1
|
Williams ZJ, Payne LB, Wu X, Gourdie RG. New focus on cardiac voltage-gated sodium channel β1 and β1B: Novel targets for treating and understanding arrhythmias? Heart Rhythm 2025; 22:181-191. [PMID: 38908461 PMCID: PMC11662089 DOI: 10.1016/j.hrthm.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Voltage-gated sodium channels (VGSCs) are transmembrane protein complexes that are vital to the generation and propagation of action potentials in nerve and muscle fibers. The canonical VGSC is generally conceived as a heterotrimeric complex formed by 2 classes of membrane-spanning subunit: an α-subunit (pore forming) and 2 β-subunits (non-pore forming). NaV1.5 is the main sodium channel α-subunit of mammalian ventricle, with lower amounts of other α-subunits, including NaV1.6, being present. There are 4 β-subunits (β1-β4) encoded by 4 genes (SCN1B-SCN4B), each of which is expressed in cardiac tissues. Recent studies suggest that in addition to assignments in channel gating and trafficking, products of Scn1b may have novel roles in conduction of action potential in the heart and intracellular signaling. This includes evidence that the β-subunit extracellular amino-terminal domain facilitates adhesive interactions in intercalated discs and that its carboxyl-terminal region is a substrate for a regulated intramembrane proteolysis (RIP) signaling pathway, with a carboxyl-terminal peptide generated by β1 RIP trafficked to the nucleus and altering transcription of various genes, including NaV1.5. In addition to β1, the Scn1b gene encodes for an alternative splice variant, β1B, which contains an identical extracellular adhesion domain to β1 but has a unique carboxyl-terminus. Although β1B is generally understood to be a secreted variant, evidence indicates that when co-expressed with NaV1.5, it is maintained at the cell membrane, suggesting potential unique roles for this understudied protein. In this review, we focus on what is known of the 2 β-subunit variants encoded by Scn1b in heart, with particular focus on recent findings and the questions raised by this new information. We also explore data that indicate β1 and β1B may be attractive targets for novel antiarrhythmic therapeutics.
Collapse
Affiliation(s)
- Zachary J Williams
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia
| | - Laura Beth Payne
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia
| | - Xiaobo Wu
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia
| | - Robert G Gourdie
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia; School of Medicine, Virgina Polytechnic University, Roanoke, Virginia; Department of Biomedical Engineering and Mechanics, Virginia Polytechnic University, Blacksburg, Virginia.
| |
Collapse
|
2
|
Weinberg SH. Sodium channel subpopulations with distinct biophysical properties and subcellular localization enhance cardiac conduction. J Gen Physiol 2023; 155:e202313382. [PMID: 37285024 PMCID: PMC10250552 DOI: 10.1085/jgp.202313382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/02/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
Sodium (Na+) current is responsible for the rapid depolarization of cardiac myocytes that triggers the cardiac action potential upstroke. Recent studies have illustrated the presence of multiple pools of Na+ channels with distinct biophysical properties and subcellular localization, including clustering of channels at the intercalated disk and along the lateral membrane. Computational studies predict that Na+ channel clusters at the intercalated disk can regulate cardiac conduction via modulation of the narrow intercellular cleft between electrically coupled myocytes. However, these studies have primarily focused on the redistribution of Na+ channels between intercalated disk and lateral membranes and have not considered the distinct biophysical properties of the Na+ channel subpopulations. In this study, we use computational modeling to simulate computational models of single cardiac cells and one-dimensional cardiac tissues and predict the function of distinct Na+ channel subpopulations. Single-cell simulations predict that a subpopulation of Na+ channels with shifted steady-state activation and inactivation voltage dependency promotes an earlier action potential upstroke. In cardiac tissues that account for distinct subcellular spatial localization, simulations predict that shifted Na+ channels contribute to faster and more robust conduction in response to changes in tissue structure (i.e., cleft width), gap junctional coupling, and rapid pacing rates. Simulations predict that the intercalated disk-localized shifted Na+ channels contribute proportionally more to total Na+ charge than lateral membrane-localized Na+ channels. Importantly, our work supports the hypothesis that Na+ channel redistribution may be a critical mechanism by which cells can respond to perturbations to support fast and robust conduction.
Collapse
Affiliation(s)
- Seth H. Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
3
|
Otani NF, Figueroa E, Garrison J, Hewson M, Muñoz L, Fenton FH, Karma A, Weinberg SH. Ephaptic Coupling as a Resolution to the Paradox of Action Potential Wave Speed and Discordant Alternans Spatial Scales in the Heart. PHYSICAL REVIEW LETTERS 2023; 130:218401. [PMID: 37295103 PMCID: PMC10688031 DOI: 10.1103/physrevlett.130.218401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/07/2023] [Indexed: 06/12/2023]
Abstract
Previous computer simulations have suggested that existing models of action potential wave propagation in the heart are not consistent with observed wave propagation behavior. Specifically, computer models cannot simultaneously reproduce the rapid wave speeds and small spatial scales of discordant alternans patterns measured experimentally in the same simulation. The discrepancy is important, because discordant alternans can be a key precursor to the development of abnormal and dangerous rapid rhythms in the heart. In this Letter, we show that this paradox can be resolved by allowing so-called ephaptic coupling to play a primary role in wave front propagation in place of conventional gap-junction coupling. With this modification, physiological wave speeds and small discordant alternans spatial scales both occur with gap-junction resistance values that are more in line with those observed in experiments. Our theory thus also provides support to the hypothesis that ephaptic coupling plays an important role in normal wave propagation.
