1
|
Ali DH, Hegazy HG, Ali EHA, El-Tantawi H. Ginkgo biloba L. leaf extract (EGb 761) alleviates reserpine-induced depression-like symptoms in aged rats by enhancing serotonin/norepinephrine levels and reducing oxidative/nitrosative stress. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03972-9. [PMID: 40100376 DOI: 10.1007/s00210-025-03972-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 02/20/2025] [Indexed: 03/20/2025]
Abstract
Along with accelerated aging, the prevalence of late-life depression (LLD) exacerbates. Older people are more vulnerable to the adverse effects of antidepressants than the young. Therefore, creating antidepressants from medicinal herbs that are more effective and safer is inevitable. Ginkgo biloba L. leaf extract (EGb761) is broadly applied for treating various neuronal dysfunctions. The present study aimed to evaluate the ameliorative and antidepressant effects of EGb761 against reserpine (RES)-induced depression like symptoms and associated comorbidities in aged female rats. Besides, it compared its efficacy with the antidepressant duloxetine (DULX), offering a more comprehensive understanding of therapeutic potential of EGb 761. Rats grouped into control group, EGb 761-H group, RES group, RES plus either EGb 761-L, EGb 761-H, or DULX groups. The antidepressant effects of EGb 761 were evaluated through a series of behavioral tests, measurement of depression biochemical markers, performing neuronal histopathology and immunohistochemical analyses. EGb 761 significantly attenuated behavioral deficits in the open field test and reduced immobility time in the forced swimming test. Moreover, EGb 761 exerted antidepressant-like actions by ameliorating neurotransmitter imbalances, restoring redox homeostasis in cortical region. Also, EGb 761 increased level of ATP, diminished DNA fragmentation, decreased caspase-3 immunoreactivity and increased immunoreactivity of synaptophysin in the cerebral cortex, besides it enhanced the histological architecture of this region. Overall, EGb 761 has the potential effects to manage LLD focus on the role of both serotonergic and noradrenergic systems in mediating these effects, alongside the impact on oxidative/nitrosative stress.
Collapse
Affiliation(s)
- Dina H Ali
- Zoology Department, Faculty of Science, Ain Shams University, El-Khalifa El-Mamoun St., Abbassia, Cairo, 11566, Egypt.
| | - Hoda G Hegazy
- Zoology Department, Faculty of Science, Ain Shams University, El-Khalifa El-Mamoun St., Abbassia, Cairo, 11566, Egypt
| | - Elham H A Ali
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, 11757, Egypt
| | - Hala El-Tantawi
- Zoology Department, Faculty of Science, Ain Shams University, El-Khalifa El-Mamoun St., Abbassia, Cairo, 11566, Egypt
| |
Collapse
|
2
|
Feng X, Wei G, Su Y, Xian Y, Liu Z, Gao Y, Liang J, Lian H, Xu J, Zhao J, Liu Q, Song F. Active fraction of Polyrhachis vicina (Rogers) inhibits osteoclastogenesis by targeting Trim38 mediated proteasomal degradation of TRAF6. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155890. [PMID: 39033726 DOI: 10.1016/j.phymed.2024.155890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/25/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Reactive Oxygen Species (ROS) is a key factor in the pathogenesis of osteoporosis (OP) primarily characterized by excessive osteoclast activity. Active fraction of Polyrhachis vicina Rogers (AFPR) exerts antioxidant effects and possesses extensive promising therapeutic effects in various conditions, however, its function in osteoclastogenesis and OP is unknown. PURPOSE The aim of this study is to elucidate the cellular and molecular mechanisms of AFPR in OP. STUDY DESIGN AND METHODS CCK8 assay was used to evaluate the cell viability under AFPR treatment. TRAcP staining, podosome belts staining and bone resorption were used to test the effect of AFPR on osteoclastogenesis. Immunofluorescence staining was used to observe the effect of AFPR on ROS production. si-RNA transfection, coimmunoprecipitation and Western-blot were used to clarify the underlying mechanisms. Further, an ovariectomy (OVX) -induced OP mice model was used to identify the effect of AFPR on bone loss using Micro-CT scanning and histological examination. RESULTS In the present study, AFPR inhibited osteoclast differentiation and bone resorption induced by nuclear factor-κB receptor activator (NF-κB) ligand (RANKL) in dose-/ time-dependent with no cytotoxicity. Meanwhile, AFPR decreased RANKL-mediated ROS levels and enhanced ROS scavenging enzymes. Mechanistically, AFPR promoted proteasomal degradation of TRAF6 by significantly upregulating its K48-linked ubiquitination, subsequently inhibiting NFATc1 activity. We further observed that tripartite motif protein 38 (TRIM38) could mediate the ubiquitination of TRAF6 in response to RANKL. Moreover, TRIM38 could negatively regulate the RANKL pathway by binding to TRAF6 and promoting K48-linked polyubiquitination. In addition, TRIM38 deficiency rescued the inhibition of AFPR on ROS and NFATc1 activity and osteoclastogenesis. In line with these results, AFPR reduced OP caused by OVX through ameliorating osteoclastogenesis. CONCLUSION AFPR alleviates ovariectomized-induced bone loss via suppressing ROS and NFATc1 by targeting Trim38 mediated proteasomal degradation of TRAF6. The research offers innovative perspectives on AFPR's suppressive impact in vivo OVX mouse model and in vitro, and clarifies the fundamental mechanism.
