1
|
Fang C, Wang Y, Pan Z. Formation of self-assembly aggregates in traditional Chinese medicine decoctions and their application in cancer treatments. RSC Adv 2025; 15:5476-5506. [PMID: 39967882 PMCID: PMC11833604 DOI: 10.1039/d4ra07212j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/30/2025] [Indexed: 02/20/2025] Open
Abstract
Traditional Chinese Medicine (TCM) formulas, based on the principles of Chinese medicine, have a long history and are widely applied in the treatment of diseases. Compared to single-component drugs, TCM formulas demonstrate superior therapeutic efficacy and fewer side effects owing to their synergistic effects and mechanisms of detoxification and efficacy enhancement. However, various drawbacks, such as the uncertainty of functional targets and molecular mechanisms, poor solubility of components, and low bioavailability, have limited the global promotion and application of TCM formulas. To overcome these limitations, self-assembled aggregate (SA) nanotechnology has emerged as a promising solution. SA nanotechnology significantly enhances the bioavailability and anti-tumor efficacy of TCM by improving its absorption, distribution, and precise targeting capabilities, thereby providing an innovative solution for the modernization and internationalization of TCM. This review delves into the nature and common interactions of SAs based on the latest research developments. The structural characteristics of SAs in TCM formulas, paired-herb decoctions, and single-herb decoctions are analyzed and their self-assembly mechanisms are systematically elucidated. In addition, this article elaborates on the advantages of SAs in cancer treatment, particularly in enhancing the bioavailability and targeting capabilities. Furthermore, this review aims to provide new perspectives for the study of TCM compatibility and its clinical applications, thereby driving the innovative development of nanomaterials in this field. On addressing the technological challenges, SAs are expected to further promote the global application and recognition of TCM in the healthcare sector.
Collapse
Affiliation(s)
- Chunqiu Fang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun 130117 P.R. China +8613596030117
| | - Yinghang Wang
- The Affiliated Hospital to Changchun University of Chinese Medicine Changchun 130117 P.R. China +8613844993950
| | - Zhi Pan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun 130117 P.R. China +8613596030117
| |
Collapse
|
2
|
Zhang J, Pang H, Tang H, Tu Q, Xia F, Zhang H, Meng Y, Han G, Wang J, Qiu C. The pharmacodynamic and pharmacological mechanisms underlying nanovesicles of natural products: Developments and challenges. Pharmacol Ther 2025; 265:108754. [PMID: 39566562 DOI: 10.1016/j.pharmthera.2024.108754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 10/23/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
Natural products such as Traditional Chinese Medicines (TCMs) show great advantages in the treatment and prevention of diseases, but the unclear effective ingredients and mechanisms are key obstacles to restrict their rapid development. Under the guidance of the theoretical guidance of reductionism and the theoretical of allopathic medicine, some researches have indeed achieved some breakthrough results. However, these incomplete methods mainly limited to direct actions or indirect actions (such as the intermediated substances mediated cross-organ or cross-system regulation) mechanism of single active ingredient derived from natural products, which are often inconsistent with Systemism and Harmonizing Medicine and make it difficult to reasonably explain the pharmacodynamics and pharmacological mechanism of most natural products. Actually, effective pharmaceutical ingredients often do not exist in the form of free monomers, but prefer to assembly nanovesicles (NVs) for a combinational pharmacological effect, mainly including self-assembled nanoparticles (SANs) and exosome-like nanoparticles (ELNs). These developments of NVs-based application are a good supplement to existing pharmacological mechanism research. Hence, this review focuses on the developments and strategies of the pharmacodynamics and pharmacological mechanism of NVs-based TCMs under the combining theory of traditional Chinese and western medicine. On this basis, a novel "multidimensional combination" research approach is proposed firstly, which will provide new strategies and directions for breaking through the bottleneck of pharmacological mechanism research, and promote the clinical application of innovative natural products including TCMs.
