920-0293, Japan.
| | - Takanobu Takata
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa 920-0293, Japan.
| | - Mikihiro Tsutsumi
- Department of Hepatology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa 920-0293, Japan.
| |
Collapse
|
11
|
Oliveira WH, Nunes AK, França MER, Santos LA, Lós DB, Rocha SW, Barbosa KP, Rodrigues GB, Peixoto CA. Effects of metformin on inflammation and short-term memory in streptozotocin-induced diabetic mice. Brain Res 2016; 1644:149-60. [PMID: 27174003 DOI: 10.1016/j.brainres.2016.05.013] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/29/2016] [Accepted: 05/08/2016] [Indexed: 01/11/2023]
Abstract
The aim of the present study was to analyze the action of metformin on short-term memory, glial cell activation and neuroinflammation caused by experimental diabetic encephalopathy in C57BL/6 mice. Diabetes was induced by the intraperitoneal injection of a dose of 90mg/kg of streptozotocin on two successive days. Mice with blood glucose levels ≥200dl/ml were considered diabetic and were given metformin hydrochloride at doses of 100mg/kg and 200mg/kg (by gavage, twice daily) for 21 days. On the final day of treatment, the mice underwent a T-maze test. On the 22nd day of treatment all the animals were anesthetized and euthanized. Diabetic animals treated with metformin had a higher spatial memory score. The hippocampus of the diabetic animals presented reactive gliosis, neuronal loss, NF-kB signaling activation, and high levels of IL-1 and VEGF. In addition, the T-maze test scores of these animals were low. Treatment with metformin reduced the expression of GFAP, Iba-1 (astrocyte and microglial markers) and the inflammation markers (p-IKB, IL-1 and VEGF), while enhancing p-AMPK and eNOS levels and increasing neuronal survival (Fox-1 and NeuN). Treatment with metformin also improved the spatial memory scores of diabetic animals. In conclusion, the present study showed that metformin can significantly reduce neuroinflammation and can decrease the loss of neurons in the hippocampus of diabetic animals, which can subsequently promote improvements in spatial memory.
Collapse
Affiliation(s)
- Wilma Helena Oliveira
- Laboratório de Ultraestrutura, Centro de Pesquisas Aggeu Magalhães (CPqAM), PE, Brazil; Programa de Pós-graduação em Ciências Biológicas, Centro de Biociências, Universidade Federal de Pernambuco - UFPE, PE, Brazil.
| | - Ana Karolina Nunes
- Laboratório de Ultraestrutura, Centro de Pesquisas Aggeu Magalhães (CPqAM), PE, Brazil
| | - Maria Eduarda Rocha França
- Laboratório de Ultraestrutura, Centro de Pesquisas Aggeu Magalhães (CPqAM), PE, Brazil; Programa de Pós-graduação em Ciências Biológicas, Centro de Biociências, Universidade Federal de Pernambuco - UFPE, PE, Brazil
| | - Laise Aline Santos
- Laboratório de Ultraestrutura, Centro de Pesquisas Aggeu Magalhães (CPqAM), PE, Brazil
| | - Deniele Bezerra Lós
- Laboratório de Ultraestrutura, Centro de Pesquisas Aggeu Magalhães (CPqAM), PE, Brazil; Laboratório de Plasticidade Neuromuscular, Universidade Federal de Pernambuco - UFPE, PE, Brazil
| | - Sura Wanessa Rocha
- Laboratório de Ultraestrutura, Centro de Pesquisas Aggeu Magalhães (CPqAM), PE, Brazil
| | | | - Gabriel Barros Rodrigues
- Laboratório de Ultraestrutura, Centro de Pesquisas Aggeu Magalhães (CPqAM), PE, Brazil; Programa de Pós-graduação em Ciências Biológicas, Centro de Biociências, Universidade Federal de Pernambuco - UFPE, PE, Brazil
| | | |
Collapse
|
12
|
miR-223 contributes to the AGE-promoted apoptosis via down-regulating insulin-like growth factor 1 receptor in osteoblasts. Biosci Rep 2016; 36:BSR20150271. [PMID: 26893485 PMCID: PMC4820791 DOI: 10.1042/bsr20150271] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/25/2016] [Indexed: 11/17/2022] Open
