1
|
Mahmoud AA, Wang X, Liao X, Zhang S, Ding T, Ahn J. Impact of prophages on gut microbiota and disease associations. Microb Pathog 2025; 204:107642. [PMID: 40300731 DOI: 10.1016/j.micpath.2025.107642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 04/01/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
The gut microbiota plays an important role in maintaining host health by affecting various physiological functions. Among the diverse microbial communities in the gut, prophages are integral components of bacterial genomes, contributing significantly to bacterial evolution, ecology and pathogenicity. Prophages are capable of switching to lytic cycles in response to various internal and external factors. Factors that induce prophage induction include DNA damage, oxidative stress, nutrient availability, host immune response, quorum sensing, diet, secondary metabolites, antibiotics, and lifestyle changes. Prophage induction could contribute to both gut homeostasis and dysbiosis. Importantly, the connections between prophage induction and disorders such as inflammatory bowel disease, ulcerative colitis, and bacterial vaginosis highlight the dual roles of prophages in both health and disease. Although therapeutic approaches such as phage therapy (PT), fecal microbiota transplants (FMT), and fecal virome transplants (FVT) have gained attention, the concept of dietary prophage induction therapy offers a novel, targeted method to modulate gut microbiota. In spite of recent advances in understanding the role of prophages in gut health, the exact mechanisms by which they influence gut health remain only partially understood. Therefore, further research is needed to elucidate additional molecular mechanisms of prophage induction pathways and to explore their implications for gut microbiota dynamics and disease associations. This review discusses the molecular mechanisms and key factors that trigger prophage induction in the gut. Insights into these processes could lead to innovative therapeutic strategies that utilize prophages to support gut health.
Collapse
Affiliation(s)
- Aminu Abdullahi Mahmoud
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China; Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaoyu Wang
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China; Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xinyu Liao
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Song Zhang
- Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Tian Ding
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China; Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Juhee Ahn
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China; Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| |
Collapse
|
2
|
Savich V, Akhremchuk A, Herasimovich A, Leanovich S, Valentovich L, Sidarenka A. Isolation, characterization, and whole-genome analysis of the novel temperate bacteriophage Ph-p5 infecting Glutamicibacter halophytocola. Arch Virol 2025; 170:46. [PMID: 39907824 DOI: 10.1007/s00705-025-06225-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/19/2024] [Indexed: 02/06/2025]
Abstract
Bacteria of the genus Glutamicibacter, due to their ubiquity, nutritional versatility, and ability to adapt to environmental stresses, play an important role in natural ecosystems and have been extensively studied. Nevertheless, there remains a significant gap in our knowledge regarding Glutamicibacter phages, particularly in comparison to those of the related actinobacteria. To date, only two virulent phages infecting G. arilaitensis have been described. To our knowledge, this is the first report on the isolation, characterization, and genome analysis of a temperate phage targeting G. halophytocola, an endophytic bacterium known for its plant-growth-promoting effect. The phage Ph-p5, with siphovirus structure, was isolated from soil. It exhibited a long latent period (120 min), a moderate burst size (87 ± 3 PFU/infected cell), and stability over a wide range of pH and temperature. The circularly permuted linear double-stranded DNA genome of phage Ph-p5, comprising 43,694 bp with a G + C content of 57.1%, contains 65 putative protein-coding sequences and one sequence encoding tRNA. Of the identified open reading frames, 33 were of unknown function, while the remaining ones were grouped into functional modules, including structural proteins, DNA replication and regulation, lysogeny, and lysis. The presence of intact lysogeny-related genes, together with the capacity for lysogenisation of the host strain G. halophytocola BIM B-1594, provides evidence that Ph-p5 is a temperate phage. Phylogenetic analysis demonstrated that phage Ph-p5 belongs to the class Caudoviricetes but exhibits significant divergence from known phages and may be assigned to a new genus, for which we propose the name "Petuglutavirus".
Collapse
Affiliation(s)
- Viktoryia Savich
- The Institute of Microbiology of the National Academy of Sciences of Belarus, 220084, Minsk, Belarus.
| | - Artur Akhremchuk
- The Institute of Microbiology of the National Academy of Sciences of Belarus, 220084, Minsk, Belarus
| | - Aliaksandra Herasimovich
- The Institute of Microbiology of the National Academy of Sciences of Belarus, 220084, Minsk, Belarus
| | - Sviatlana Leanovich
- The Institute of Microbiology of the National Academy of Sciences of Belarus, 220084, Minsk, Belarus
| | - Leonid Valentovich
- The Institute of Microbiology of the National Academy of Sciences of Belarus, 220084, Minsk, Belarus
| | - Anastasiya Sidarenka
- The Institute of Microbiology of the National Academy of Sciences of Belarus, 220084, Minsk, Belarus.