Collapse
Affiliation(s)
- Niels F. Otani
- Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Eileen Figueroa
- Rochester Institute of Technology, Rochester, New York 14623, USA
| | - James Garrison
- Hampden-Sydney College, Hampden-Sydney, Virginia 23943, USA
| | - Michelle Hewson
- Western Carolina University, Cullowhee, North Carolina 28723, USA
| | - Laura Muñoz
- Rochester Institute of Technology, Rochester, New York 14623, USA
| | | | - Alain Karma
- Northeastern University, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
4
|
Otani NF, Figueroa E, Garrison J, Hewson M, Muñoz L, Fenton FH, Karma A, Weinberg SH. Role of ephaptic coupling in discordant alternans domain sizes and action potential propagation in the heart. Phys Rev E 2023; 107:054407. [PMID: 37329030 PMCID: PMC10688036 DOI: 10.1103/physreve.107.054407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Discordant alternans, the spatially out-of-phase alternation of the durations of propagating action potentials in the heart, has been linked to the onset of fibrillation, a major cardiac rhythm disorder. The sizes of the regions, or domains, within which these alternations are synchronized are critical in this link. However, computer models employing standard gap junction-based coupling between cells have been unable to reproduce simultaneously the small domain sizes and rapid action potential propagation speeds seen in experiments. Here we use computational methods to show that rapid wave speeds and small domain sizes are possible when a more detailed model of intercellular coupling that accounts for so-called ephaptic effects is used. We provide evidence that the smaller domain sizes are possible, because different coupling strengths can exist on the wavefronts, for which both ephaptic and gap-junction coupling are involved, in contrast to the wavebacks, where only gap-junction coupling plays an active role. The differences in coupling strength are due to the high density of fast-inward (sodium) channels known to localize on the ends of cardiac cells, which are only active (and thus engage ephaptic coupling) during wavefront propagation. Thus, our results suggest that this distribution of fast-inward channels, as well as other factors responsible for the critical involvement of ephaptic coupling in wave propagation, including intercellular cleft spacing, play important roles in increasing the vulnerability of the heart to life-threatening tachyarrhythmias. Our results, combined with the absence of short-wavelength discordant alternans domains in standard gap-junction-dominated coupling models, also provide evidence that both gap-junction and ephaptic coupling are critical in wavefront propagation and waveback dynamics.
Collapse
Affiliation(s)
- Niels F. Otani
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Eileen Figueroa
- Department of Electrical, Computer and Telecommunications Engineering Technology, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - James Garrison
- Department of Mathematics and Computer Science, Hampden-Sydney College, Hampden-Sydney, Virginia 23943, USA
| | - Michelle Hewson
- Department of Mathematics and Computer Science, Western Carolina University, Cullowhee, North Carolina 28723, USA
| | - Laura Muñoz
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Flavio H. Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Alain Karma
- Physics Department and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, USA
| | - Seth H. Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
5
|
Wei N, Tolkacheva EG. Mechanisms of arrhythmia termination during acute myocardial ischemia: Role of ephaptic coupling and complex geometry of border zone. PLoS One 2022; 17:e0264570. [PMID: 35290386 PMCID: PMC8923475 DOI: 10.1371/journal.pone.0264570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/13/2022] [Indexed: 11/21/2022] Open
Abstract
Myocardial ischemia occurs when blood flow to the heart is reduced, preventing the heart muscle from receiving enough oxygen required for survival. Several anatomical and electrophysiological changes occur at the ischemic core (IC) and border zone (BZ) during myocardial ischemia, for example, gap junctional remodeling, changes in ionic channel kinetics and electrophysiologic changes in cell excitability, which promote the development of cardiac arrhythmia. Ephaptic coupling (EpC), which is an electrical field effect developed in the shared cleft space between adjacent cells, has been suggested to rescue the conduction when gap junctions are impaired, such as myocardial ischemia. In this manuscript, we explored the impact of EpC, electrophysiological and anatomical components of myocardial ischemia on reentry termination during non-ischemic and ischemic condition. Our results indicated that EpC and BZ with complex geometry have opposite effects on the reentry termination. In particular, the presence of homogeneous EpC terminates reentry, whereas BZ with complex geometry alone facilitates reentry by producing wave break-up and alternating conduction block. The reentry is terminated in the presence of homogeneous or heterogeneous EpC despite the presence of complex geometry of the BZ, independent of the location of BZ. The inhibition of reentry can be attributed to a current-to-load mismatch. Our results points to an antiarrhythmic role of EpC and a pro-arrhythmic role of BZ with complex geometry.