Abstract
miR-223 inhibits the advanced glycation end product (AGE)-promoted apoptosis in osteoblasts. Advanced glycation end products (AGEs) have been confirmed to induce bone quality deterioration in diabetes mellitus (DM), and to associate with abnormal expression of miRNAs in DM patients or in vitro. Recently, miRNAs have been recognized to mediate the onset or progression of DM. In the present study, we investigated the regulation on miR-223 level by AGE-BSA treatment in osteoblast-like MC3T3-E1 cells, with real-time quantitative PCR assay. And then we examined the inhibition of insulin-like growth factor 1 receptor (IGF-1R) expression by miR-223, via targeting of the 3′ UTR of IGF-1R with real-time quantitative PCR, western blotting and luciferase reporter assay. Then we explored the regulation of miR-223 and IGF-1R levels, via the lentivirus-mediated miR-223 inhibition and IGF-1R overexpression in the AGE-BSA-induced apoptosis in MC3T3-E1 cells. It was demonstrated that AGE-BSA treatment with more than 100 μg/ml significantly up-regulated miR-223 level, whereas down-regulated IGF-1R level in MC3T3-E1 cells. And the up-regulated miR-223 down-regulated IGF-1R expression in both mRNA and protein levels, via targeting the 3′ UTR of IGF-1R. Moreover, though the AGE-BSA treatment promoted apoptosis in MC3T3-E1 cells, the IGF-1R overexpression or the miR-223 inhibition significantly attenuated the AGE-BSA-promoted apoptosis in MC3T3-E1 cells. In summary, our study recognized the promotion of miR-223 level by AGE-BSA treatment in osteoblast-like MC3T3-E1 cells. The promoted miR-223 targeted IGF-1R and mediated the AGE-BSA-induced apoptosis in MC3T3-E1 cells. It implies that miR-223 might be an effective therapeutic target to antagonize the AGE-induced damage to osteoblasts in DM.
Collapse
|
13
|
Wu XD, Liu WL, Zeng K, Lei HY, Zhang QG, Zhou SQ, Xu SY. Advanced glycation end products activate the miRNA/RhoA/ROCK2 pathway in endothelial cells. Microcirculation 2015; 21:178-86. [PMID: 25279428 DOI: 10.1111/micc.12104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/25/2013] [Indexed: 02/06/2023]
Abstract
OBJECTIVE AGEs induce endothelial cell dysfunction in HUVECs, resulting in ROS production and triggering apoptosis. This study sought to identify miRNAs involved in AGE-induced endothelial cell injury. METHODS Microarray analysis to identify miRNAs altered with AGE stimulation was undertaken, and results were confirmed using real-time quantitative polymerase chain reaction. The interaction of miRNAs with the RhoA and ROCK2 genes was confirmed using luciferase assays, and their effects on expression were determined using Western blot analysis. The effects of AGEs and miRNAs on endothelial cell permeability were assessed. RESULTS AGEs induced ROS production and apoptosis of HUVECs (p < 0.05). AGE-induced miR-200b and miR-200c downregulation led to increased expression of their target genes, RhoA and ROCK, respectively. AGE-induced endothelial cell permeability and F-actin expression were significantly reduced with both miR-200b and miR-200c mimics (p < 0.05). Furthermore, AGE-induced stress fiber formation was reduced in cells treated with miR-200b mimics. CONCLUSION miR-200b and miR-200c are suppressed in AGE-induced endothelial cell injury, resulting in unregulated RhoA/ROCK2 signaling. Further studies are necessary to evaluate the therapeutic value of targeting miRNAs or their target genes for treatment of vascular diseases.
