1
|
Chang MCJ, Grieder FB. The continued importance of animals in biomedical research. Lab Anim (NY) 2024; 53:295-297. [PMID: 39402213 DOI: 10.1038/s41684-024-01458-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Affiliation(s)
- Michael C J Chang
- Office of Research Infrastructure Programs, Division of Program Coordination, Planning, and Strategic Initiatives, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA.
| | - Franziska B Grieder
- Office of Research Infrastructure Programs, Division of Program Coordination, Planning, and Strategic Initiatives, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Du EJ, Muench MO. A Monocytic Barrier to the Humanization of Immunodeficient Mice. Curr Stem Cell Res Ther 2024; 19:959-980. [PMID: 37859310 PMCID: PMC10997744 DOI: 10.2174/011574888x263597231001164351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 10/21/2023]
Abstract
Mice with severe immunodeficiencies have become very important tools for studying foreign cells in an in vivo environment. Xenotransplants can be used to model cells from many species, although most often, mice are humanized through the transplantation of human cells or tissues to meet the needs of medical research. The development of immunodeficient mice is reviewed leading up to the current state-of-the-art strains, such as the NOD-scid-gamma (NSG) mouse. NSG mice are excellent hosts for human hematopoietic stem cell transplants or immune reconstitution through transfusion of human peripheral blood mononuclear cells. However, barriers to full hematopoietic engraftment still remain; notably, the survival of human cells in the circulation is brief, which limits overall hematological and immune reconstitution. Reports have indicated a critical role for monocytic cells - monocytes, macrophages, and dendritic cells - in the clearance of xenogeneic cells from circulation. Various aspects of the NOD genetic background that affect monocytic cell growth, maturation, and function that are favorable to human cell transplantation are discussed. Important receptors, such as SIRPα, that form a part of the innate immune system and enable the recognition and phagocytosis of foreign cells by monocytic cells are reviewed. The development of humanized mouse models has taken decades of work in creating more immunodeficient mice, genetic modification of these mice to express human genes, and refinement of transplant techniques to optimize engraftment. Future advances may focus on the monocytic cells of the host to find ways for further engraftment and survival of xenogeneic cells.
Collapse
Affiliation(s)
- Emily J. Du
- Vitalant Research Institute, 360 Spear Street, Suite 200, San Francisco, CA, 94105, USA
| | - Marcus O. Muench
- Vitalant Research Institute, 360 Spear Street, Suite 200, San Francisco, CA, 94105, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
3
|
Immunomodulatory, Anticancer, and Antimicrobial Effects of Rice Bran Grown in Iraq: An In Vitro and In Vivo Study. Pharmaceuticals (Basel) 2022; 15:ph15121502. [PMID: 36558953 PMCID: PMC9782048 DOI: 10.3390/ph15121502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Emerging evidence supports the role of rice bran in cancer prevention. Studies were conducted on multiple rice cultivars. However, limited studies were conducted on rice cultivars in the Middle East. In this study, rice bran growing in Iraq (O. sativa ssp. Japonica, cultivars: Amber Barka) was evaluated for its effect on preventing cancer and stimulating the immune system. Rice bran was collected from local mills in Al-Najaf (south of Iraq). Several solvent extracts (ethanol, methanol, n-hexane, and water) were prepared by maceration. MTT assay was used to measure the antiproliferative effects of extracts against a panel of cancer cell lines. The ability of each extract to induce apoptosis and inhibit angiogenesis was measured using standard ELISA kits. The effect of extracts on the immune system was evaluated using a lymphocyte proliferation assay, a pinocytic activity assay, a phagocytic activity assay, and a Th1/Th2 cytokine detection kit. A microbroth dilution method was used to detect the antimicrobial activity of each extract against different microbial strains. LC-MS analysis was used to detect the phytochemical composition of extracts, while DPPH assay was used to determine the antioxidant activity. For the in vivo study, rice bran was added to mouse fodder at 10% and 20%. Mice were treated for two weeks using mouse fodder supplemented with rice bran. In the third week of the experiment, EMT6/P breast cancer cells (1 × 10⁶ cells/mL) were injected subcutaneously into the abdominal area of each mouse. The dimensions of the grown tumors were measured after 14 days of tumor inoculation. A microbroth dilution method was used to evaluate the antimicrobial activity of rice bran extracts against three bacterial strains. The highest antiproliferative activity was observed in ethanol and n-hexane extracts. Ethanol and methanol extract showed the highest activity to induce apoptosis and inhibit angiogenesis. Both extracts were also effective to enhance immunity by activating lymphocytes and phagocytes proliferation with modulations of cytokine levels. The incorporation of rice bran in mice food caused a 20% regression in tumor development and growth compared with the negative control. All extracts exhibited limited antimicrobial activity against tested microorganisms. Methanol extract showed antioxidant activity with an IC50 value of 114 µg/mL. LC-MS analysis revealed the presence of multiple phytochemicals in rice bran including apiin, ferulic acid, and succinic acid. Rice bran is a rich source of active phytochemicals that may inhibit cancer and stimulate the immune system. Rice bran's biological activities could be due to the presence of multiple synergistically active phytochemicals. Further studies are needed to understand the exact mechanisms of action of rice bran.