| |
Collapse
|
3
|
Woudstra C, Sørensen AN, Sørensen MCH, Brøndsted L. Strategies for developing phages into novel antimicrobial tailocins. Trends Microbiol 2024; 32:996-1006. [PMID: 38580606 DOI: 10.1016/j.tim.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 04/07/2024]
Abstract
Tailocins are high-molecular-weight bacteriocins produced by bacteria to kill related environmental competitors by binding and puncturing their target. Tailocins are promising alternative antimicrobials, yet the diversity of naturally occurring tailocins is limited. The structural similarities between phage tails and tailocins advocate using phages as scaffolds for developing new tailocins. This article reviews three strategies for producing tailocins: disrupting the capsid-tail junction of phage particles, blocking capsid assembly during phage propagation, and creating headless phage particles synthetically. Particularly appealing is the production of tailocins through synthetic biology using phages with contractile tails as scaffolds to unlock the antimicrobial potential of tailocins.
Collapse
Affiliation(s)
- Cedric Woudstra
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Anders Nørgaard Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Martine C Holst Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
4
|
Babar TK, Glare TR, Hampton JG, Hurst MRH, Narciso J. Biochemical characterisation and production kinetics of high molecular-weight (HMW) putative antibacterial proteins of insect pathogenic Brevibacillus laterosporus isolates. BMC Microbiol 2024; 24:259. [PMID: 38997685 PMCID: PMC11245835 DOI: 10.1186/s12866-024-03340-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 05/16/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Bacterial genomes often encode structures similar to phage capsids (encapsulins) and phage tails which can be induced spontaneously or using genotoxic compounds such as mitomycin C. These high molecular-weight (HMW) putative antibacterial proteins (ABPs) are used against the competitive strains under natural environment. Previously, it was unknown whether these HMW putative ABPs originating from the insect pathogenic Gram-positive, spore-forming bacterium Brevibacillus laterosporus (Bl) isolates (1821L, 1951) are spontaneously induced during the growth and pose a detrimental effect on their own survival. Furthermore, no prior work has been undertaken to determine their biochemical characteristics. RESULTS Using a soft agar overlay method with polyethylene glycol precipitation, a narrow spectrum of bioactivity was found from the precipitated lysate of Bl 1951. Electron micrographs of mitomycin C- induced filtrates showed structures similar to phage capsids and contractile tails. Bioactivity assays of cell free supernatants (CFS) extracted during the growth of Bl 1821L and Bl 1951 suggested spontaneous induction of these HMW putative ABPs with an autocidal activity. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis of spontaneously induced putative ABPs showed appearance of ~ 30 kDa and ~ 48 kDa bands of varying intensity across all the time intervals during the bacterial growth except in the initial hours. Statistically, spontaneously induced HMW putative ABPs of Bl 1951 exhibited a significant decrease in the number of viable cells of its producer strain after 18 h of growth in liquid. In addition, a significant change in pH and prominent bioactivity of the CFS of this particular time period was noted. Biochemically, the filtered supernatant derived from either Bl 1821L or Bl 1951 maintained bioactivity over a wide range of pH and temperature. CONCLUSION This study reports the spontaneous induction of HMW putative ABPs (bacteriocins) of Bl 1821L and Bl 1951 isolates during the course of growth with potential autocidal activity which is critically important during production as a potential biopesticide. A narrow spectrum of putative antibacterial activity of Bl 1951 precipitate was found. The stability of HMW putative ABPs of Bl 1821L and Bl 1951 over a wide range of pH and temperature can be useful in expanding the potential of this useful bacterium beyond the insecticidal value.
Collapse
Affiliation(s)
- Tauseef K Babar
- Bioprotection Research Centre, Lincoln University, Lincoln, Canterbury, 7647, New Zealand.
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60000, Pakistan.
| | - Travis R Glare
- Bioprotection Research Centre, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
| | - John G Hampton
- Bioprotection Research Centre, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
| | - Mark R H Hurst
- Resilient agriculture, AgResearch, Lincoln Research Centre, Christchurch, New Zealand
| | - Josefina Narciso
- Bioprotection Research Centre, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
| |
Collapse
|
5
|
Gilman RT, Muldoon MR, Megremis S, Robertson DL, Chanishvili N, Papadopoulos NG. Lysogeny destabilizes computationally simulated microbiomes. Ecol Lett 2024; 27:e14464. [PMID: 38923281 DOI: 10.1111/ele.14464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/06/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Microbiomes are ecosystems, and their stability can impact the health of their hosts. Theory predicts that predators influence ecosystem stability. Phages are key predators of bacteria in microbiomes, but phages are unusual predators because many have lysogenic life cycles. It has been hypothesized that lysogeny can destabilize microbiomes, but lysogeny has no direct analog in classical ecological theory, and no formal theory exists. We studied the stability of computationally simulated microbiomes with different numbers of temperate (lysogenic) and virulent (obligate lytic) phage species. Bacterial populations were more likely to fluctuate over time when there were more temperate phages species. After disturbances, bacterial populations returned to their pre-disturbance densities more slowly when there were more temperate phage species, but cycles engendered by disturbances dampened more slowly when there were more virulent phage species. Our work offers the first formal theory linking lysogeny to microbiome stability.