Collapse
Affiliation(s)
- Xiao-Dan Wu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Zhang W, Xu Q, Wu J, Zhou X, Weng J, Xu J, Wang W, Huang Q, Guo X. Role of Src in Vascular Hyperpermeability Induced by Advanced Glycation End Products. Sci Rep 2015; 5:14090. [PMID: 26381822 PMCID: PMC4585381 DOI: 10.1038/srep14090] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/18/2015] [Indexed: 12/20/2022] Open
Abstract
The disruption of microvascular barrier in response to advanced glycation end products (AGEs) stimulation contributes to vasculopathy associated with diabetes mellitus. Here, to study the role of Src and its association with moesin, VE-cadherin and focal adhesion kinase (FAK) in AGE-induced vascular hyperpermeability, we verified that AGE induced phosphorylation of Src, causing increased permeability in HUVECs. Cells over-expressed Src displayed a higher permeability after AGE treatment, accompanied with more obvious F-actin rearrangement. Activation of Src with pcDNA3/flag-SrcY530F alone duplicated these effects. Inhibition of Src with siRNA, PP2 or pcDNA3/flag-SrcK298M abolished these effects. The pulmonary microvascular endothelial cells (PMVECs) isolated from receptor for AGEs (RAGE)-knockout mice decreased the phosphorylation of Src and attenuated the barrier dysfunction after AGE-treatment. In vivo study showed that the exudation of dextran from mesenteric venules was increased in AGE-treated mouse. This was attenuated in RAGE knockout or PP2-pretreated mice. Up-regulation of Src activity induced the phosphorylation of moesin, as well as activation and dissociation of VE-cadherin, while down-regulation of Src abolished these effects. FAK was also proved to interact with Src in HUVECs stimulated with AGEs. Our studies demonstrated that Src plays a critical role in AGE-induced microvascular hyperpermeability by phosphorylating moesin, VE-cadherin, and FAK respectively.
Collapse
Affiliation(s)
- Weijin Zhang
- Department of Pathophysiology, Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou 510515, China
| | - Qiulin Xu
- Department of Intensive Care Unit, General Hospital of Guangzhou Military Command, Guangzhou, 510010, China.,Postdoctoral Workstation, Huabo Bio-pharmaceutical Research Institute, Guangzhou 510515, China
| | - Jie Wu
- Department of Pathophysiology, Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou 510515, China
| | - Xiaoyan Zhou
- Department of Pathophysiology, Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou 510515, China
| | - Jie Weng
- Department of Pathophysiology, Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou 510515, China
| | - Jing Xu
- Department of Pathophysiology, Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou 510515, China
| | - Weiju Wang
- Department of Pathophysiology, Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou 510515, China
| | - Qiaobing Huang
- Department of Pathophysiology, Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou 510515, China
| | - Xiaohua Guo
- Department of Pathophysiology, Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
15
|
RhoA/mDia-1/profilin-1 signaling targets microvascular endothelial dysfunction in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2015; 253:669-80. [PMID: 25791356 DOI: 10.1007/s00417-015-2985-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 02/21/2015] [Accepted: 03/02/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a major cause of blindness in the working-age populations of developed countries, and effective treatments and prevention measures have long been the foci of study. Patients with DR invariably demonstrate impairments of the retinal microvascular endothelium. Many observational and preclinical studies have shown that angiogenesis and apoptosis play crucial roles in the pathogenesis of DR. Increasing evidence suggests that in DR, the small guanosine-5'-triphosphate-binding protein RhoA activates its downstream targets mammalian Diaphanous homolog 1 (mDia-1) and profilin-1, thus affecting important cellular functions, including cell morphology, motility, secretion, proliferation, and gene expression. However, the specific underlying mechanism of disease remains unclear. CONCLUSION This review focuses on the RhoA/mDia-1/profilin-1 signaling pathway that specifically triggers endothelial dysfunction in diabetic patients. Recently, RhoA and profilin-1 signaling has attracted a great deal of attention in the context of diabetes-related research. However, the precise molecular mechanism by which the RhoA/mDia-1/profilin-1 pathway is involved in progression of microvascular endothelial dysfunction (MVED) during DR has not been determined. This review briefly describes each feature of the cascade before exploring the most recent findings on how the pathway may trigger endothelial dysfunction in DR. When the underlying mechanisms are understood, novel therapies seeking to restore the endothelial homeostasis comprised in DR will become possible.