Collapse
|
4
|
Xiong DK, Shi X, Han MM, Zhang XM, Wu NN, Sheng XY, Wang JN. The regulatory mechanism and potential application of IL-23 in autoimmune diseases. Front Pharmacol 2022; 13:982238. [PMID: 36176425 PMCID: PMC9514453 DOI: 10.3389/fphar.2022.982238] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
IL-23 is a heterodimeric pro-inflammatory cytokine secreted by dendritic cells and macrophages that belongs to the IL-12 family. It has pro-inflammatory effects and is a key cytokine and upstream regulatory cytokine involved in protective immune responses, stimulating the differentiation and proliferation of downstream effectors such as Th17 cells. It is expressed in various autoimmune diseases such as psoriasis, systemic lupus erythematosus (SLE), rheumatoid arthritis (RA). The IL-23/TH17 axis formed by IL-23 and TH17 has been confirmed to participate in autoimmune diseases pathogenesis. IL-23R is the receptor for IL-23 and plays an activating role. Targeting IL-23 is currently the main strategy for the treatment of various autoimmune diseases. In this review we summarized the mechanism of action and clinical application potential of IL-23 in autoimmune diseases by summarizing the latest research results and reviewing the literature, which would help to further understand IL-23 and provide a theoretical basis for future clinical targeting and drug development.
Collapse
Affiliation(s)
- De-Kai Xiong
- School of Health Management, Anhui Medical University, Hefei, China
| | - Xiang Shi
- School of Health Management, Anhui Medical University, Hefei, China
| | - Miao-Miao Han
- School of Health Management, Anhui Medical University, Hefei, China
| | - Xing-Min Zhang
- School of Health Management, Anhui Medical University, Hefei, China
| | - Na-Na Wu
- School of Health Management, Anhui Medical University, Hefei, China
| | - Xiu-Yue Sheng
- School of Health Management, Anhui Medical University, Hefei, China
| | - Ji-Nian Wang
- School of Health Management, Anhui Medical University, Hefei, China
- Department of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Ji-Nian Wang,
| |
Collapse
|
5
|
Benne N, Ter Braake D, Stoppelenburg AJ, Broere F. Nanoparticles for Inducing Antigen-Specific T Cell Tolerance in Autoimmune Diseases. Front Immunol 2022; 13:864403. [PMID: 35392079 PMCID: PMC8981588 DOI: 10.3389/fimmu.2022.864403] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022] Open
Abstract
Autoimmune diseases affect many people worldwide. Current treatment modalities focus on the reduction of disease symptoms using anti-inflammatory drugs which can lead to side effects due to systemic immune suppression. Restoration of immune tolerance by down-regulating auto-reactive cells in an antigen-specific manner is currently the “holy grail” for the treatment of autoimmune diseases. A promising strategy is the use of nanoparticles that can deliver antigens to antigen-presenting cells which in turn can enhance antigen-specific regulatory T cells. In this review, we highlight some promising cell targets (e.g. liver sinusoidal endothelial cells and splenic marginal zone macrophages) for exploiting natural immune tolerance processes, and several strategies by which antigen-carrying nanoparticles can target these cells. We also discuss how nanoparticles carrying immunomodulators may be able to activate tolerance in other antigen-presenting cell types. Finally, we discuss some important aspects that must be taken into account when translating data from animal studies to patients.