Collapse
Affiliation(s)
- Ning Wei
- Department of Mathematics, Purdue University, West Lafayette, IN, United States of America
- * E-mail:
| | - Elena G. Tolkacheva
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
6
|
Nowak MB, Veeraraghavan R, Poelzing S, Weinberg SH. Cellular Size, Gap Junctions, and Sodium Channel Properties Govern Developmental Changes in Cardiac Conduction. Front Physiol 2021; 12:731025. [PMID: 34759834 PMCID: PMC8573326 DOI: 10.3389/fphys.2021.731025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/28/2021] [Indexed: 11/26/2022] Open
Abstract
Electrical conduction in cardiac ventricular tissue is regulated via sodium (Na+) channels and gap junctions (GJs). We and others have recently shown that Na+channels preferentially localize at the site of cell-cell junctions, the intercalated disc (ID), in adult cardiac tissue, facilitating coupling via the formation of intercellular Na+nanodomains, also termed ephaptic coupling (EpC). Several properties governing EpC vary with age, including Na+channel and GJ expression and distribution and cell size. Prior work has shown that neonatal cardiomyocytes have immature IDs with Na+channels and GJs diffusively distributed throughout the sarcolemma, while adult cells have mature IDs with preferentially localized Na+channels and GJs. In this study, we perform an in silico investigation of key age-dependent properties to determine developmental regulation of cardiac conduction. Simulations predict that conduction velocity (CV) biphasically depends on cell size, depending on the strength of GJ coupling. Total cell Na+channel conductance is predictive of CV in cardiac tissue with high GJ coupling, but not correlated with CV for low GJ coupling. We find that ephaptic effects are greatest for larger cells with low GJ coupling typically associated with intermediate developmental stages. Finally, simulations illustrate how variability in cellular properties during different developmental stages can result in a range of possible CV values, with a narrow range for both neonatal and adult myocardium but a much wider range for an intermediate developmental stage. Thus, we find that developmental changes predict associated changes in cardiac conduction.
Collapse
Affiliation(s)
- Madison B. Nowak
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
- The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| | - Steven Poelzing
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Virginia Polytechnic Institute and State University, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| | - Seth H. Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
- The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| |
Collapse
|
7
|
Ivanovic E, Kucera JP. Localization of Na + channel clusters in narrowed perinexi of gap junctions enhances cardiac impulse transmission via ephaptic coupling: a model study. J Physiol 2021; 599:4779-4811. [PMID: 34533834 PMCID: PMC9293295 DOI: 10.1113/jp282105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/06/2021] [Indexed: 01/06/2023] Open
Abstract
Abstract It has been proposed that when gap junctional coupling is reduced in cardiac tissue, action potential propagation can be supported via ephaptic coupling, a mechanism mediated by negative electric potentials occurring in narrow intercellular clefts of intercalated discs (IDs). Recent studies showed that sodium (Na+) channels form clusters near gap junction plaques in nanodomains called perinexi, where the ID cleft is even narrower. To examine the electrophysiological relevance of Na+ channel clusters being located in perinexi, we developed a 3D finite element model of two longitudinally abutting cardiomyocytes, with a central Na+ channel cluster on the ID membranes. When this cluster was located in the perinexus of a closely positioned gap junction plaque, varying perinexal width greatly modulated impulse transmission from one cell to the other, with narrow perinexi potentiating ephaptic coupling. This modulation occurred via the interplay of Na+ currents, extracellular potentials in the cleft and patterns of current flow within the cleft. In contrast, when the Na+ channel cluster was located remotely from the gap junction plaque, this modulation by perinexus width largely disappeared. Interestingly, the Na+ current in the ID membrane of the pre‐junctional cell switched from inward to outward during excitation, thus contributing ions to the activating channels on the post‐junctional ID membrane. In conclusion, these results indicate that the localization of Na+ channel clusters in the perinexi of gap junction plaques is crucial for ephaptic coupling, which is furthermore greatly modulated by perinexal width. These findings are relevant for a comprehensive understanding of cardiac excitation. Key points Ephaptic coupling is a cardiac conduction mechanism involving nanoscale‐level interactions between the sodium (Na+) current and the extracellular potential in narrow intercalated disc clefts. When gap junctional coupling is reduced, ephaptic coupling acts in conjunction with the classical cardiac conduction mechanism based on gap junctional current flow. In intercalated discs, Na+ channels form clusters that are preferentially located in the periphery of gap junction plaques, in nanodomains known as perinexi, but the electrophysiological role of these perinexi has never been examined. In our new 3D finite element model of two cardiac cells abutting each other with their intercalated discs, a Na+ channel cluster located inside a narrowed perinexus facilitated impulse transmission via ephaptic coupling. Our simulations demonstrate the role of narrowed perinexi as privileged sites for ephaptic coupling in pathological situations when gap junctional coupling is decreased.