Collapse
Affiliation(s)
- Xiaoliang Feng
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Guining Wei
- Department of Pharmacology, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, PR China
| | - Yuangang Su
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Yansi Xian
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Zhijuan Liu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Yijie Gao
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Jiamin Liang
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Haoyu Lian
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Jiake Xu
- School of Biomedical Sciences, the University of Western Australia, Perth, Australia; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| | - Fangming Song
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, PR China.
| |
Collapse
|
3
|
Wei J, Xie J, He J, Li D, Wei D, Li Y, Li X, Fang W, Wei G, Lai K. Active fraction of Polyrhachis vicina (Roger) alleviated cerebral ischemia/reperfusion injury by targeting SIRT3-mediated mitophagy and angiogenesis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155104. [PMID: 37797433 DOI: 10.1016/j.phymed.2023.155104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/01/2023] [Accepted: 09/17/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Damaged mitophagy and impaired angiogenesis involve in the pathogenic development of ischemic stroke. Active fraction of Polyrhachis vicina (Roger) (AFPR) showed great potential on neurological disease with it's remarkable anti-inflammatory and anti-oxidative effects. PURPOSE This study designed to clarify the correlation between Pink1/Parkin-mediated mitophagy and angiogenesis after stroke, and to elucidate the role of SIRT3 in regulating mitophagy and angiogenesis, and to address the mechanism of AFPR on promoting mitophagy and angiogenesis in microvessels endothelium of ischemic brain. STUDY DESIGN A cerebral ischemia/reperfusion (CIR) rat model was developed by middle cerebral artery occlusion procedure. bEnd.3 cells were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) to mimic CIR process. Neurological function, mitophagy and angiogenesis related indicators were measured. SIRT3 siRNA and 3-MA were used to verify the interaction between SIRT3-mediated mitophagy and angiogenesis. METHODS CIR rats were orally treated with AFPR (8 and 4 g raw drug /kg) and Nimodipine (10.8 mg/kg) for 12 days to mimic the recovery phase post-stroke. The neurological function assessment, TTC staining, HE staining, TUNEL staining and Nissl staining were performed to assess neuroprotective effects of AFPR against CIR. Then CD31-labeled microvessel density in brain was visualized and quantified by immunofluorescence staining. Mitochondrial ultrastructure was assessed by transmission electron microscope scanning. Expressions of relative proteins,e.g. SIRT3, Pink1, Parkin, LC3-II, p62, VEGFA, involving in mitophagy and angiogenesis, were detected by Western blotting analysis. In vitro, bEnd.3 cells were cultured with AFPR or in combination of autophagy inhibitor 3-MA during the reoxygenation. Then cell viability, and LDH releasing were measured. Angiogenic indicators,such as migration and tube formation activity, VEGFA level were determined. To assess effects of AFPR on mitophagy, mitophagy-related proteins were detected, as well as the autophagosome engulfment and lysosome degradation of mitochondria. To address the role of SIRT3, deacetylation activity of SIRT3 was validated by detecting acetylated FOXO3A level with co-immunoprecipitation (Co-IP) assay. Pre-treatment of siRNA or combination use of 3-MA were used to verify the detailed mechanism. RESULTS AFPR remarkably reduced neurological scores and infarct size, alleviated neuron apoptosis in cortex, and increased Nissl density in hippocampus of CIR rats. In addition, AFPR significantly promoted angiogenesis by increasing microvessels density and VEGFA expressions, increased SIRT3 expression, and activated Pink1/Parkin mediated mitophagy. In bEnd.3 cells, the combination use of 3-MA and AFPR further demonstrated that AFPR might promote angiogenesis after OGD/R injury through activating Pink1/Parkin mediated mitophagy. Co-IP assay suggested AFPR reduced acetylated FOXO3A level. This might be correlated with an elevation of SIRT3 expression and it's deacetylation activity. SIRT3 siRNA pretreatment significantly abolished the activation of mitophagy through Pink1/Parkin axis, eventually inhibited angiogenesis. CONCLUSION AFPR promoted angiogenesis through activating mitophagy after cerebral ischemia reperfusion, which might partially involved in the amelioration of SIRT3-mediated regulation on Pink1/Parkin axis. Our study will shed new light on the role of SIRT3 in ischemic brain, especially in regulating mitophagy and angiogenesis after stroke.