Collapse
Affiliation(s)
- Naomi Benne
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Daniëlle Ter Braake
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Arie Jan Stoppelenburg
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Clinical Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Femke Broere
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
6
|
Pavlicevic M, Marmiroli N, Maestri E. Immunomodulatory peptides-A promising source for novel functional food production and drug discovery. Peptides 2022; 148:170696. [PMID: 34856531 DOI: 10.1016/j.peptides.2021.170696] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/03/2021] [Accepted: 11/14/2021] [Indexed: 12/12/2022]
Abstract
Immunomodulatory peptides are a complex class of bioactive peptides that encompasses substances with different mechanisms of action. Immunomodulatory peptides could also be used in vaccines as adjuvants which would be extremely desirable, especially in response to pandemics. Thus, immunomodulatory peptides in food of plant origin could be regarded both as valuable suplements of novel functional food preparation and/or as precursors or possible active ingredients for drugs design for treatment variety of conditions arising from impaired function of immune system. Given variety of mechanisms, different tests are required to assess effects of immunomodulatory peptides. Some of those effects show good correlation with in vivo results but others, less so. Certain plant peptides, such as defensins, show both immunomodulatory and antimicrobial effect, which makes them interesting candidates for preparation of functional food and feed, as well as templates for design of synthetic peptides.
Collapse
Affiliation(s)
- Milica Pavlicevic
- Institute for Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Serbia
| | - Nelson Marmiroli
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, and Interdepartmental Center SITEIA.PARMA, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Elena Maestri
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, and Interdepartmental Center SITEIA.PARMA, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| |
Collapse
|
7
|
Pelanda R, Greaves SA, Alves da Costa T, Cedrone LM, Campbell ML, Torres RM. B-cell intrinsic and extrinsic signals that regulate central tolerance of mouse and human B cells. Immunol Rev 2022; 307:12-26. [PMID: 34997597 PMCID: PMC8986553 DOI: 10.1111/imr.13062] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022]
Abstract
The random recombination of immunoglobulin V(D)J gene segments produces unique IgM antibodies that serve as the antigen receptor for each developing B cell. Hence, the newly formed B cell repertoire is comprised of a variety of specificities that display a range of reactivity with self-antigens. Newly generated IgM+ immature B cells that are non-autoreactive or that bind self-antigen with low avidity are licensed to leave the bone marrow with their intact antigen receptor and to travel via the blood to the peripheral lymphoid tissue for further selection and maturation. In contrast, clones with medium to high avidity for self-antigen remain within the marrow and undergo central tolerance, a process that revises their antigen receptor or eliminates the autoreactive B cell altogether. Thus, central B cell tolerance is critical for reducing the autoreactive capacity and avidity for self-antigen of our circulating B cell repertoire. Bone marrow cultures and mouse models have been instrumental for understanding the mechanisms that regulate the selection of bone marrow B cells. Here, we review recent studies that have shed new light on the contribution of the ERK, PI3K, and CXCR4 signaling pathways in the selection of mouse and human immature B cells that either bind or do not bind self-antigen.