Collapse
Affiliation(s)
- Ena Ivanovic
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Jan P Kucera
- Department of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Moise N, Struckman HL, Dagher C, Veeraraghavan R, Weinberg SH. Intercalated disk nanoscale structure regulates cardiac conduction. J Gen Physiol 2021; 153:212474. [PMID: 34264306 PMCID: PMC8287520 DOI: 10.1085/jgp.202112897] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/13/2021] [Accepted: 06/07/2021] [Indexed: 12/31/2022] Open
Abstract
The intercalated disk (ID) is a specialized subcellular region that provides electrical and mechanical connections between myocytes in the heart. The ID has a clearly defined passive role in cardiac tissue, transmitting mechanical forces and electrical currents between cells. Recent studies have shown that Na+ channels, the primary current responsible for cardiac excitation, are preferentially localized at the ID, particularly within nanodomains such as the gap junction-adjacent perinexus and mechanical junction-associated adhesion-excitability nodes, and that perturbations of ID structure alter cardiac conduction. This suggests that the ID may play an important, active role in regulating conduction. However, the structures of the ID and intercellular cleft are not well characterized and, to date, no models have incorporated the influence of ID structure on conduction in cardiac tissue. In this study, we developed an approach to generate realistic finite element model (FEM) meshes replicating nanoscale of the ID structure, based on experimental measurements from transmission electron microscopy images. We then integrated measurements of the intercellular cleft electrical conductivity, derived from the FEM meshes, into a novel cardiac tissue model formulation. FEM-based calculations predict that the distribution of cleft conductances is sensitive to regional changes in ID structure, specifically the intermembrane separation and gap junction distribution. Tissue-scale simulations predict that ID structural heterogeneity leads to significant spatial variation in electrical polarization within the intercellular cleft. Importantly, we found that this heterogeneous cleft polarization regulates conduction by desynchronizing the activation of postjunctional Na+ currents. Additionally, these heterogeneities lead to a weaker dependence of conduction velocity on gap junctional coupling, compared with prior modeling formulations that neglect or simplify ID structure. Further, we found that disruption of local ID nanodomains can either slow or enhance conduction, depending on gap junctional coupling strength. Our study therefore suggests that ID nanoscale structure can play a significant role in regulating cardiac conduction.
Collapse
Affiliation(s)
| | | | | | - Rengasayee Veeraraghavan
- The Ohio State University, Columbus, OH.,Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Seth H Weinberg
- The Ohio State University, Columbus, OH.,Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
9
|
Cusimano N, Gerardo-Giorda L, Gizzi A. A space-fractional bidomain framework for cardiac electrophysiology: 1D alternans dynamics. CHAOS (WOODBURY, N.Y.) 2021; 31:073123. [PMID: 34340362 DOI: 10.1063/5.0050897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Cardiac electrophysiology modeling deals with a complex network of excitable cells forming an intricate syncytium: the heart. The electrical activity of the heart shows recurrent spatial patterns of activation, known as cardiac alternans, featuring multiscale emerging behavior. On these grounds, we propose a novel mathematical formulation for cardiac electrophysiology modeling and simulation incorporating spatially non-local couplings within a physiological reaction-diffusion scenario. In particular, we formulate, a space-fractional electrophysiological framework, extending and generalizing similar works conducted for the monodomain model. We characterize one-dimensional excitation patterns by performing an extended numerical analysis encompassing a broad spectrum of space-fractional derivative powers and various intra- and extracellular conductivity combinations. Our numerical study demonstrates that (i) symmetric properties occur in the conductivity parameters' space following the proposed theoretical framework, (ii) the degree of non-local coupling affects the onset and evolution of discordant alternans dynamics, and (iii) the theoretical framework fully recovers classical formulations and is amenable for parametric tuning relying on experimental conduction velocity and action potential morphology.
Collapse
Affiliation(s)
| | | | - Alessio Gizzi
- Department of Engineering, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| |
Collapse
|
10
|
Nowak MB, Poelzing S, Weinberg SH. Mechanisms underlying age-associated manifestation of cardiac sodium channel gain-of-function. J Mol Cell Cardiol 2021; 153:60-71. [PMID: 33373643 PMCID: PMC8026540 DOI: 10.1016/j.yjmcc.2020.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 10/22/2022]
Abstract
Cardiac action potentials are initiated by sodium ion (Na+) influx through voltage-gated Na+ channels. Na+ channel gain-of-function (GOF) can arise in inherited conditions due to mutations in the gene encoding the cardiac Na+ channel, such as Long QT syndrome type 3 (LQT3). LQT3 can be a "concealed" disease, as patients with LQT3-associated mutations can remain asymptomatic until later in life; however, arrhythmias can also arise early in life in LQT3 patients, demonstrating a complex age-associated manifestation. We and others recently demonstrated that cardiac Na+ channels preferentially localize at the intercalated disc (ID) in adult cardiac tissue, which facilitates ephaptic coupling and formation of intercellular Na+ nanodomains that regulate pro-arrhythmic early afterdepolarization (EAD) formation in tissue with Na+ channel GOF. Several properties related to ephaptic coupling vary with age, such as cell size and Na+ channel and gap junction (GJ) expression and distribution: neonatal cells have immature IDs, with Na+ channels and GJs primarily diffusively distributed, while adult myocytes have mature IDs with preferentially localized Na+ channels and GJs. Here, we perform an in silico study varying critical age-dependent parameters to investigate mechanisms underlying age-associated manifestation of Na+ channel GOF in a model of guinea pig cardiac tissue. Simulations predict that total Na+ current conductance is a critical factor in action potential duration (APD) prolongation. We find a complex cell size/ Na+ channel expression relationship: increases in cell size (without concurrent increases in Na+ channel expression) suppress EAD formation, while increases in Na+ channel expression (without concurrent increases in cell size) promotes EAD formation. Finally, simulations with neonatal and early age-associated parameters predict normal APD with minimal dependence on intercellular cleft width; however, variability in cellular properties can lead to EADs presenting in early developmental stages. In contrast, for adult-associated parameters, EAD formation is highly dependent on cleft width, consistent with a mechanism underlying the age-associated manifestation of the Na+ channel GOF.