Collapse
Affiliation(s)
- Junzhe Zhang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huanhuan Pang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huan Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qingchao Tu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hao Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuqing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guang Han
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Jigang Wang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Department of Biological Sciences, National University of Singapore, Singapore 119077, Singapore.
| | - Chong Qiu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
3
|
Wang T, Fu ZY, Li YJ, Zi L, Song CZ, Tao YX, Zhang M, Gu W, Yu J, Yang XX. Recognition on pharmacodynamic ingredients of natural products. Saudi Pharm J 2024; 32:102124. [PMID: 38933713 PMCID: PMC11201352 DOI: 10.1016/j.jsps.2024.102124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Natural products (NPs) play an irreplaceable role in the intervention of various diseases and have been considered a critical source of drug development. Many new pharmacodynamic compounds with potential clinical applications have recently been derived from NPs. These compounds range from small molecules to polysaccharides, polypeptides, proteins, self-assembled nanoparticles, and extracellular vesicles. This review summarizes various active substances found in NPs. The investigation of active substances in NPs can potentiate new drug development and promote the in-depth comprehension of the mechanism of action of NPs that can be beneficial in the prevention and treatment of human diseases.
Collapse
Affiliation(s)
- Tao Wang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Zhong-Yu Fu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Yan-Juan Li
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Lei Zi
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Cheng-Zhu Song
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Yu-Xuan Tao
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Mei Zhang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Wen Gu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Jie Yu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Xing-Xin Yang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| |
Collapse
|
4
|
Yang G, Liu Y, Hu Y, Yuan Y, Qin Y, Li Q, Ma S. Bio-soft matter derived from traditional Chinese medicine: Characterizations of hierarchical structure, assembly mechanism, and beyond. J Pharm Anal 2024; 14:100943. [PMID: 39005842 PMCID: PMC11246065 DOI: 10.1016/j.jpha.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/03/2024] [Accepted: 01/31/2024] [Indexed: 07/16/2024] Open
Abstract
Structural and functional explorations on bio-soft matter such as micelles, vesicles, nanoparticles, aggregates or polymers derived from traditional Chinese medicine (TCM) has emerged as a new topic in the field of TCM. The discovery of such cross-scaled bio-soft matter may provide a unique perspective for unraveling the new effective material basis of TCM as well as developing innovative medicine and biomaterials. Despite the rapid rise of TCM-derived bio-soft matter, their hierarchical structure and assembly mechanism must be unambiguously probed for a further in-depth understanding of their pharmacological activity. In this review, the current emerged TCM-derived bio-soft matter assembled from either small molecules or macromolecules is introduced, and particularly the unambiguous elucidation of their hierarchical structure and assembly mechanism with combined electron microscopic and spectroscopic techniques is depicted. The pros and cons of each technique are also discussed. The future challenges and perspective of TCM-derived bio-soft matter are outlined, particularly the requirement for their precise in situ structural determination is highlighted.
Collapse
Affiliation(s)
- Guiya Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yue Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yuying Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yue Yuan
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yunan Qin
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Quan Li
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuangcheng Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| |
Collapse
|
5
|
Çelekli A, Özbal B, Bozkurt H. Challenges in Functional Food Products with the Incorporation of Some Microalgae. Foods 2024; 13:725. [PMID: 38472838 DOI: 10.3390/foods13050725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/07/2023] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Much attention has been given to the use of microalgae to produce functional foods that have valuable bioactive chemicals, including essential amino acids, polyunsaturated fatty acids, vitamins, carotenoids, fiber, and minerals. Microalgal biomasses are increasingly being used to improve the nutritional values of foods because of their unique nutrient compositions that are beneficial to human health. Their protein content and amino acid composition are the most important components. The microalgal biomass used in the therapeutic supplement industry is dominated by bio-compounds like astaxanthin, β-carotene, polyunsaturated fatty acids like eicosapentaenoic acid and docosahexaenoic acid, and polysaccharides such as β-glucan. The popularity of microalgal supplements is growing because of the health benefits of their bioactive substances. Moreover, some microalgae, such as Dunaliella, Arthrospira (Spirulina), Chlorella, and Haematococcus, are commonly used microalgal species in functional food production. The incorporation of microalgal biomass leads not only to enhanced nutritional value but also to improved sensory quality of food products without altering their cooking or textural characteristics. Microalgae, because of their eco-friendly potential, have emerged as one of the most promising and novel sources of new functional foods. This study reviews some recent and relevant works, as well as the current challenges for future research, using different methods of chemical modification in foods with the addition of a few commercial algae to allow their use in nutritional and sensory areas. It can be concluded that the production of functional foods through the use of microalgae in foods has become an important issue.