Collapse
Affiliation(s)
- R Tucker Gilman
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, UK
| | - Mark R Muldoon
- Department of Mathematics, Faculty of Science and Engineering, University of Manchester, Manchester, UK
| | - Spyridon Megremis
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Department of Genetics and Genome Biology, Centre for Phage Research, Institute for Precision Health, University of Leicester, Leicester, UK
| | | | - Nina Chanishvili
- George Eliava Institute of Bacteriophages, Microbiology and Virology, Tbilisi, Georgia
- Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
- NewVision University, Tbilisi, Georgia
| | - Nikolaos G Papadopoulos
- Allergy Department, 2nd Pediatric Clinic, University of Athens, Athens, Greece
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| |
Collapse
|
6
|
Kimchi O, Meir Y, Wingreen NS. Lytic and temperate phage naturally coexist in a dynamic population model. THE ISME JOURNAL 2024; 18:wrae093. [PMID: 38818736 PMCID: PMC11187991 DOI: 10.1093/ismejo/wrae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
When phage infect their bacterial hosts, they may either lyse the cell and generate a burst of new phage, or lysogenize the bacterium, incorporating the phage genome into it. Phage lysis/lysogeny strategies are assumed to be highly optimized, with the optimal tradeoff depending on environmental conditions. However, in nature, phage of radically different lysis/lysogeny strategies coexist in the same environment, preying on the same bacteria. How can phage preying on the same bacteria coexist if one is more optimal than the other? Here, we address this conundrum within a modeling framework, simulating the population dynamics of communities of phage and their lysogens. We find that coexistence between phage of different lysis/lysogeny strategies is a natural outcome of chaotic population dynamics that arise within sufficiently diverse communities, which ensure no phage is able to absolutely dominate its competitors. Our results further suggest a bet-hedging mechanism at the level of the phage pan-genome, wherein obligate lytic (virulent) strains typically outcompete temperate strains, but also more readily fluctuate to extinction within a local community.
Collapse
Affiliation(s)
- Ofer Kimchi
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Yigal Meir
- Department of Physics, Ben-Gurion University, Be’er Sheva 84105, Israel
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
| | - Ned S Wingreen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
7
|
Dahan Y, Wingreen NS, Meir Y. The value of information gathering in phage-bacteria warfare. PNAS NEXUS 2024; 3:pgad431. [PMID: 38196923 PMCID: PMC10776245 DOI: 10.1093/pnasnexus/pgad431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
Phages-viruses that infect bacteria-have evolved over billions of years to overcome bacterial defenses. Temperate phage, upon infection, can "choose" between two pathways: lysis-in which the phage create multiple new phage particles, which are then liberated by cell lysis, and lysogeny-where the phage's genetic material is added to the bacterial DNA and transmitted to the bacterial progeny. It was recently discovered that some phages can read information from the environment related to the density of bacteria or the number of nearby infection attempts. Such information may help phage make the right choice between the two pathways. Here, we develop a theoretical model that allows an infecting phage to change its strategy (i.e. the ratio of lysis to lysogeny) depending on an outside signal, and we find the optimal strategy that maximizes phage proliferation. While phages that exploit extra information naturally win in competition against phages with a fixed strategy, there may be costs to information, e.g. as the necessary extra genes may affect the growth rate of a lysogen or the burst size of new phage for the lysis pathway. Surprisingly, even when phages pay a large price for information, they can still maintain an advantage over phages that lack this information, indicating the high benefit of intelligence gathering in phage-bacteria warfare.
Collapse
Affiliation(s)
- Yuval Dahan
- Department of Physics, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Yigal Meir
- Department of Physics, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
8
|
Sudhakari PA, Ramisetty BCM. An Eco-evolutionary Model on Surviving Lysogeny Through Grounding and Accumulation of Prophages. MICROBIAL ECOLOGY 2023; 86:3068-3081. [PMID: 37843655 DOI: 10.1007/s00248-023-02301-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
Temperate phages integrate into the bacterial genomes propagating along with the bacterial genomes. Multiple phage elements, representing diverse prophages, are present in most bacterial genomes. The evolutionary events and the ecological dynamics underlying the accumulation of prophage elements in bacterial genomes have yet to be understood. Here, we show that the local wastewater had 7% of lysogens (hosting mitomycin C-inducible prophages), and they showed resistance to superinfection by their corresponding lysates. Genomic analysis of four lysogens and four non-lysogens revealed the presence of multiple prophages (belonging to Myoviridae and Siphoviridae) in both lysogens and non-lysogens. For large-scale comparison, 2180 Escherichia coli genomes isolated from various sources across the globe and 523 genomes specifically isolated from diverse wastewaters were analyzed. A total of 15,279 prophages were predicted among 2180 E. coli genomes and 2802 prophages among 523 global wastewater isolates, with a mean of ~ 5 prophages per genome. These observations indicate that most putative prophages are relics of past bacteria-phage conflicts; they are "grounded" prophages that cannot excise from the bacterial genome. Prophage distribution analysis based on the sequence homology suggested the random distribution of E. coli prophages within and between E. coli clades. The independent occurrence pattern of these prophages indicates extensive horizontal transfers across the genomes. We modeled the eco-evolutionary dynamics to reconstruct the events that could have resulted in the prophage accumulation accounting for infection, superinfection immunity, and grounding. In bacteria-phage conflicts, the bacteria win by grounding the prophage, which could confer superinfection immunity.