Collapse
Affiliation(s)
- Madison B Nowak
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Steven Poelzing
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States of America; Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Polytechnic Institute and State University, Roanoke, VA, United States of America
| | - Seth H Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States of America; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America.
| |
Collapse
|
11
|
Tsumoto K, Ashihara T, Naito N, Shimamoto T, Amano A, Kurata Y, Kurachi Y. Specific decreasing of Na + channel expression on the lateral membrane of cardiomyocytes causes fatal arrhythmias in Brugada syndrome. Sci Rep 2020; 10:19964. [PMID: 33203944 PMCID: PMC7673036 DOI: 10.1038/s41598-020-76681-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 11/02/2020] [Indexed: 12/31/2022] Open
Abstract
Reduced cardiac sodium (Na+) channel current (INa) resulting from the loss-of-function of Na+ channel is a major cause of lethal arrhythmias in Brugada syndrome (BrS). Inspired by previous experimental studies which showed that in heart diseases INa was reduced along with expression changes in Na+ channel within myocytes, we hypothesized that the local decrease in INa caused by the alteration in Na+ channel expression in myocytes leads to the occurrence of phase-2 reentry, the major triggering mechanism of lethal arrhythmias in BrS. We constructed in silico human ventricular myocardial strand and ring models, and examined whether the Na+ channel expression changes in each myocyte cause the phase-2 reentry in BrS. Reducing Na+ channel expression in the lateral membrane of each myocyte caused not only the notch-and-dome but also loss-of-dome type action potentials and slowed conduction, both of which are typically observed in BrS patients. Furthermore, the selective reduction in Na+ channels on the lateral membrane of each myocyte together with spatial tissue heterogeneity of Na+ channel expression caused the phase-2 reentry and phase-2 reentry-mediated reentrant arrhythmias. Our data suggest that the BrS phenotype is strongly influenced by expression abnormalities as well as genetic abnormalities of Na+ channels.
Collapse
Affiliation(s)
- Kunichika Tsumoto
- Department of Physiology II, Kanazawa Medical University, 1-1 Daigaku, Uchinada, 920-0293, Japan.
- Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, 565-0871, Japan.
| | - Takashi Ashihara
- Department of Medical Informatics and Biomedical Engineering, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, 520-2192, Japan
| | - Narumi Naito
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, 525-8577, Japan
| | - Takao Shimamoto
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, 525-8577, Japan
| | - Akira Amano
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, 525-8577, Japan
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University, 1-1 Daigaku, Uchinada, 920-0293, Japan
| | - Yoshihisa Kurachi
- Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, 565-0871, Japan
- Glocal Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamada-oka, Suita, 565-0871, Japan
| |
Collapse
|
12
|
Hoeker GS, James CC, Tegge AN, Gourdie RG, Smyth JW, Poelzing S. Attenuating loss of cardiac conduction during no-flow ischemia through changes in perfusate sodium and calcium. Am J Physiol Heart Circ Physiol 2020; 319:H396-H409. [PMID: 32678707 DOI: 10.1152/ajpheart.00112.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myocardial ischemia leads to conduction slowing, cell-to-cell uncoupling, and arrhythmias. We previously demonstrated that varying perfusate sodium (Na+) and calcium (Ca2+) attenuates conduction slowing and arrhythmias during simulated ischemia with continuous perfusion. Cardioprotection was selectively associated with widening of the perinexus, a gap junction adjacent nanodomain important to ephaptic coupling. It is unknown whether perfusate composition affects the perinexus or ischemic conduction during nonsimulated ischemia, when coronary flow is reduced or halted. We hypothesized that altering preischemic perfusate composition could facilitate perinexal expansion and attenuate conduction slowing during global ischemia. To test this hypothesis, ex vivo guinea pig hearts (n = 49) were Langendorff perfused with 145 or 153 mM Na+ and 1.25 or 2.0 mM Ca2+ and optically mapped during 30 min of no-flow ischemia. Altering Na+ and Ca2+ did not substantially affect baseline conduction. Increasing Na+ and decreasing Ca2+ both lowered pacing thresholds, whereas increasing Ca2+ narrowed perinexal width (Wp). A least squares mean estimate revealed that reduced perfusate Na+ and Ca2+ resulted in the most severe conduction slowing during ischemia. Increasing Na+ alone modestly attenuated conduction slowing, yet significantly delayed the median time to conduction block (10 to 16 min). Increasing both Na+ and Ca2+ selectively widened Wp during ischemia (22.7 vs. 15.7 nm) and attenuated conduction slowing to the greatest extent. Neither repolarization nor levels of total or phosphorylated connexin43 correlated with conduction slowing or block. Thus, perfusate-dependent widening of the perinexus preserved ischemic conduction and may be an adaptive response to ischemic stress.NEW & NOTEWORTHY Conduction slowing during acute ischemia creates an arrhythmogenic substrate. We have shown that extracellular ionic concentrations can alter conduction by modulating ephaptic coupling. Here, we demonstrate increased extracellular sodium and calcium significantly attenuate conduction slowing during no-flow ischemia. This effect was associated with selective widening of the perinexus, an intercalated disc nanodomain and putative cardiac ephapse. These findings suggest that acute changes in ephaptic coupling may serve as an adaptive response to ischemic stress.