Collapse
Affiliation(s)
- Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA
| | - Sarah A Greaves
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Thiago Alves da Costa
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Lena M Cedrone
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Margaret L Campbell
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Raul M Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
8
|
Matias M, Pinho JO, Penetra MJ, Campos G, Reis CP, Gaspar MM. The Challenging Melanoma Landscape: From Early Drug Discovery to Clinical Approval. Cells 2021; 10:3088. [PMID: 34831311 PMCID: PMC8621991 DOI: 10.3390/cells10113088] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma is recognized as the most dangerous type of skin cancer, with high mortality and resistance to currently used treatments. To overcome the limitations of the available therapeutic options, the discovery and development of new, more effective, and safer therapies is required. In this review, the different research steps involved in the process of antimelanoma drug evaluation and selection are explored, including information regarding in silico, in vitro, and in vivo experiments, as well as clinical trial phases. Details are given about the most used cell lines and assays to perform both two- and three-dimensional in vitro screening of drug candidates towards melanoma. For in vivo studies, murine models are, undoubtedly, the most widely used for assessing the therapeutic potential of new compounds and to study the underlying mechanisms of action. Here, the main melanoma murine models are described as well as other animal species. A section is dedicated to ongoing clinical studies, demonstrating the wide interest and successful efforts devoted to melanoma therapy, in particular at advanced stages of the disease, and a final section includes some considerations regarding approval for marketing by regulatory agencies. Overall, considerable commitment is being directed to the continuous development of optimized experimental models, important for the understanding of melanoma biology and for the evaluation and validation of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mariana Matias
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Jacinta O. Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria João Penetra
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Gonçalo Campos
- CICS–UBI–Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal;
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| |
Collapse
|
9
|
Abstract
Extensive research conducted on mouse-human chimeras has advanced our understanding on infectious diseases including the human-malaria parasite, Plasmodium falciparum. In vitro culture of asexual-blood stage infection of P. falciparum does not answer all questions related to parasitology, pharmacology and immunology, and complex life cycle, complicated genome, evolution of drug resistance and poor diagnosis makes it difficult to understand the patho-biology of parasite. Unavailability of effective-vaccine and issues of drug resistance advocates the use of human cell/tissues reconstituted immunodeficient-mice to P. falciparum. A number of immunodeficient-strains (TK/NOG, FRG/NOD, NOD/SCID/IL-2 receptor γ chain null, NOD severe combined immunodeficiency gamma [NSG] mouse and NOD.Rag1-/- IL2Rγ-/- [NRG; DRAG]) are used for humanization purposes. Additionally, human-hematopoietic stem cells (CD34 reconstituted-NSG [human immune system]) mice support the engraftment and repopulation of immune effecters to study systemic inflammatory diseases.
Collapse
Affiliation(s)
- Rajeev K Tyagi
- Division of Cell Biology & Immunology, Biomedical Parasitology & Nano-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh, 160036, India
| |
Collapse
|
10
|
Central human B cell tolerance manifests with a distinctive cell phenotype and is enforced via CXCR4 signaling in hu-mice. Proc Natl Acad Sci U S A 2021; 118:2021570118. [PMID: 33850015 DOI: 10.1073/pnas.2021570118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Central B cell tolerance, the process restricting the development of many newly generated autoreactive B cells, has been intensely investigated in mouse cells while studies in humans have been hampered by the inability to phenotypically distinguish autoreactive and nonautoreactive immature B cell clones and the difficulty in accessing fresh human bone marrow samples. Using a human immune system mouse model in which all human Igκ+ B cells undergo central tolerance, we discovered that human autoreactive immature B cells exhibit a distinctive phenotype that includes lower activation of ERK and differential expression of CD69, CD81, CXCR4, and other glycoproteins. Human B cells exhibiting these characteristics were observed in fresh human bone marrow tissue biopsy specimens, although differences in marker expression were smaller than in the humanized mouse model. Furthermore, the expression of these markers was slightly altered in autoreactive B cells of humanized mice engrafted with some human immune systems genetically predisposed to autoimmunity. Finally, by treating mice and human immune system mice with a pharmacologic antagonist, we show that signaling by CXCR4 is necessary to prevent both human and mouse autoreactive B cell clones from egressing the bone marrow, indicating that CXCR4 functionally contributes to central B cell tolerance.