Collapse
Affiliation(s)
- Pavithra Anantharaman Sudhakari
- Laboratory of Molecular Biology and Evolution, School of Chemical and Biotechnology, SASTRA Deemed University, 312@ASK1, Thanjavur, India
| | - Bhaskar Chandra Mohan Ramisetty
- Laboratory of Molecular Biology and Evolution, School of Chemical and Biotechnology, SASTRA Deemed University, 312@ASK1, Thanjavur, India.
| |
Collapse
|
9
|
Frazão N, Gordo I. Ecotype formation and prophage domestication during gut bacterial evolution. Bioessays 2023; 45:e2300063. [PMID: 37353919 DOI: 10.1002/bies.202300063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 06/25/2023]
Abstract
How much bacterial evolution occurs in our intestines and which factors control it are currently burning questions. The formation of new ecotypes, some of which capable of coexisting for long periods of time, is highly likely in our guts. Horizontal gene transfer driven by temperate phages that can perform lysogeny is also widespread in mammalian intestines. Yet, the roles of mutation and especially lysogeny as key drivers of gut bacterial adaptation remain poorly understood. The mammalian gut contains hundreds of bacterial species, each with many strains and ecotypes, whose abundance varies along the lifetime of a host. A continuous high input of mutations and horizontal gene transfer events mediated by temperate phages drives that diversity. Future experiments to study the interaction between mutations that cause adaptation in microbiomes and lysogenic events with different costs and benefits will be key to understand the dynamic microbiomes of mammals. Also see the video abstract here: https://youtu.be/Zjqsiyb5Pk0.
Collapse
Affiliation(s)
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
10
|
Joglekar P, Ferrell BD, Jarvis T, Haramoto K, Place N, Dums JT, Polson SW, Wommack KE, Fuhrmann JJ. Spontaneously Produced Lysogenic Phages Are an Important Component of the Soybean Bradyrhizobium Mobilome. mBio 2023; 14:e0029523. [PMID: 37017542 PMCID: PMC10127595 DOI: 10.1128/mbio.00295-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 04/06/2023] Open
Abstract
The ability of Bradyrhizobium spp. to nodulate and fix atmospheric nitrogen in soybean root nodules is critical to meeting humanity's nutritional needs. The intricacies of soybean bradyrhizobia-plant interactions have been studied extensively; however, bradyrhizobial ecology as influenced by phages has received somewhat less attention, even though these interactions may significantly impact soybean yield. In batch culture, four soybean bradyrhizobia strains, Bradyrhizobium japonicum S06B (S06B-Bj), B. japonicum S10J (S10J-Bj), Bradyrhizobium diazoefficiens USDA 122 (USDA 122-Bd), and Bradyrhizobium elkanii USDA 76T (USDA 76-Be), spontaneously (without apparent exogenous chemical or physical induction) produced tailed phages throughout the growth cycle; for three strains, phage concentrations exceeded cell numbers by ~3-fold after 48 h of incubation. Phage terminase large-subunit protein phylogeny revealed possible differences in phage packaging and replication mechanisms. Bioinformatic analyses predicted multiple prophage regions within each soybean bradyrhizobia genome, preventing accurate identification of spontaneously produced prophage (SPP) genomes. A DNA sequencing and mapping approach accurately delineated the boundaries of four SPP genomes within three of the soybean bradyrhizobia chromosomes and suggested that the SPPs were capable of transduction. In addition to the phages, S06B-Bj and USDA 76-Be contained three to four times more insertion sequences (IS) and large, conjugable, broad host range plasmids, both of which are known drivers of horizontal gene transfer (HGT) in soybean bradyrhizobia. These factors indicate that SPP along with IS and plasmids participate in HGT, drive bradyrhizobia evolution, and play an outsized role in bradyrhizobia ecology. IMPORTANCE Previous studies have shown that IS and plasmids mediate HGT of symbiotic nodulation (nod) genes in soybean bradyrhizobia; however, these events require close cell-to-cell contact, which could be limited in soil environments. Bacteriophage-assisted gene transduction through spontaneously produced prophages provides a stable means of HGT not limited by the constraints of proximal cell-to-cell contact. These phage-mediated HGT events may shape soybean bradyrhizobia population ecology, with concomitant impacts on soybean agriculture.