Collapse
Affiliation(s)
- Gregory S Hoeker
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia
| | - Carissa C James
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia.,Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, Virginia
| | - Allison N Tegge
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia.,Department of Statistics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Robert G Gourdie
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia.,Virginia Tech Carilion School of Medicine, Roanoke, Virginia.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - James W Smyth
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia.,Virginia Tech Carilion School of Medicine, Roanoke, Virginia.,Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Steven Poelzing
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia.,Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, Virginia.,Virginia Tech Carilion School of Medicine, Roanoke, Virginia.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| |
Collapse
|
13
|
Cusimano N, Gizzi A, Fenton F, Filippi S, Gerardo-Giorda L. Key aspects for effective mathematical modelling of fractional-diffusion in cardiac electrophysiology: a quantitative study. COMMUNICATIONS IN NONLINEAR SCIENCE & NUMERICAL SIMULATION 2020; 84:105152. [PMID: 32863678 PMCID: PMC7453933 DOI: 10.1016/j.cnsns.2019.105152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microscopic structural features of cardiac tissue play a fundamental role in determining complex spatio-temporal excitation dynamics at the macroscopic level. Recent efforts have been devoted to the development of mathematical models accounting for non-local spatio-temporal coupling able to capture these complex dynamics without the need of resolving tissue heterogeneities down to the micro-scale. In this work, we analyse in detail several important aspects affecting the overall predictive power of these modelling tools and provide some guidelines for an effective use of space-fractional models of cardiac electrophysiology in practical applications. Through an extensive computational study in simplified computational domains, we highlight the robustness of models belonging to different categories, i.e., physiological and phenomenological descriptions, against the introduction of non-locality, and lay down the foundations for future research and model validation against experimental data. A modern genetic algorithm framework is used to investigate proper parameterisations of the considered models, and the crucial role played by the boundary assumptions in the considered settings is discussed. Several numerical results are provided to support our claims.
Collapse
Affiliation(s)
- N. Cusimano
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, 48009 Bilbao, Spain
| | - A. Gizzi
- Department of Engineering, University of Rome Campus Bio-Medico, via A. del Portillo 21, 00128 Rome, Italy
| | - F.H. Fenton
- School of Physics, Georgia Insitute of Technology, 837 State Street NW, Atlanta, GA 30332, United States
| | - S. Filippi
- Department of Engineering, University of Rome Campus Bio-Medico, via A. del Portillo 21, 00128 Rome, Italy
| | - L. Gerardo-Giorda
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, 48009 Bilbao, Spain
| |
Collapse
|
14
|
Nowak MB, Greer-Short A, Wan X, Wu X, Deschênes I, Weinberg SH, Poelzing S. Intercellular Sodium Regulates Repolarization in Cardiac Tissue with Sodium Channel Gain of Function. Biophys J 2020; 118:2829-2843. [PMID: 32402243 DOI: 10.1016/j.bpj.2020.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/26/2020] [Accepted: 04/10/2020] [Indexed: 11/30/2022] Open
Abstract
In cardiac myocytes, action potentials are initiated by an influx of sodium (Na+) ions via voltage-gated Na+ channels. Na+ channel gain of function (GOF), arising in both inherited conditions associated with mutation in the gene encoding the Na+ channel and acquired conditions associated with heart failure, ischemia, and atrial fibrillation, enhance Na+ influx, generating a late Na+ current that prolongs action potential duration (APD) and triggering proarrhythmic early afterdepolarizations (EADs). Recent studies have shown that Na+ channels are highly clustered at the myocyte intercalated disk, facilitating formation of Na+ nanodomains in the intercellular cleft between cells. Simulations from our group have recently predicted that narrowing the width of the intercellular cleft can suppress APD prolongation and EADs in the presence of Na+ channel mutations because of increased intercellular cleft Na+ ion depletion. In this study, we investigate the effects of modulating multiple extracellular spaces, specifically the intercellular cleft and bulk interstitial space, in a novel computational model and experimentally via osmotic agents albumin, dextran 70, and mannitol. We perform optical mapping and transmission electron microscopy in a drug-induced (sea anemone toxin, ATXII) Na+ channel GOF isolated heart model and modulate extracellular spaces via osmotic agents. Single-cell patch-clamp experiments confirmed that the osmotic agents individually do not enhance late Na+ current. Both experiments and simulations are consistent with the conclusion that intercellular cleft narrowing or expansion regulates APD prolongation; in contrast, modulating the bulk interstitial space has negligible effects on repolarization. Thus, we predict that intercellular cleft Na+ nanodomain formation and collapse critically regulates cardiac repolarization in the setting of Na+ channel GOF.