Collapse
Affiliation(s)
- Abuzer Çelekli
- Department of Biology, Faculty of Art and Science, Gaziantep University, 27310 Gaziantep, Turkey
| | - Buket Özbal
- Department of Biology, Faculty of Art and Science, Gaziantep University, 27310 Gaziantep, Turkey
| | - Hüseyin Bozkurt
- Department of Food Engineering, Faculty of Engineering, University of Gaziantep, 27310 Gaziantep, Turkey
| |
Collapse
|
6
|
Yang B, Zhang Z, Song J, Qi T, Zeng J, Feng L, Jia X. Interpreting the efficacy enhancement mechanism of Chinese medicine processing from a biopharmaceutic perspective. Chin Med 2024; 19:14. [PMID: 38238801 PMCID: PMC10797928 DOI: 10.1186/s13020-024-00887-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
Chinese medicine processing (CMP) is a unique pharmaceutical technology that distinguishes it from natural medicines. Current research primarily focuses on changes in chemical components to understand the mechanisms behind efficacy enhancement in processing. However, this paper presents a novel perspective on the biopharmaceutics of CMP. It provides a comprehensive overview of the current research, emphasizing two crucial aspects: the role of 'heat' during processing and the utilization of processing adjuvants. The paper highlights the generation of easily absorbed components through the hydrolysis of glycosides by 'heat', as well as the facilitation of dissolution, absorption, and targeted distribution of active components through the utilization of processing adjuvants. From a biopharmaceutic perspective, this paper provides a lucid comprehension of the scientific foundation for augmenting the efficacy of CMP. Moreover, it proposes a three-dimensional research framework encompassing chemical reactions, phase transitions, and biopharmaceutical properties to further investigate the mechanisms involved in enhancing the efficacy of CMP.
Collapse
Affiliation(s)
- Bing Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Zhubin Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jinjing Song
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Tianhao Qi
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jingqi Zeng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Liang Feng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Xiaobin Jia
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
7
|
Liang P, Bi T, Zhou Y, Ma Y, Liu X, Ren W, Yang S, Luo P. Insights into the Mechanism of Supramolecular Self-Assembly in the Astragalus membranaceus- Angelica sinensis Codecoction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47939-47954. [PMID: 37791782 PMCID: PMC10591233 DOI: 10.1021/acsami.3c09494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
Astragalus membranaceus (Fisch.) Bge. (AM) and Angelica sinensis (Oliv.) Diels (AS) constitute a classic herb pair in prescriptions to treat myocardial fibrosis. To date, research on the AM-AS herb pair has mainly focused on the chemical compositions associated with therapeutic efficacy. However, supermolecules actually exist in herb codecoctions, and their self-assembly mechanism remains unclear. In this study, supermolecules originating from AM-AS codoping reactions (AA-NPs) were first reported. The chemical compositions of AA-NPs showed a dynamic self-assembly process. AA-NPs with different decoction times had similar surface groups and amorphous states; however, the size distributions of these nanoparticles might be different. Taking the interaction between Z-ligustilide and astragaloside IV as an example to understand the self-assembly mechanism of AA-NPs, it was found that the complex could be formed with a molar ratio of 2:1. Later, AA-NPs were proven to be effective in the treatment of myocardial fibrosis both in vivo and in vitro, the in-depth mechanisms of which were related to the recovery of cardiac function, reduced collagen deposition, and inhibition of the endothelial-to-mesenchymal transition that occurred in the process of myocardial fibrosis. Thus, AA-NPs may be the chemical material basis of the molecular mechanism of the AM-AS decoction in treating isoproterenol-induced myocardial fibrosis. Taken together, this work provides a supramolecular strategy for revealing the interaction between effective chemical components in herb-pair decoctions.