Collapse
Affiliation(s)
- Prasanna Joglekar
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Barbra D. Ferrell
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Tessa Jarvis
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Kona Haramoto
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
| | - Nicole Place
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
| | - Jacob T. Dums
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Shawn W. Polson
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - K. Eric Wommack
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Jeffry J. Fuhrmann
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
11
|
Moura de Sousa J, Lourenço M, Gordo I. Horizontal gene transfer among host-associated microbes. Cell Host Microbe 2023; 31:513-527. [PMID: 37054673 DOI: 10.1016/j.chom.2023.03.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Horizontal gene transfer is an important evolutionary force, facilitating bacterial diversity. It is thought to be pervasive in host-associated microbiomes, where bacterial densities are high and mobile elements are frequent. These genetic exchanges are also key for the rapid dissemination of antibiotic resistance. Here, we review recent studies that have greatly extended our knowledge of the mechanisms underlying horizontal gene transfer, the ecological complexities of a network of interactions involving bacteria and their mobile elements, and the effect of host physiology on the rates of genetic exchanges. Furthermore, we discuss other, fundamental challenges in detecting and quantifying genetic exchanges in vivo, and how studies have contributed to start overcoming these challenges. We highlight the importance of integrating novel computational approaches and theoretical models with experimental methods where multiple strains and transfer elements are studied, both in vivo and in controlled conditions that mimic the intricacies of host-associated environments.
Collapse
Affiliation(s)
- Jorge Moura de Sousa
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, 75015 Paris, France
| | - Marta Lourenço
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, F-75015 Paris, France
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande,6, Oeiras, Portugal.
| |
Collapse
|
12
|
Characterization of a New Temperate Escherichia coli Phage vB_EcoP_ZX5 and Its Regulatory Protein. Pathogens 2022; 11:pathogens11121445. [PMID: 36558779 PMCID: PMC9782041 DOI: 10.3390/pathogens11121445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The study of the interaction between temperate phages and bacteria is vital to understand their role in the development of human diseases. In this study, a novel temperate Escherichia coli phage, vB_EcoP_ZX5, with a genome size of 39,565 bp, was isolated from human fecal samples. It has a short tail and belongs to the genus Uetakevirus and the family Podoviridae. Phage vB_EcoP_ZX5 encodes three lysogeny-related proteins (ORF12, ORF21, and ORF4) and can be integrated into the 3'-end of guaA of its host E. coli YO1 for stable transmission to offspring bacteria. Phage vB_EcoP_ZX5 in lysogenized E. coli YO1+ was induced spontaneously, with a free phage titer of 107 PFU/mL. The integration of vB_EcoP_ZX5 had no significant effect on growth, biofilm, environmental stress response, antibiotic sensitivity, adherence to HeLa cells, and virulence of E. coli YO1. The ORF4 anti-repressor, ORF12 integrase, and ORF21 repressors that affect the lytic-lysogenic cycle of vB_EcoP_ZX5 were verified by protein overexpression. We could tell from changes of the number of total phages and the transcription level of phage genes that repressor protein is the key determinant of lytic-to-lysogenic conversion, and anti-repressor protein promotes the conversion from lysogenic cycle to lytic cycle.
Collapse
|
13
|
Two modes of evolution shape bacterial strain diversity in the mammalian gut for thousands of generations. Nat Commun 2022; 13:5604. [PMID: 36153389 PMCID: PMC9509342 DOI: 10.1038/s41467-022-33412-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
How and at what pace bacteria evolve when colonizing healthy hosts remains unclear. Here, by monitoring evolution for more than six thousand generations in the mouse gut, we show that the successful colonization of an invader Escherichia coli depends on the diversity of the existing microbiota and the presence of a closely related strain. Following colonization, two modes of evolution were observed: one in which diversifying selection leads to long-term coexistence of ecotypes and a second in which directional selection propels selective sweeps. These modes can be quantitatively distinguished by the statistics of mutation trajectories. In our experiments, diversifying selection was marked by the emergence of metabolic mutations, and directional selection by acquisition of prophages, which bring their own benefits and costs. In both modes, we observed parallel evolution, with mutation accumulation rates comparable to those typically observed in vitro on similar time scales. Our results show how rapid ecotype formation and phage domestication can be in the mammalian gut. Here, the authors show that a colonizing bacterial strain evolves in the gut by either generating ecotypes or continuously fixing beneficial mutations. They associate the first mode to metabolic mutations and the second to domestication of bacteriophages that are incorporated into the bacterial genome.
Collapse
|
14
|
Liang G, Gao H, Bushman FD. The pediatric virome in health and disease. Cell Host Microbe 2022; 30:639-649. [PMID: 35550667 DOI: 10.1016/j.chom.2022.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/22/2022] [Accepted: 04/11/2022] [Indexed: 11/03/2022]
Abstract
Associations between the global microbiome and diseases of children have been studied extensively; however, research on the viral component of the microbiome, the "virome," is less advanced. The analysis of disease associations with the virome is often technically challenging, requiring a close examination of the "virome dark matter." The gut is a particularly rich source of viral particles, and now multiple studies have reported intriguing associations of the virome with childhood diseases. For example, virome studies have elucidated new lineages of gut viruses that appear to be tightly associated with childhood diarrhea, and consistent patterns are starting to emerge from virome studies in pediatric IBD. In this review, we summarize the methods for studying the virome and recent research on the nature of the virome during childhood, focusing on specific studies of the intestinal virome in pediatric diseases.