Collapse
Affiliation(s)
- Madison B Nowak
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Amara Greer-Short
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio; Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Xiaoping Wan
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio; Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| | - Xiaobo Wu
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Polytechnic Institute and State University, Roanoke, Virginia
| | - Isabelle Deschênes
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio; Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| | - Seth H Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia.
| | - Steven Poelzing
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Polytechnic Institute and State University, Roanoke, Virginia; Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
| |
Collapse
|
15
|
Wei N, Tolkacheva EG. Interplay between ephaptic coupling and complex geometry of border zone during acute myocardial ischemia: Effect on arrhythmogeneity. CHAOS (WOODBURY, N.Y.) 2020; 30:033111. [PMID: 32237767 DOI: 10.1063/1.5134447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/12/2020] [Indexed: 06/11/2023]
Abstract
Acute myocardial ischemia is an imbalance between myocardial blood supply and demand, which is caused by the cessation of blood flow within the heart resulting from an obstruction in one of the major coronary arteries. A severe blockage may result in a region of nonperfused tissue known as ischemic core (IC). As a result, a border zone (BZ) between perfused and nonperfused regions is created due to differences in blood and oxygen supplies. Recent experimental findings reveal a complex "finger-like" geometry in BZ; however, its effect on arrhythmogenicity is not clear. Ephaptic coupling, which relies on the intercalated disk between cell ends, has been suggested to play an active role in mediating intercellular electrical communication when gap junctions are impaired. In this paper, we explored the interplay between ephaptic coupling and the geometry of BZ on action potential propagation across the ischemic region. Our study shows that ephaptic coupling can greatly suppress the occurrence of a conduction block, which points to its beneficial effect. The beneficial effect of ephaptic coupling is more evident in BZ with the "finger-like" geometry. In addition, the complex geometry of BZ, i.e., more frequent, deeper, and wider "fingers," promotes the conduction through the ischemic region. In contrast, the larger size of IC impedes the cardiac conduction across the ischemic region. Our results also show that ephaptic coupling promotes the impact of the complex geometry of BZ on signal propagation; however, it inhibits the impact of IC size.
Collapse
Affiliation(s)
- Ning Wei
- Department of Mathematics, Purdue University, West Lafayette, Indiana 47907, USA
| | - Elena G Tolkacheva
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
16
|
Hichri E, Abriel H, Kucera JP. Distribution of cardiac sodium channels in clusters potentiates ephaptic interactions in the intercalated disc. J Physiol 2018; 596:563-589. [PMID: 29210458 DOI: 10.1113/jp275351] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/20/2017] [Indexed: 01/18/2023] Open
Abstract
KEY POINTS It has been proposed that ephaptic conduction, relying on interactions between the sodium (Na+ ) current and the extracellular potential in intercalated discs, might contribute to cardiac conduction when gap junctional coupling is reduced, but this mechanism is still controversial. In intercalated discs, Na+ channels form clusters near gap junction plaques, but the functional significance of these clusters has never been evaluated. In HEK cells expressing cardiac Na+ channels, we show that restricting the extracellular space modulates the Na+ current, as predicted by corresponding simulations accounting for ephaptic effects. In a high-resolution model of the intercalated disc, clusters of Na+ channels that face each other across the intercellular cleft facilitate ephaptic impulse transmission when gap junctional coupling is reduced. Thus, our simulations reveal a functional role for the clustering of Na+ channels in intercalated discs, and suggest that rearrangement of these clusters in disease may influence cardiac conduction. ABSTRACT It has been proposed that ephaptic interactions in intercalated discs, mediated by extracellular potentials, contribute to cardiac impulse propagation when gap junctional coupling is reduced. However, experiments demonstrating ephaptic effects on the cardiac Na+ current (INa ) are scarce. Furthermore, Na+ channels form clusters around gap junction plaques, but the electrophysiological significance of these clusters has never been investigated. In patch clamp experiments with HEK cells stably expressing human Nav 1.5 channels, we examined how restricting the extracellular space modulates INa elicited by an activation protocol. In parallel, we developed a high-resolution computer model of the intercalated disc to investigate how the distribution of Na+ channels influences ephaptic interactions. Approaching the HEK cells to a non-conducting obstacle always increased peak INa at step potentials near the threshold of INa activation and decreased peak INa at step potentials far above threshold (7 cells, P = 0.0156, Wilcoxon signed rank test). These effects were consistent with corresponding control simulations with a uniform Na+ channel distribution. In the intercalated disc computer model, redistributing the Na+ channels into a central cluster of the disc potentiated ephaptic effects. Moreover, ephaptic impulse transmission from one cell to another was facilitated by clusters of Na+ channels facing each other across the intercellular cleft when gap junctional coupling was reduced. In conclusion, our proof-of-principle experiments demonstrate that confining the extracellular space modulates cardiac INa , and our simulations reveal the functional role of the aggregation of Na+ channels in the perinexus. These findings highlight novel concepts in the physiology of cardiac excitation.