Collapse
Affiliation(s)
- Jie Wei
- Department of Pharmacology, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China
| | - Jiaxiu Xie
- Department of Pharmacology, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China
| | - Junhui He
- Department of Pharmacology, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China
| | - Dongmei Li
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Nanning, 530022, China
| | - Dongmei Wei
- Department of Pharmacology, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China
| | - Yi Li
- Department of Pharmacology, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China
| | - Xiang Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Guining Wei
- Department of Pharmacology, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China.
| | - Kedao Lai
- Department of Pharmacology, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China.
| |
Collapse
|
4
|
Li DM, Zhu FC, Wei J, Xie JX, He JH, Wei DM, Li Y, Lai KD, Liu LM, Su QB, Wei GN, Wang B, Liu YC. The Active Fraction of Polyrhachis vicina Roger (AFPR) activates ERK to cause necroptosis in colorectal cancer. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116454. [PMID: 37059246 DOI: 10.1016/j.jep.2023.116454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/17/2023] [Accepted: 04/01/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polyrhachis vicina Roger (P. vicina), a traditional Chinese medicinal animal, has been used to treat rheumatoid arthritis, hepatitis, cancer, and other conditions. Due to its anti-inflammatory properties, our previous pharmacological investigations have demonstrated that it is effective against cancer, depression, and hyperuricemia. Nevertheless, the key active components and targets of P. vicina in cancers are still unexplored. AIM OF THE STUDY The study aimed to evaluate the pharmacological treatment mechanism of the active fraction of P. vicina (AFPR) in treating colorectal cancer (CRC) and to further reveal its active ingredients and key targets. METHODS To examine the inhibitory impact of AFPR on CRC growth, tumorigenesis assays, cck-8 assays, colony formation assays, and MMP detection were utilized. The primary components of AFPR were identified by GC-MS analysis. The network pharmacology, molecular docking, qRT-PCR, western blotting, CCK-8 assays, colony formation assay, Hoechst staining, Annexin V-FITC/PI double staining, and MMP detection were performed to pick out the active ingredients and potential key targets of AFPR. The function of Elaidic acid on necroptosis was investigated through siRNA interference and the utilization of inhibitors. Elaidic acid's effectiveness to suppress CRC growth in vivo was assessed using a tumorigenesis experiment. RESULTS Studies confirmed that AFPR prevented CRC from growing and evoked cell death. Elaidic acid was the main bioactive ingredient in AFPR that targeted ERK. Elaidic acid greatly affected the ability of SW116 cells to form colonies, produce MMP, and undergo necroptosis. Additionally, Elaidic acid promoted necroptosis predominantly by activating ERK/RIPK1/RIPK3/MLKL. CONCLUSION According to our findings, Elaidic acid is the main active component of AFPR, which induced necroptosis in CRC through the activation of ERK. It represents a promising alternative therapeutic option for CRC. This work provided experimental support for the therapeutic application of P. vicina Roger in the treatment of CRC.