Collapse
Affiliation(s)
- Guanxiang Liang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| | - Hongyan Gao
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6076, USA.
| |
Collapse
|
15
|
Boldin B. The importance of ecological dynamics in evolutionary processes: a host-bacteriophage model revisited. J Theor Biol 2022; 539:111057. [PMID: 35181286 DOI: 10.1016/j.jtbi.2022.111057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 11/29/2022]
Abstract
A recent study of adaptive dynamics of lysis propensity in temperate phages suggested that full lysogeny emerges as the outcome of bacteriophage evolution in a simple host-phage system. The conclusion is based on the premise that mutant strains necessarily appear in equilibrium host-phage environments. Revisiting the model, we show that the ecological system exhibits richer asymptotic dynamics and that, in a certain parameter regime, evolution may in fact drive lysis propensity towards an evolutionary singularity in which a non-zero proportion of phages initiate infection in a lytic cycle. These singularities act as points of evolutionary diversification, leading to periodic coexistence of two distinct phage strains on the evolutionary time-scale. One of the two strains in the dimorphic evolutionary singularity is fully lysogenic (in the sense that cell infection always leads to lysogeny), while the other is partially lytic. Our study thus highlights the importance of ecological interactions as a driver of evolution.
Collapse
Affiliation(s)
- Barbara Boldin
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia.
| |
Collapse
|
16
|
Igler C, Schwyter L, Gehrig D, Wendling CC. Conjugative plasmid transfer is limited by prophages but can be overcome by high conjugation rates. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200470. [PMID: 34839704 PMCID: PMC8628080 DOI: 10.1098/rstb.2020.0470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/05/2021] [Indexed: 11/12/2022] Open
Abstract
Antibiotic resistance spread via plasmids is a serious threat to successfully fight infections and makes understanding plasmid transfer in nature crucial to prevent the rise of antibiotic resistance. Studies addressing the dynamics of plasmid conjugation have yet neglected one omnipresent factor: prophages (viruses integrated into bacterial genomes), whose activation can kill host and surrounding bacterial cells. To investigate the impact of prophages on conjugation, we combined experiments and mathematical modelling. Using Escherichia coli, prophage λ and the multidrug-resistant plasmid RP4 we find that prophages can substantially limit the spread of conjugative plasmids. This inhibitory effect was strongly dependent on environmental conditions and bacterial genetic background. Our empirically parameterized model reproduced experimental dynamics of cells acquiring either the prophage or the plasmid well but could only reproduce the number of cells acquiring both elements by assuming complex interactions between conjugative plasmids and prophages in sequential infections. Varying phage and plasmid infection parameters over empirically realistic ranges revealed that plasmids can overcome the negative impact of prophages through high conjugation rates. Overall, the presence of prophages introduces an additional death rate for plasmid carriers, the magnitude of which is determined in non-trivial ways by the environment, the phage and the plasmid. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.
Collapse
Affiliation(s)
- Claudia Igler
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
| | - Lukas Schwyter
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
| | - Daniel Gehrig
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
| | - Carolin Charlotte Wendling
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
17
|
Cortes MG, Lin Y, Zeng L, Balázsi G. From Bench to Keyboard and Back Again: A Brief History of Lambda Phage Modeling. Annu Rev Biophys 2021; 50:117-134. [PMID: 33957052 DOI: 10.1146/annurev-biophys-082020-063558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cellular decision making is the process whereby cells choose one developmental pathway from multiple possible ones, either spontaneously or due to environmental stimuli. Examples in various cell types suggest an almost inexhaustible plethora of underlying molecular mechanisms. In general, cellular decisions rely on the gene regulatory network, which integrates external signals to drive cell fate choice. The search for general principles of such a process benefits from appropriate biological model systems that reveal how and why certain gene regulatory mechanisms drive specific cellular decisions according to ecological context and evolutionary outcomes. In this article, we review the historical and ongoing development of the phage lambda lysis-lysogeny decision as a model system to investigate all aspects of cellular decision making. The unique generality, simplicity, and richness of phage lambda decision making render it a constant source ofmathematical modeling-aided inspiration across all of biology. We discuss the origins and progress of quantitative phage lambda modeling from the 1950s until today, as well as its possible future directions. We provide examples of how modeling enabled methods and theory development, leading to new biological insights by revealing gaps in the theory and pinpointing areas requiring further experimental investigation. Overall, we highlight the utility of theoretical approaches both as predictive tools, to forecast the outcome of novel experiments, and as explanatory tools, to elucidate the natural processes underlying experimental data.