Collapse
|
16
|
Wang XL, Yu T, Yan QC, Wang W, Meng N, Li XJ, Luo YH. AGEs Promote Oxidative Stress and Induce Apoptosis in Retinal Pigmented Epithelium Cells RAGE-dependently. J Mol Neurosci 2015; 56:449-60. [PMID: 25682235 DOI: 10.1007/s12031-015-0496-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/13/2015] [Indexed: 12/11/2022]
Abstract
Advanced glycation end products (AGEs) are extremely accumulated in diabetes mellitus, particularly in retinal vascular and epithelium cells, and are confirmed to contribute to diabetic retinopathy (DR). In the present study, we determined the promotion by AGEs to the oxidative stress and mitochondrial dysfunction in retinal pigmented epithelium ARPE-19 cells and investigated the influence by the knockdown or the overexpression of receptor for AGEs (RAGE) on the AGE-promoted oxidative stress and mitochondrial dysfunction. Furthermore, we determined the induction by AGEs to the cell apoptosis and to the activation of B-cell lymphoma 2 (Bcl-2) families in the AGE-BSA-induced apoptosis, and examined the RAGE-dependence in such induction. Results demonstrated that AGE-BSA upregulated the hydrogen peroxide production and induced mitochondrial dysfunction in ARPE-19 cells, dose-dependently. And the further investigation indicated that the AGE-RAGE interaction was required for the induction of oxidative stress and mitochondrial dysfunction. Moreover, the AGE-BSA treatment promoted a significantly high level of apoptotic cells, and the Bcl-2 family was implicated in the AGE-BSA-induced apoptosis, there was a significant high level of Cyt c release, Bcl-2-associated X protein (Bax) induction, Bcl-2 reduction, and caspase 9 activation in the AGE-BSA-treated cells. In conclusion, the present study recognized the apoptosis induction by AGE-BSAs in the retinal epithelium ARPE-19 cells, RAGE-dependently. The mitochondrial dysfunction was induced, and the Bcl-2 family was deregulated during the AGE-BSA-induced ARPE-19 cell apoptosis.
Collapse
Affiliation(s)
- Xin-Ling Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital, China Medical University, No. 11 Xinhua Road, Heping District, Shenyang, 110005, China,
| | | | | | | | | | | | | |
Collapse
|
17
|
Yamagishi SI, Matsui T. Role of receptor for advanced glycation end products (RAGE) in liver disease. Eur J Med Res 2015; 20:15. [PMID: 25888859 PMCID: PMC4328656 DOI: 10.1186/s40001-015-0090-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/22/2015] [Indexed: 02/06/2023] Open
Abstract
Receptor for advanced glycation end products (RAGE) belongs to a immunoglobulin superfamily of cell surface molecules that could bind to a number of ligands such as advanced glycation end products, high-mobility group protein box-1, S-100 calcium-binding protein, and amyloid-β-protein, inducing a series of signal transduction cascades, and being involved in a variety of cellular function, including inflammation, proliferation, apoptosis, angiogenesis, migration, and fibrosis. RAGE is expressed in hepatic stellate cells and hepatocytes and hepatoma cells. There is accumulating evidence that engagement of RAGE with various ligands elicits oxidative stress generation and subsequently activates the RAGE downstream pathway in the liver, thereby contributing to the development and progression of numerous types of hepatic disorders. These observations suggest that inhibition of the RAGE signaling pathway could be a novel therapeutic target for liver diseases. This article summarizes the pathological role of RAGE in hepatic insulin resistance, steatosis and fibrosis, ischemic and non-ischemic liver injury, and hepatocellular carcinoma growth and metastasis and its therapeutic interventions for these devastating disorders.