Collapse
Affiliation(s)
- Dong-Mei Li
- School of Chemistry & Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, China; Department of Pharmacology, Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China
| | - Fu-Cui Zhu
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Jie Wei
- Department of Pharmacology, Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China
| | - Jia-Xiu Xie
- Department of Pharmacology, Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China
| | - Jun-Hui He
- Department of Pharmacology, Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China
| | - Dong-Mei Wei
- Department of Pharmacology, Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China
| | - Yi Li
- Department of Pharmacology, Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China
| | - Ke-Dao Lai
- Department of Pharmacology, Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China
| | - Li-Min Liu
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Qi-Biao Su
- College of Health Science, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Gui-Ning Wei
- Department of Pharmacology, Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China.
| | - Bin Wang
- Department of Gastroenterology, The Affiliated Changshu Hospital of Nantong University, Changshu No.2 People's Hospital, Suzhou, 215500, China.
| | - Yan-Cheng Liu
- School of Chemistry & Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
5
|
He J, Han D, Jia C, Xie J, Zhu F, Wei J, Li D, Wei D, Li Y, Tang L, Wei G, Yan J, Tong Y, Yang L, Tan X. Integrating Network Pharmacology, Molecular Docking and Pharmacological Evaluation for Exploring the Polyrhachis vicina Rogers in Ameliorating Depression. Drug Des Devel Ther 2023; 17:717-735. [PMID: 36923105 PMCID: PMC10010188 DOI: 10.2147/dddt.s399183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/12/2023] [Indexed: 03/10/2023] Open
Abstract
Purpose To investigate the mechanisms of antidepressant action of active fraction of Polyrhachis vicina Rogers (AFPR) through network pharmacology, molecular docking and experimental validation. Methods GC-MS was used to predict chemical compounds, corresponding databases were used to predict chemical compound targets and depression targets, Cytoscape software was used to construct and analyze the protein interaction network map, DAVID database was used to analyze gene ontology (GO) and KEGG signaling pathway, and AGFR software was used to perform molecular docking. Subsequently, the underlying action mechanisms of AFPR on depression predicted by network pharmacology analyses were experimentally validated in a CORT-induced depression model in vitro and in vivo. Results A total of 52 potential targets of AFPR on antidepressant were obtained. GO is mainly related to chemical synaptic transmission, signal transduction and others. KEGG signaling pathways are mainly related to cAMP signaling pathway and C-type lectin receptor signaling pathway. The experiment results showed that AFPR significantly increased the expression of PRKACA, CREB and BDNF in mouse brain tissue and PC12 cells. Furthermore, after interfered of cAMP in PC12 cells, the decreased expression of PRKACA, CREB and BDNF was reversed by AFPR. Conclusion AFPR may exert antidepressant effects through multiple components, targets and pathways. Furthermore, it could improve neuroplasticity via the cAMP signaling pathway to improve depression-like symptoms.
Collapse
Affiliation(s)
- Junhui He
- Department of Pharmacology, Key Laboratory of Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, People's Republic of China
| | - Dongbo Han
- Department of Pharmacology, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Chunlian Jia
- Department of Pharmacology, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Jiaxiu Xie
- Department of Pharmacology, Key Laboratory of Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, People's Republic of China
| | - Fucui Zhu
- Department of Pharmacology, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Jie Wei
- Department of Pharmacology, Key Laboratory of Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, People's Republic of China
| | - Dongmei Li
- Department of Pharmacology, Key Laboratory of Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, People's Republic of China
| | - Dongmei Wei
- Department of Pharmacology, Key Laboratory of Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, People's Republic of China
| | - Yi Li
- Department of Pharmacology, Key Laboratory of Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, People's Republic of China
| | - Li Tang
- Department of Pharmacy, the First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, 530022, People's Republic of China
| | - Guining Wei