Collapse
Affiliation(s)
- Pan Liang
- State
Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
- National
Traditional Chinese Medicine Clinical Research Base and Drug Research
Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital
of Southwest Medical University, Luzhou 646000, China
| | - Tao Bi
- National
Traditional Chinese Medicine Clinical Research Base and Drug Research
Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital
of Southwest Medical University, Luzhou 646000, China
| | - Yanan Zhou
- National
Traditional Chinese Medicine Clinical Research Base and Drug Research
Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital
of Southwest Medical University, Luzhou 646000, China
| | - Yining Ma
- National
Traditional Chinese Medicine Clinical Research Base and Drug Research
Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital
of Southwest Medical University, Luzhou 646000, China
| | - Xinyue Liu
- National
Traditional Chinese Medicine Clinical Research Base and Drug Research
Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital
of Southwest Medical University, Luzhou 646000, China
| | - Wei Ren
- National
Traditional Chinese Medicine Clinical Research Base and Drug Research
Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital
of Southwest Medical University, Luzhou 646000, China
| | - Sijin Yang
- National
Traditional Chinese Medicine Clinical Research Base and Drug Research
Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital
of Southwest Medical University, Luzhou 646000, China
| | - Pei Luo
- State
Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
8
|
Peng A, Lin L, Zhao M. Chemical basis and self-assembly mechanism of submicroparticles forming in chrysanthemum tea infusion. Food Chem 2023; 427:136745. [PMID: 37392633 DOI: 10.1016/j.foodchem.2023.136745] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/13/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023]
Abstract
Submicroparticles are important components generally existed in chrysanthemum tea infusion, but their functionality, chemical composition, structure and self-assembly mechanism are unclear due to lack of suitable preparation method and research strategy. This study showed that submicroparticles promoted the intestinal absorption of phenolics in chrysanthemum tea infusion by comparison of chrysanthemum tea infusion, submicroparticles-free chrysanthemum tea infusion and submicroparticles. Submicroparticles efficiently prepared by ultrafiltration mainly consisting of polysaccharide and phenolics accounted for 22% of total soluble solids in chrysanthemum tea infusion. The polysaccharide, which was determined as esterified pectin with a spherical conformation, provided spherical skeleton to form submicroparticles. A total of 23 individual phenolic compounds were identified in submicroparticles with the total phenolic content of 7.63 μg/mL. The phenolics not only attached to the external region of spherical pectin by hydrogen bonds, but also got into hydrophobic cavities of spherical pectin and attached to the internal region by hydrophobic interactions.
Collapse
Affiliation(s)
- An Peng
- School of Food Science and Engineering, South China University of Technology Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510641, China
| | - Lianzhu Lin
- School of Food Science and Engineering, South China University of Technology Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510641, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510641, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| |
Collapse
|
9
|
Huang J, Zhu Y, Xiao H, Liu J, Li S, Zheng Q, Tang J, Meng X. Formation of a traditional Chinese medicine self-assembly nanostrategy and its application in cancer: a promising treatment. Chin Med 2023; 18:66. [PMID: 37280646 DOI: 10.1186/s13020-023-00764-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/06/2023] [Indexed: 06/08/2023] Open
Abstract
Traditional Chinese medicine (TCM) has been used for centuries to prevent and treat a variety of illnesses, and its popularity is increasing worldwide. However, the clinical applications of natural active components in TCM are hindered by the poor solubility and low bioavailability of these compounds. To address these issues, Chinese medicine self-assembly nanostrategy (CSAN) is being developed. Many active components of TCM possess self-assembly properties, allowing them to form nanoparticles (NPs) through various noncovalent forces. Self-assembled NPs (SANs) are also present in TCM decoctions, and they are closely linked to the therapeutic effects of these remedies. SAN is gaining popularity in the nano research field due to its simplicity, eco-friendliness, and enhanced biodegradability and biocompatibility compared to traditional nano preparation methods. The self-assembly of active ingredients from TCM that exhibit antitumour effects or are combined with other antitumour drugs has generated considerable interest in the field of cancer therapeutics. This paper provides a review of the principles and forms of CSAN, as well as an overview of recent reports on TCM that can be used for self-assembly. Additionally, the application of CSAN in various cancer diseases is summarized, and finally, a concluding summary and thoughts are proposed. We strongly believe that CSAN has the potential to offer fresh strategies and perspectives for the modernization of TCM.