Collapse
Affiliation(s)
- Sho-ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan.
| | - Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan.
| |
Collapse
|
18
|
Yamagishi SI, Matsui T, Fukami K. Role of Receptor for Advanced Glycation End Products (RAGE) and Its Ligands in Cancer Risk. Rejuvenation Res 2015; 18:48-56. [DOI: 10.1089/rej.2014.1625] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Sho-ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| | - Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| | - Kei Fukami
- Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
19
|
Roca F, Grossin N, Chassagne P, Puisieux F, Boulanger E. Glycation: the angiogenic paradox in aging and age-related disorders and diseases. Ageing Res Rev 2014; 15:146-60. [PMID: 24742501 DOI: 10.1016/j.arr.2014.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/26/2014] [Accepted: 03/31/2014] [Indexed: 01/09/2023]
Abstract
Angiogenesis is generally a quiescent process which, however, may be modified by different physiological and pathological conditions. The "angiogenic paradox" has been described in diabetes because this disease impairs the angiogenic response in a manner that differs depending on the organs involved and disease evolution. Aging is also associated with pro- and antiangiogenic processes. Glycation, the post-translational modification of proteins, increases with aging and the progression of diabetes. The effect of glycation on angiogenesis depends on the type of glycated proteins and cells involved. This complex link could be responsible for the "angiogenic paradox" in aging and age-related disorders and diseases. Using diabetes as a model, the present work has attempted to review the age-related angiogenic paradox, in particular the effects of glycation on angiogenesis during aging.
Collapse
Affiliation(s)
- F Roca
- Vascular Aging Biology, Blood-Vessel Interface and Vascular Repair Unit, Lille School of Medicine, Lille2 University, Lille, France; Geriatrics Department, Rouen University Hospital, Rouen, France.
| | - N Grossin
- Vascular Aging Biology, Blood-Vessel Interface and Vascular Repair Unit, Lille School of Medicine, Lille2 University, Lille, France
| | - P Chassagne
- Geriatrics Department, Rouen University Hospital, Rouen, France
| | - F Puisieux
- Vascular Aging Biology, Blood-Vessel Interface and Vascular Repair Unit, Lille School of Medicine, Lille2 University, Lille, France; Gerontology Clinic, Les Bateliers Geriatric Hospital, Lille University Hospital, Lille, France
| | - E Boulanger
- Vascular Aging Biology, Blood-Vessel Interface and Vascular Repair Unit, Lille School of Medicine, Lille2 University, Lille, France; Gerontology Clinic, Les Bateliers Geriatric Hospital, Lille University Hospital, Lille, France
| |
Collapse
|
20
|
Takeshita T, Nakagawa S, Tatsumi R, So G, Hayashi K, Tanaka K, Deli MA, Nagata I, Niwa M. Cilostazol attenuates ischemia–reperfusion-induced blood–brain barrier dysfunction enhanced by advanced glycation endproducts via transforming growth factor-β1 signaling. Mol Cell Neurosci 2014; 60:1-9. [DOI: 10.1016/j.mcn.2014.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/19/2013] [Accepted: 01/19/2014] [Indexed: 11/30/2022] Open
|
21
|
Puddu A, Sanguineti R, Montecucco F, Viviani GL. Glucagon-like peptide-1 secreting cell function as well as production of inflammatory reactive oxygen species is differently regulated by glycated serum and high levels of glucose. Mediators Inflamm 2014; 2014:923120. [PMID: 24648662 PMCID: PMC3932225 DOI: 10.1155/2014/923120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 12/02/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1), an intestinal hormone contributing to glucose homeostasis, is synthesized by proglucagon and secreted from intestinal neuroendocrine cells in response to nutrients. GLP-1 secretion is impaired in type 2 diabetes patients. Here, we aimed at investigating whether diabetic toxic products (glycated serum (GS) or high levels of glucose (HG)) may affect viability, function, and insulin sensitivity of the GLP-1 secreting cell line GLUTag. Cells were cultured for 5 days in presence or absence of different dilutions of GS or HG. GS and HG (alone or in combination) increased reactive oxygen species (ROS) production and upregulated proglucagon mRNA expression as compared to control medium. Only HG increased total production and release of active GLP-1, while GS alone abrogated secretion of active GLP-1. HG-mediated effects were associated with the increased cell content of the prohormone convertase 1/3 (PC 1/3), while GS alone downregulated this enzyme. HG upregulated Glucokinase (GK) and downregulated SYNTHAXIN-1. GS abrogated SYNTHAXIN-1 and SNAP-25. Finally, high doses of GS alone or in combination with HG reduced insulin-mediated IRS-1 phosphorylation. In conclusion, we showed that GS and HG might regulate different pathways of GLP-1 production in diabetes, directly altering the function of neuroendocrine cells secreting this hormone.