Collapse
Affiliation(s)
- Echrak Hichri
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Hugues Abriel
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Jan P Kucera
- Department of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Weinberg SH. Ephaptic coupling rescues conduction failure in weakly coupled cardiac tissue with voltage-gated gap junctions. CHAOS (WOODBURY, N.Y.) 2017; 27:093908. [PMID: 28964133 DOI: 10.1063/1.4999602] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Electrical conduction in cardiac tissue is usually considered to be primarily facilitated by gap junctions, providing a pathway between the intracellular spaces of neighboring cells. However, recent studies have highlighted the role of coupling via extracellular electric fields, also known as ephaptic coupling, particularly in the setting of reduced gap junction expression. Further, in the setting of reduced gap junctional coupling, voltage-dependent gating of gap junctions, an oft-neglected biophysical property in computational studies, produces a positive feedback that promotes conduction failure. We hypothesized that ephaptic coupling can break the positive feedback loop and rescue conduction failure in weakly coupled cardiac tissue. In a computational tissue model incorporating voltage-gated gap junctions and ephaptic coupling, we demonstrate that ephaptic coupling can rescue conduction failure in weakly coupled tissue. Further, ephaptic coupling increased conduction velocity in weakly coupled tissue, and importantly, reduced the minimum gap junctional coupling necessary for conduction, most prominently at fast pacing rates. Finally, we find that, although neglecting gap junction voltage-gating results in negligible differences in well coupled tissue, more significant differences occur in weakly coupled tissue, greatly underestimating the minimal gap junctional coupling that can maintain conduction. Our study suggests that ephaptic coupling plays a conduction-preserving role, particularly at rapid heart rates.
Collapse
Affiliation(s)
- S H Weinberg
- Virginia Commonwealth University, 401 West Main Street, Richmond, Virginia 23284, USA
| |
Collapse
|
18
|
Varghese A. Reciprocal Modulation of I K1-I Na Extends Excitability in Cardiac Ventricular Cells. Front Physiol 2016; 7:542. [PMID: 27895596 PMCID: PMC5108932 DOI: 10.3389/fphys.2016.00542] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/28/2016] [Indexed: 12/26/2022] Open
Abstract
The inwardly rectifying potassium current (IK1) and the fast inward sodium current (INa) are reciprocally modulated in mammalian ventricular myocytes. An increase in the expression of channels responsible for one of these two currents results in a corresponding increase in expression of the other. These currents are critical in the propagation of action potentials (AP) during the normal functioning of the heart. This study identifies a physiological role for IK1–INa reciprocal modulation in ventricular fiber activation thresholds and conduction. Simulations of action potentials in single cells and propagating APs in cardiac fibers were carried out using an existing model of electrical activity in cardiac ventricular myocytes. The conductances, GK1, of the inwardly rectifying potassium current, and GNa, of the fast inward sodium current were modified independently and in tandem to simulate reciprocal modulation. In single cells, independent modulation of GK1 alone resulted in changes in activation thresholds that were qualitatively similar to those for reciprocal GK1–GNa modulation and unlike those due to independent modulation of GNa alone, indicating that GK1 determines the cellular activation threshold. On the other hand, the variations in conduction velocity in cardiac cell fibers were similar for independent GNa modulation and for tandem changes in GK1–GNa, suggesting that GNa is primarily responsible for setting tissue AP conduction velocity. Conduction velocity dependence on GK1–GNa is significantly affected by the intercellular gap junction conductance. While the effects on the passive fiber space constant due to changes in both GK1 and the intercellular gap junction conductance, Ggj, were in line with linear cable theory predictions, both conductances had surprisingly large effects on fiber activation thresholds. Independent modulation of GK1 rendered cardiac fibers inexcitable at higher levels of GK1 whereas tandem GK1–GNa changes allowed fibers to remain excitable at high GK1 values. Reciprocal modulation of the inwardly rectifying potassium current and the fast inward sodium current may have a functional role in allowing cardiac tissue to remain excitable when IK1 is upregulated.
Collapse
Affiliation(s)
- Anthony Varghese
- Department of Computer Science, University of Wisconsin-River Falls River Falls, WI, USA
| |
Collapse
|