Collapse
Affiliation(s)
- Ju Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yu Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Hang Xiao
- Capital Medical University, Beijing, People's Republic of China
| | - Jingwen Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Songtao Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Qiao Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
| | - Xiangrui Meng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
| |
Collapse
|
10
|
He W, Han M, Bu Y, Zhu W, Li J, Li X. Flavor mechanism of micro-nanoparticles and correlation analysis between flavor substances in thermoultrasonic treated fishbone soup. ULTRASONICS SONOCHEMISTRY 2023; 93:106299. [PMID: 36652814 PMCID: PMC9853349 DOI: 10.1016/j.ultsonch.2023.106299] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/02/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
To study the physicochemical properties of micro-nanoparticles (MNPs) in thermoultrasonic treated fishbone soup, it was subjected to ultra-filtration with a 100 kDa ultrafiltration membrane to obtain large MNPs (LMNPs) and small MNPs (SMNPs). LMNPs and SMNPs were treated with force-breakers, and the interactions of the MNPs with five characteristic volatile compounds were investigated. LMNPs covered most proteins (222.66 mg/mL) and fatty acids (363.76 mg/g), while SMNPs was mostly soluble small molecules with taste substances like total free amino acids (85.26 mg/g), organic acids (2.55 mg/mL), and 5'-nucleotides (169.17 mg/100 mL). The stability of LMNPs is significantly higher than raw bone soup, and SMNPs can exist stably in the solution. Correlation analysis between flavor substance content and flavor suggested that the overall flavor profile of halibut bone soup was closely related to the content changes of 72 significant influence variables. The binding of LMNPs to characteristic flavor compounds was largely affected by hydrophobic interactions, hydrogen bonds, and ionic effects. While the binding of SMNPs to characteristic flavor compounds was largely determined by hydrophobic interaction and hydrogen bonding. This study explores the characteristics of MNPs and provides the possibility to clarify the interaction mechanism between MNPs and flavor.
Collapse
Affiliation(s)
- Wei He
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China
| | - Menglin Han
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China
| | - Ying Bu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China
| | - Wenhui Zhu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China.
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
11
|
Changes in stability and volatile flavor compounds of self-emulsifying chicken soup formed during the stewing process. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
12
|
Li Z, Xu X, Wang Y, Kong L, Han C. Carrier-free nanoplatforms from natural plants for enhanced bioactivity. J Adv Res 2022:S2090-1232(22)00215-6. [PMID: 36208834 PMCID: PMC10403678 DOI: 10.1016/j.jare.2022.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Natural plants as well as traditional Chinese medicine have made outstanding contributions to the health and reproduction of human beings and remain the basis and major resource for drug innovation. Carrier-free nanoplatforms completely self-assembled by pure molecules or therapeutic components have attracted increasing attention due to their advantages of improved pharmacodynamics/pharmacokinetics, reduced toxicity, and high drug loading. In recent years, carrier-free nanoplatforms produced by self-assembly from natural plants have contributed to progress in a variety of therapeutic modalities. Notably, these nanoplatforms based on the interactions of components from different natural plants improve efficiency and depress toxicity. AIM OF REVIEW In this review, different types of self-assembled nanoplatforms are first summarized, mainly including nanoassemblies of pure small molecules isolated from different plants, extracellular vesicles separated from fresh plants, charcoal nanocomponents obtained from charred plants, and nanoaggregates from plants formulae decoctions. Key Scientific Concepts of Review: We mainly focus on composition, self-assembly mechanisms, biological activity and modes of action. Finally, a future perspective of existing challenges with respect to the clinical application of plant-based carrier-free nanoplatforms is discussed, which may be instructive to further develop effective carrier-free nanoplatforms from natural plants in the future.