Collapse
Affiliation(s)
- Alessandra Puddu
- Department of Internal Medicine, University of Genoa School of Medicine, IRCCS Azienda Ospedaliera Universitaria San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, 6 Viale Benedetto XV, 16143 Genoa, Italy
| | - Roberta Sanguineti
- Department of Internal Medicine, University of Genoa School of Medicine, IRCCS Azienda Ospedaliera Universitaria San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, 6 Viale Benedetto XV, 16143 Genoa, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa School of Medicine, IRCCS Azienda Ospedaliera Universitaria San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, 6 Viale Benedetto XV, 16143 Genoa, Italy
- Division of Cardiology, Department of Medicine, Geneva University Hospitals, Faculty of Medicine, Foundation for Medical Researches, 64 Avenue de la Roseraie, 1211 Geneva, Switzerland
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1205 Geneva, Switzerland
| | - Giorgio L. Viviani
- Department of Internal Medicine, University of Genoa School of Medicine, IRCCS Azienda Ospedaliera Universitaria San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, 6 Viale Benedetto XV, 16143 Genoa, Italy
| |
Collapse
|
22
|
Shi L, Chen H, Yu X, Wu X. Advanced glycation end products delay corneal epithelial wound healing through reactive oxygen species generation. Mol Cell Biochem 2013; 383:253-9. [DOI: 10.1007/s11010-013-1773-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 08/02/2013] [Indexed: 01/27/2023]
|
23
|
Feng L, Zhu MM, Zhang MH, Wang RS, Tan XB, Song J, Ding SM, Jia XB, Hu SY. Protection of glycyrrhizic acid against AGEs-induced endothelial dysfunction through inhibiting RAGE/NF-κB pathway activation in human umbilical vein endothelial cells. JOURNAL OF ETHNOPHARMACOLOGY 2013; 148:27-36. [PMID: 23528363 DOI: 10.1016/j.jep.2013.03.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/07/2013] [Accepted: 03/08/2013] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice (Glycyrrhiza uralensis roots) is used as a traditional medicine for the treatment of diabetes mellitus and its vascular complications. Glycyrrhizic acid (GA, also known as Glycyrrhizin), a triterpenoid saponin glycoside, is considered to be a bioactive component in Licorice and is beneficial to diabetic vascular complications. AIM OF STUDY The present study was conducted to evaluate the potential protective activities on AGEs-induced endothelial dysfunction, including anti-apoptosis, antioxidant stress and anti-proinflammatory responses, and explore the underlying mechanism. MATERIALS AND METHODS Human umbilical vein endothelial cells (HUVECs) were incubated and pre-treated with GA (10(-9)-10(-6)M) or RAGE-Ab (5μg/ml) in the presence or absence of 200μg/ml AGEs. AO/EB fluorescence staining assay was performed to evaluate anti-apoptosis activity. The superoxide dismutase (SOD) activity and malondialdehyde (MDA) level in cell supernatant were detected by kits while the intracellular reactive oxygen species (ROS) generation was determined by 2,7-dichlorodihydrofluorescin diacetate (DCFH-DA) kit. Immunocytochemistry