Collapse
|
11
|
Rodrigues MAD, Pimenta MV, Costa IM, Zenatti PP, Migita NA, Yunes JA, Rangel-Yagui CO, de Sá MM, Pessoa A, Costa-Silva TA, Toyama MH, Breyer CA, de Oliveira MA, Santiago VF, Palmisano G, Barbosa CMV, Hebeda CB, Farsky SHP, Monteiro G. Influence of lysosomal protease sensitivity in the immunogenicity of the antitumor biopharmaceutical asparaginase. Biochem Pharmacol 2020; 182:114230. [PMID: 32979352 DOI: 10.1016/j.bcp.2020.114230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 02/08/2023]
Abstract
L-asparaginase (ASNase) from Escherichia coli (EcAII) is used in the treatment of acute lymphoblastic leukaemia (ALL). EcAII activity in vivo has been described to be influenced by the human lysosomal proteases asparaginyl endopeptidase (AEP) and cathepsin B (CTSB); these hydrolases cleave and could expose epitopes associated with the immune response against EcAII. In this work, we show that ASNase resistance to CTSB and/or AEP influences the formation of anti-ASNase antibodies, one of the main causes of hypersensitivity reactions in patients. Error-prone polymerase chain reaction was used to produce variants of EcAII more resistant to proteolytic cleavage by AEP and CTSB. The variants with enzymatic activity and cytotoxicity levels equivalent to or better than EcAII WT were submitted to in vivo assays. Only one of the mutants presented increased serum half-life, so resistance to these proteases is not the only feature involved in EcAII stability in vivo. Our results showed alteration of the phenotypic profile of B cells isolated after animal treatment with different protease-resistant proteoforms. Furthermore, mice that were exposed to the protease-resistant proteoforms presented lower anti-asparaginase antibodies production in vivo. Our data suggest that modulating resistance to lysosomal proteases can result in less immunogenic protein drugs.
Collapse
Affiliation(s)
- Mariane A D Rodrigues
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Marcela V Pimenta
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Iris M Costa
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Natacha A Migita
- Centro Infantil Boldrini, Campinas, São Paulo, Brazil; Department of Medical Genetics, Faculty of Medical Sciences, State University of Campinas, Campinas, São Paulo, Brazil
| | - José A Yunes
- Centro Infantil Boldrini, Campinas, São Paulo, Brazil; Department of Medical Genetics, Faculty of Medical Sciences, State University of Campinas, Campinas, São Paulo, Brazil
| | - Carlota O Rangel-Yagui
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Matheus M de Sá
- Heart Institute (InCor), Medical School, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Adalberto Pessoa
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Tales A Costa-Silva
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Marcos H Toyama
- Biosciences Institute, UNESP - São Paulo State University, Coastal Campus, São Vicente, São Paulo, Brazil
| | - Carlos A Breyer
- Biosciences Institute, UNESP - São Paulo State University, Coastal Campus, São Vicente, São Paulo, Brazil
| | - Marcos A de Oliveira
- Biosciences Institute, UNESP - São Paulo State University, Coastal Campus, São Vicente, São Paulo, Brazil
| | - Veronica F Santiago
- Department of Parasitology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Christiano M V Barbosa
- Department of Clinical and Toxicological Analysis, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Cristina B Hebeda
- Department of Clinical and Toxicological Analysis, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Sandra H P Farsky
- Department of Clinical and Toxicological Analysis, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Gisele Monteiro
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil.
| |
Collapse
|
12
|
Mrochen DM, Fernandes de Oliveira LM, Raafat D, Holtfreter S. Staphylococcus aureus Host Tropism and Its Implications for Murine Infection Models. Int J Mol Sci 2020; 21:E7061. [PMID: 32992784 PMCID: PMC7582387 DOI: 10.3390/ijms21197061] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a pathobiont of humans as well as a multitude of animal species. The high prevalence of multi-resistant and more virulent strains of S. aureus necessitates the development of new prevention and treatment strategies for S. aureus infection. Major advances towards understanding the pathogenesis of S. aureus diseases have been made using conventional mouse models, i.e., by infecting naïve laboratory mice with human-adapted S.aureus strains. However, the failure to transfer certain results obtained in these murine systems to humans highlights the limitations of such models. Indeed, numerous S. aureus vaccine candidates showed promising results in conventional mouse models but failed to offer protection in human clinical trials. These limitations arise not only from the widely discussed physiological differences between mice and humans, but also from the lack of attention that is paid to the specific interactions of S. aureus with its respective host. For instance, animal-derived S. aureus lineages show a high degree of host tropism and carry a repertoire of host-specific virulence and immune evasion factors. Mouse-adapted S.aureus strains, humanized mice, and microbiome-optimized mice are promising approaches to overcome these limitations and could improve transferability of animal experiments to human trials in the future.
Collapse
Affiliation(s)
- Daniel M. Mrochen
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
| | - Liliane M. Fernandes de Oliveira
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
| | - Dina Raafat
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Silva Holtfreter
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
| |
Collapse
|