- Department of Pharmacology, Key Laboratory of Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, People's Republic of China.,Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Jing Yan
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Yuanming Tong
- Department of Pharmacology, Key Laboratory of Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, People's Republic of China
| | - Lifang Yang
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Xuecai Tan
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| |
Collapse
|
6
|
He L, Liu X, Li H, Dong R, Liang R, Wang R. Polyrhachis vicina Roger Alleviates Memory Impairment in a Rat Model of Alzheimer's Disease Through the EGR1/BACE1/APP Axis. ACS Chem Neurosci 2022; 13:1857-1867. [PMID: 35675207 DOI: 10.1021/acschemneuro.1c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Memory deficits and loss are the earliest and most prominent features of Alzheimer's disease (AD). This study was aimed to clarify the mechanistic basis of an active fraction of Polyrhachis vicina Roger (AFPR) on the memory abilities of AD rat models, which involves early growth response 1 (EGR1) expression and β-secretase 1 (BACE1)-mediated deposition of amyloid β peptide (Aβ). An AD rat model was developed by Aβ25-35, which was further treated with AFPR alone or in combination with lentiviral EGR1. The Morris water maze test and HE and Fluoro-Jade C staining were adopted to observe the memory behaviors, hippocampus neuron morphology, and Aβ deposition. Aβ25-35-induced SK-N-SH and HT22 neurons were subjected to AFPR for in vitro experiments on neuronal viability and apoptosis. AFPR improved the impaired memory function, preserved the neuron structure, and suppressed Aβ deposition in AD rat models. Further, the expression of APP pathway-related proteins was downregulated by AFPR in both rat and cellular models. Moreover, AFPR inhibited the Aβ25-35-induced neuronal apoptosis. AFPR suppressed the expression of EGR1, downregulated the BACE1 expression via impeding the binding of EGR1 to the BACE1 promoter, and thus blocked the activation of the APP signaling, ultimately protecting neurons. Notably, the aforementioned effects of AFPR were in a concentration-dependent manner; among three doses, 3.65, 15.6, and 30 mg/(kg·d), high-dose AFPR exhibited the most appreciable effects. In conclusion, AFPR inhibited the BACE1 expression by repressing the binding of EGR1 to the promoter of BACE1, thereby suppressing the Aβ deposition and improving the memory function of AD rats.
Collapse
Affiliation(s)
- Luyan He
- Department of Neurology, Cangzhou Central Hospital, Cangzhou 061000, P.R. China
| | - Xiaoman Liu
- Department of Neurology, Cangzhou Central Hospital, Cangzhou 061000, P.R. China
| | - Hualian Li
- Department of Neurology, Cangzhou Central Hospital, Cangzhou 061000, P.R. China
| | - Ruifang Dong
- Department of Neurology, Cangzhou Central Hospital, Cangzhou 061000, P.R. China
| | - Ruobing Liang
- Department of Neurology, Cangzhou Central Hospital, Cangzhou 061000, P.R. China
| | - Ruoxi Wang
- Department of Neurology, Cangzhou Central Hospital, Cangzhou 061000, P.R. China
| |
Collapse
|
7
|
Becker M, Pinhasov A, Ornoy A. Animal Models of Depression: What Can They Teach Us about the Human Disease? Diagnostics (Basel) 2021; 11:123. [PMID: 33466814 PMCID: PMC7830961 DOI: 10.3390/diagnostics11010123] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/28/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Depression is apparently the most common psychiatric disease among the mood disorders affecting about 10% of the adult population. The etiology and pathogenesis of depression are still poorly understood. Hence, as for most human diseases, animal models can help us understand the pathogenesis of depression and, more importantly, may facilitate the search for therapy. In this review we first describe the more common tests used for the evaluation of depressive-like symptoms in rodents. Then we describe different models of depression and discuss their strengths and weaknesses. These models can be divided into several categories: genetic models, models induced by mental acute and chronic stressful situations caused by environmental manipulations (i.e., learned helplessness in rats/mice), models induced by changes in brain neuro-transmitters or by specific brain injuries and models induced by pharmacological tools. In spite of the fact that none of the models completely resembles human depression, most animal models are relevant since they mimic many of the features observed in the human situation and may serve as a powerful tool for the study of the etiology, pathogenesis and treatment of depression, especially since only few patients respond to acute treatment. Relevance increases by the fact that human depression also has different facets and many possible etiologies and therapies.