analysis was designed to determine transforming growth factor beta1(TGF-β1) protein expression while immunofluorescence analysis for RAGE and NF-kB. The protein expressions of TGF-β1, RAGE and NF-kB were analyzed by Western blot analysis. RESULTS Pretreatment with GA at a concentration of 10(-8)-10(-6)M significantly reduced the AGEs-induced apoptosis in HUVECs. GA significantly increased antioxidant enzyme SOD activity and decreased peroxide degradation product MDA level in a dose-dependent manner. Furthermore, GA also remarkably inhibited the overgeneration of AGEs-induced ROS. Both immunocytochemistry analysis and western blot analysis showed that GA significantly decreased the protein expression of poinflammatory cytokine TGF-β1 in a similar manner which RAGE-Ab did. Additionally, AGEs-induced RAGE and NF-kB protein expressions were down-regulated significantly by the pretreatment with GA or RAGE-Ab. CONCLUSION These findings provide evidences that GA possesses protective activity on AGEs-induced endothelial dysfunction, including anti-apoptosis, anti-inflammation and antioxidant stress, via inhibiting RAGE/NF-kB pathway. GA might be an alternative for the prevention and treatment of diabetic vascular complications in an appropriate dosage.
Collapse
Affiliation(s)
- Liang Feng
- Key Laboratory of Delivery Systems of Chinese Meteria Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Shi L, Yu X, Yang H, Wu X. Advanced glycation end products induce human corneal epithelial cells apoptosis through generation of reactive oxygen species and activation of JNK and p38 MAPK pathways. PLoS One 2013; 8:e66781. [PMID: 23776698 PMCID: PMC3680386 DOI: 10.1371/journal.pone.0066781] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 05/13/2013] [Indexed: 01/02/2023] Open
Abstract
Advanced Glycation End Products (AGEs) has been implicated in the progression of diabetic keratopathy. However, details regarding their function are not well understood. In the present study, we investigated the effects of intracellular reactive oxygen species (ROS) and JNK, p38 MAPK on AGE-modified bovine serum albumin (BSA) induced Human telomerase-immortalized corneal epithelial cells (HUCLs) apoptosis. We found that AGE-BSA induced HUCLs apoptosis and increased Bax protein expression, decreased Bcl-2 protein expression. AGE-BSA also induced the expression of receptor for advanced glycation end product (RAGE). AGE-BSA-RAGE interaction induced intracellular ROS generation through activated NADPH oxidase and increased the phosphorylation of p47phox. AGE-BSA induced HUCLs apoptosis was inhibited by pretreatment with NADPH oxidase inhibitors, ROS quencher N-acetylcysteine (NAC) or neutralizing anti-RAGE antibodies. We also found that AGE-BSA induced JNK and p38 MAPK phosphorylation. JNK and p38 MAPK inhibitor effectively blocked AGE-BSA-induced HUCLs apoptosis. In addition, NAC completely blocked phosphorylation of JNK and p38 MAPK induced by AGE-BSA. Our results indicate that AGE-BSA induced HUCLs apoptosis through generation of intracellular ROS and activation of JNK and p38 MAPK pathways.