Collapse
Affiliation(s)
- Michael G Cortes
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, USA; .,Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794, USA
| | - Yiruo Lin
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Lanying Zeng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA; .,Center for Phage Technology, Texas A&M University, College Station, Texas 77843, USA
| | - Gábor Balázsi
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, USA; .,Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
18
|
Doekes HM, Mulder GA, Hermsen R. Repeated outbreaks drive the evolution of bacteriophage communication. eLife 2021; 10:58410. [PMID: 33459590 PMCID: PMC7935489 DOI: 10.7554/elife.58410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Recently, a small-molecule communication mechanism was discovered in a range of Bacillus-infecting bacteriophages, which these temperate phages use to inform their lysis-lysogeny decision. We present a mathematical model of the ecological and evolutionary dynamics of such viral communication and show that a communication strategy in which phages use the lytic cycle early in an outbreak (when susceptible host cells are abundant) but switch to the lysogenic cycle later (when susceptible cells become scarce) is favoured over a bet-hedging strategy in which cells are lysogenised with constant probability. However, such phage communication can evolve only if phage-bacteria populations are regularly perturbed away from their equilibrium state, so that acute outbreaks of phage infections in pools of susceptible cells continue to occur. Our model then predicts the selection of phages that switch infection strategy when half of the available susceptible cells have been infected. Bacteriophages, or phages for short, are viruses that need to infect bacteria to multiply. Once inside a cell, phages follow one of two strategies. They either start to replicate quickly, killing the host in the process; or they lay dormant, their genetic material slowly duplicating as the bacterium divides. These two strategies are respectively known as a ‘lytic’ or a ‘lysogenic’ infection. In 2017, scientists discovered that, during infection, some phages produce a signalling molecule that influences the strategy other phages will use. Generally, a high concentration of the signal triggers lysogenic infection, while a low level prompts the lytic type. However, it is still unclear what advantages this communication system brings to the viruses, and how it has evolved. Here, Doekes et al. used a mathematical model to explore how communication changes as phages infect a population of bacteria, rigorously testing earlier theories. The simulations showed that early in an outbreak, when only a few cells have yet been infected, the signalling molecule levels are low: lytic infections are therefore triggered and the phages quickly multiply, killing their hosts in the process. This is an advantageous strategy since many bacteria are available for the viruses to prey on. Later on, as more phages are being produced and available bacteria become few and far between, the levels of the signalling molecule increase. The viruses then switch to lysogenic infections, which allows them to survive dormant, inside their host. Doekes et al. also discovered that this communication system only evolves if phages regularly cause large outbreaks in new, uninfected bacterial populations. From there, the model was able to predict that phages switch from lytic to lysogenic infections when about half the available bacteria have been infected. As antibiotic resistance rises around the globe, phages are increasingly considered as a new way to fight off harmful bacteria. Deciphering the way these viruses communicate could help to understand how they could be harnessed to control the spread of bacteria.
Collapse
Affiliation(s)
- Hilje M Doekes
- Theoretical Biology, Department of Biology, Utrecht University, Utrecht, Netherlands.,Laboratory of Genetics, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Glenn A Mulder
- Theoretical Biology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Rutger Hermsen
- Theoretical Biology, Department of Biology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
19
|
Abstract
The human body hosts vast microbial communities, termed the microbiome. Less well known is the fact that the human body also hosts vast numbers of different viruses, collectively termed the 'virome'. Viruses are believed to be the most abundant and diverse biological entities on our planet, with an estimated 1031 particles on Earth. The human virome is similarly vast and complex, consisting of approximately 1013 particles per human individual, with great heterogeneity. In recent years, studies of the human virome using metagenomic sequencing and other methods have clarified aspects of human virome diversity at different body sites, the relationships to disease states and mechanisms of establishment of the human virome during early life. Despite increasing focus, it remains the case that the majority of sequence data in a typical virome study remain unidentified, highlighting the extent of unexplored viral 'dark matter'. Nevertheless, it is now clear that viral community states can be associated with adverse outcomes for the human host, whereas other states are characteristic of health. In this Review, we provide an overview of research on the human virome and highlight outstanding recent studies that explore the assembly, composition and dynamics of the human virome as well as host-virome interactions in health and disease.