Collapse
Affiliation(s)
- Maria Becker
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - Albert Pinhasov
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - Asher Ornoy
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
- Hebrew University Hadassah Medical School, Jerusalem 9112102, Israel
| |
Collapse
|
8
|
El-Marasy SA, El Awdan SA, Hassan A, Ahmed-Farid OA, Ogaly HA. Anti-depressant effect of cerebrolysin in reserpine-induced depression in rats: Behavioral, biochemical, molecular and immunohistochemical evidence. Chem Biol Interact 2020; 334:109329. [PMID: 33279466 DOI: 10.1016/j.cbi.2020.109329] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/07/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
Depression is a major psychological disorder that contributes to global health problem. This study aimed to evaluate the anti-depressant effect of Cerebrolysin (CBL) in Reserpine-induced depressed rats, its effect on oxidative stress, inflammation, regulatory cyclic AMP-dependent response element binding protein (CREB)/brain derived neurotropic factor (BDNF) signaling pathways, brain monoamines and histopathological changes was assessed. Rats received either the vehicle or Reserpine (0.5 mg/kg, i.p.) for 14 days. The other three groups were pretreated with CBL (2.5, 5 ml/kg; i.p.) or fluoxetine (FLU) (5 mg/kg, p.o.), respectively for 14 days, 30 min before reserpine injection. Then analyses were conducted. CBL reversed Reserpine-induced reduction in latency to immobility and prolongation of immobility time in the forced swimming test (FST), reduced malondialdehyde (MDA), elevated reduced glutathione (GSH), reduced tumor necrosis factor-alpha (TNF-ɑ), and elevated BDNF cortical and hippocampal brain contents. CBL elevated protein kinase A (PKA) and nuclear factor kappa-B (NF-κB) cortical and hippocampal protein expressions. CBL also ameliorated alterations in mRNA expressions of protein kinase B (AKT), CREB and BDNF in the cortical and hippocampal tissues. CBL elevated nor-epinephrine (NE), serotonin (5-HT), and dopamine (DA) and reduced 5-Hydroxyindoleacetic acid (5-HTAA), 3,4-Dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) cortical and hippocampal contents. CBL effects were in parallel to those observed with the standard anti-depressant drug, FLU. This study shows that CBL exerted anti-depressant effect evidenced by attenuation of oxidative stress and inflammation as well as enhancement of neurogenesis, amelioration of monoaminergic system and histopathological changes.
Collapse
Affiliation(s)
| | - Sally A El Awdan
- Department of Pharmacology, National Research Centre, Giza, Egypt
| | - Azza Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Omar A Ahmed-Farid
- Department of Physiology, National Organization for Drug Control and Research, Giza, Egypt
| | - Hanan A Ogaly
- Department of Chemistry, College of Sciences, King Khalid University, Abha, Saudi Arabia; Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
9
|
Li DM, Zhong M, Su QB, Song FM, Xie TG, He JH, Wei J, Lu GS, Hu XX, Wei GN. Active fraction of Polyrhachis vicina Rogers (AFPR) suppressed breast cancer growth and progression via regulating EGR1/lncRNA-NKILA/NF-κB axis. Biomed Pharmacother 2020; 123:109616. [PMID: 31881485 DOI: 10.1016/j.biopha.2019.109616] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/23/2019] [Accepted: 10/26/2019] [Indexed: 01/22/2023] Open
Abstract
Breast cancer (BC) is a major contributor of cancer-associated mortality in women. It is essential to find new therapeutic targets and drugs. Polyrhachis vicina Rogers is one of the Traditional Chinese Medicine (TCM). Our previous studies have shown an active fraction of Polyrhachis vicina Rogers (AFPR) has significant anti-inflammatory activity, suggesting its anti-cancer effect. Here, we aimed to explore the inhibitory effects of AFPR on BC and reveal its mechanism. The effects of AFPR on BC were examined by cell proliferation assay, wound healing assay, invasion assay and xenograft assay. Microarray sequencing, qRT-PCR, Western blot, chromatin immunoprecipitation assay and luciferase reporter assay were performed to investigate the regulation of AFPR on related genes and underlying mechanisms. As a result, AFPR suppressed BC cell growth, migration and invasion and inhibited tumor growth. LncRNA NKILA was most prominently upregulated in AFPR-treated MCF7 cells. AFPR inactivated NF-κB signaling pathway via regulating NKILA. Furthermore, AFPR regulated the expression of NKILA by inhibiting its transcript suppressor EGR1. This study firstly indicated that AFPR was a potential inhibitor of BC development via regulating EGR1/NKILA/NF-κB axis.
Collapse
Affiliation(s)
- Dong-Mei Li
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, China; Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Nanning, 530022, China
| | - Ming Zhong
- Department of Chemistry, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, China
| | - Qi-Biao Su
- College of Health Science, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Fang-Ming Song
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Tang-Gui Xie
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, China
| | - Jun-Hui He
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, China
| | - Jie Wei
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, China
| | - Guo-Shou Lu
- Department of Chemistry, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, China
| | - Xiao-Xi Hu
- Department of Chemistry, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, China
| | - Gui-Ning Wei
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, China.
| |
Collapse
|