Collapse
Affiliation(s)
- Long Shi
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoming Yu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China
| | - Hongling Yang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinyi Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
- * E-mail:
| |
Collapse
|
25
|
Edaravone increases regional cerebral blood flow after traumatic brain injury in mice. ACTA NEUROCHIRURGICA. SUPPLEMENT 2013; 118:103-9. [PMID: 23564113 DOI: 10.1007/978-3-7091-1434-6_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Traumatic brain injury (TBI) is a major cause of preventable death and serious morbidity, with subsequent low cerebral blood flow (CBF) considered to be associated with poor prognosis. In the present study, we demonstrated the effect of the free radical scavenger edaravone on regional CBF (rCBF) after TBI. Male mice (C57/BL6) were subjected to TBI using a controlled cortical impactor device. Immediately after TBI, the animals were intravenously administered 3.0 mg/kg of edaravone or a vehicle saline solution. Two-dimensional rCBF images were acquired before and 24 h post-TBI, and were quantified in the ipsilateral and contralateral hemispheres (n = 5 animals per group). CBF in the vehicle-treated animals decreased broadly over the ipsilateral hemisphere, with the region of low rCBF spreading from the frontal cortex to the occipital lobe. The zone of lowest rCBF matched that of the contusion area. The mean rCBF at 24 h for a defined elliptical region between the bregma and lambda was 73.7 ± 5.8 %. In comparison, the reduction of rCBF in edaravone-treated animals was significantly attenuated (93.4 ± 5.7 %, p < 0.05). The edaravone-treated animals also exhibited higher rCBF in the contralateral hemisphere compared with that seen in -vehicle-treated animals. It is suggested that edaravone reduces neuronal damage by scavenging reactive oxygen species (ROS) and by maintaining intact the autoregulation of the cerebral vasculature.
Collapse
|
26
|
Yin QQ, Dong CF, Dong SQ, Dong XL, Hong Y, Hou XY, Luo DZ, Pei JJ, Liu XP. AGEs induce cell death via oxidative and endoplasmic reticulum stresses in both human SH-SY5Y neuroblastoma cells and rat cortical neurons. Cell Mol Neurobiol 2012; 32:1299-309. [PMID: 22717618 PMCID: PMC11498420 DOI: 10.1007/s10571-012-9856-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 05/31/2012] [Indexed: 11/26/2022]
Abstract
Advanced glycation endproducts (AGEs) are elevated in aging and neurodegenerative diseases such as Alzheimer's disease (AD), and they can stimulate the generation of reactive oxygen species (ROSs) via NADPH oxidase, induce oxidative stress that lead to cell death. In the current study, we investigated the molecular events underlying the process that AGEs induce cell death in SH-SY5Y cells and rat cortical neurons. We found: (1) AGEs increase intracellular ROSs; (2) AGEs cause cell death after ROSs increase; (3) oxidative stress-induced cell death is inhibited via the blockage of AGEs receptor (RAGE), the down-regulation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and the increase of scavenging by anti-oxidant alpha-lipoic acid (ALA); (4) endoplasmic reticulum (ER) stress was triggered by AGE-induced oxidative stress, resulting in the activation of C/EBP homologous protein (CHOP) and caspase-12 that consequently initiates cell death, taurine-conjugated ursodeoxycholic acid (TUDCA) inhibited AGE-induced ER stress and cell death. Blocking RAGE-NADPH oxidase, and RAGE-NADPH oxidase-ROSs and ER stress scavenging pathways could efficiently prevent the oxidative and ER stresses, and consequently inhibited cell death. Our results suggest a new prevention and or therapeutic approach in AGE-induced cell death.
Collapse
Affiliation(s)
- Qing-Qing Yin
- Department of Senile Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, 250021 Shandong China
| | - Chuan-Fang Dong
- Department of Senile Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, 250021 Shandong China
| | - Si-Qin Dong
- Department of Senile Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, 250021 Shandong China
| | - Xue-Li Dong
- Department of Anti-Ageing, Provincial Hospital Affiliated to Shandong University, Jinan, 250021 Shandong China
| | - Yan Hong
- Department of Senile Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, 250021 Shandong China
| | - Xun-Yao Hou
- Department of Senile Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, 250021 Shandong China
| | - Ding-Zhen Luo
- Department of Senile Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, 250021 Shandong China
| | - Jin-Jing Pei
- Department of KI-Alzheimer Disease Research Center, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Xue-Ping Liu
- Department of Senile Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, 250021 Shandong China
- Department of Anti-Ageing, Provincial Hospital Affiliated to Shandong University, Jinan, 250021 Shandong China
| |
Collapse
|