Collapse
|
20
|
Abstract
The antibiotic resistance crisis has led to renewed interest in phage therapy as an alternative means of treating infection. However, conventional methods for isolating pathogen-specific phage are slow, labor-intensive, and frequently unsuccessful. We have demonstrated that computationally identified prophages carried by near-neighbor bacteria can serve as starting material for production of engineered phages that kill the target pathogen. Our approach and technology platform offer new opportunity for rapid development of phage therapies against most, if not all, bacterial pathogens, a foundational advance for use of phage in treating infectious disease. New therapies are necessary to combat increasingly antibiotic-resistant bacterial pathogens. We have developed a technology platform of computational, molecular biology, and microbiology tools which together enable on-demand production of phages that target virtually any given bacterial isolate. Two complementary computational tools that identify and precisely map prophages and other integrative genetic elements in bacterial genomes are used to identify prophage-laden bacteria that are close relatives of the target strain. Phage genomes are engineered to disable lysogeny, through use of long amplicon PCR and Gibson assembly. Finally, the engineered phage genomes are introduced into host bacteria for phage production. As an initial demonstration, we used this approach to produce a phage cocktail against the opportunistic pathogen Pseudomonas aeruginosa PAO1. Two prophage-laden P. aeruginosa strains closely related to PAO1 were identified, ATCC 39324 and ATCC 27853. Deep sequencing revealed that mitomycin C treatment of these strains induced seven phages that grow on P. aeruginosa PAO1. The most diverse five phages were engineered for nonlysogeny by deleting the integrase gene (int), which is readily identifiable and typically conveniently located at one end of the prophage. The Δint phages, individually and in cocktails, killed P. aeruginosa PAO1 in liquid culture as well as in a waxworm (Galleria mellonella) model of infection. IMPORTANCE The antibiotic resistance crisis has led to renewed interest in phage therapy as an alternative means of treating infection. However, conventional methods for isolating pathogen-specific phage are slow, labor-intensive, and frequently unsuccessful. We have demonstrated that computationally identified prophages carried by near-neighbor bacteria can serve as starting material for production of engineered phages that kill the target pathogen. Our approach and technology platform offer new opportunity for rapid development of phage therapies against most, if not all, bacterial pathogens, a foundational advance for use of phage in treating infectious disease.
Collapse
|
21
|
Basso JTR, Ankrah NYD, Tuttle MJ, Grossman AS, Sandaa RA, Buchan A. Genetically similar temperate phages form coalitions with their shared host that lead to niche-specific fitness effects. THE ISME JOURNAL 2020; 14:1688-1700. [PMID: 32242083 PMCID: PMC7305329 DOI: 10.1038/s41396-020-0637-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 01/07/2023]
Abstract
Temperate phages engage in long-term associations with their hosts that may lead to mutually beneficial interactions, of which the full extent is presently unknown. Here, we describe an environmentally relevant model system with a single host, a species of the Roseobacter clade of marine bacteria, and two genetically similar phages (ɸ-A and ɸ-D). Superinfection of a ɸ-D lysogenized strain (CB-D) with ɸ-A particles resulted in a lytic infection, prophage induction, and conversion of a subset of the host population, leading to isolation of a newly ɸ-A lysogenized strain (CB-A). Phenotypic differences, predicted to result from divergent lysogenic-lytic switch mechanisms, are evident between these lysogens, with CB-A displaying a higher incidence of spontaneous induction. Doubling times of CB-D and CB-A in liquid culture are 75 and 100 min, respectively. As cell cultures enter stationary phase, CB-A viable counts are half of CB-D. Consistent with prior evidence that cell lysis enhances biofilm formation, CB-A produces twice as much biofilm biomass as CB-D. As strains are susceptible to infection by the opposing phage type, co-culture competitions were performed to test fitness effects. When grown planktonically, CB-A outcompeted CB-D three to one. Yet, during biofilm growth, CB-D outcompeted CB-A three to one. These results suggest that genetically similar phages can have divergent influence on the competitiveness of their shared hosts in distinct environmental niches, possibly due to a complex form of phage-mediated allelopathy. These findings have implications for enhanced understanding of the eco-evolutionary dynamics of host-phage interactions that are pervasive in all ecosystems.
Collapse
Affiliation(s)
- Jonelle T R Basso
- Department of Microbiology, University of Tennessee Knoxville, 1311 Cumberland Avenue, 307 Ken and Blaire Mossman Bldg., Knoxville, TN, 37996, USA
| | - Nana Y D Ankrah
- Department of Microbiology, University of Tennessee Knoxville, 1311 Cumberland Avenue, 307 Ken and Blaire Mossman Bldg., Knoxville, TN, 37996, USA
- Department of Entomology, Cornell University, 5136 Comstock Hall, Ithaca, NY, 14853, USA
| | - Matthew J Tuttle
- Department of Microbiology, University of Tennessee Knoxville, 1311 Cumberland Avenue, 307 Ken and Blaire Mossman Bldg., Knoxville, TN, 37996, USA
| | - Alex S Grossman
- Department of Microbiology, University of Tennessee Knoxville, 1311 Cumberland Avenue, 307 Ken and Blaire Mossman Bldg., Knoxville, TN, 37996, USA
| | - Ruth-Anne Sandaa
- Department of Biological Sciences, University of Bergen, PO 7803, N-5020, Bergen, Norway
| | - Alison Buchan
- Department of Microbiology, University of Tennessee Knoxville, 1311 Cumberland Avenue, 307 Ken and Blaire Mossman Bldg., Knoxville, TN, 37996, USA.
| |
Collapse
|