Collapse
Affiliation(s)
- Zhongrui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China; Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, 101 longmian Avenue, Nanjing 211166, PR China
| | - Xiao Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Yun Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| | - Chao Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| |
Collapse
|
13
|
Gao Y, Dong Y, Guo Q, Wang H, Feng M, Yan Z, Bai D. Study on Supramolecules in Traditional Chinese Medicine Decoction. Molecules 2022; 27:3268. [PMID: 35630743 PMCID: PMC9144598 DOI: 10.3390/molecules27103268] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
With the application of the concept of supramolecular chemistry to various fields, a large number of supramolecules have been discovered. The chemical components of traditional Chinese medicine have various sources and unique structures. During the high-temperature boiling process, various active components form supramolecules due to complex interactions. The supramolecular structure in a traditional Chinese medicine decoction can not only be used as a drug carrier to promote the absorption and distribution of medicinal components but may also have biological activities superior to those of single active ingredients or their physical mixtures. By summarizing the relevant research results over recent years, this paper introduces the research progress regarding supramolecules in various decoctions, laying a foundation for further research into supramolecules in traditional Chinese medicine decoctions, and provides a new perspective for revealing the compatibility mechanisms of traditional Chinese medicine, guiding clinical medications, and developing new nanometers materials.
Collapse
Affiliation(s)
- Yuan Gao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.G.); (Y.D.); (Q.G.); (Z.Y.)
| | - Yingying Dong
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.G.); (Y.D.); (Q.G.); (Z.Y.)
| | - Qin Guo
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.G.); (Y.D.); (Q.G.); (Z.Y.)
| | - Huanhuan Wang
- Basic Medical School, Shanxi University of Chinese Medicine, Xianyang 712046, China; (H.W.); (M.F.)
| | - Mei Feng
- Basic Medical School, Shanxi University of Chinese Medicine, Xianyang 712046, China; (H.W.); (M.F.)
| | - Zhengshen Yan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.G.); (Y.D.); (Q.G.); (Z.Y.)
| | - Dong Bai
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.G.); (Y.D.); (Q.G.); (Z.Y.)
| |
Collapse
|
14
|
Peng A, Lin L, Zhao M. Discovery, characterization and stability evaluation of self-assembled submicroparticles in chrysanthemum tea infusions. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Gao G, He C, Wang H, Guo J, Ke L, Zhou J, Chong PH, Rao P. Polysaccharide Nanoparticles from Isatis indigotica Fort. Root Decoction: Diversity, Cytotoxicity, and Antiviral Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:nano12010030. [PMID: 35009980 PMCID: PMC8746683 DOI: 10.3390/nano12010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 05/08/2023]
Abstract
It has been revealed that numerous nanoparticles are formed during the boiling preparation of traditional Chinese medical decoctions and culinary soups. They may possess physiological effects different from those of constituent components and are worth paying attention to but are barely noticed and investigated as of yet. In this study, six groups of nanoparticles, whose size ranged from 57 to 300 nm, were successfully isolated from the decoction of Isatis indigotica Fort. root, according to their particle size by the means of size-exclusive chromatography. All of the obtained nanoparticles have a high content of polysaccharides, which distinguishes them from the disclosed BLG protein nanoparticles. They also have high similarities in other compositions, surface charge, and stimuli responses. However, four out of these six nanoparticles (F2, F3, F4, and F5) exhibited significant antiviral activity against influenza virus H1N1, and their antiviral activities and cytotoxicity towards MDCK cells varied with their sizes. It suggested that the antiviral efficacy of BLG decoction could also be from its nanoparticles besides its well-known antiviral phytochemicals. It also implied that the biological effects of these polysaccharide nanoparticles, including cytotoxicity and antiviral activity, may be correlative with the physicochemical properties, especially the particle size.
Collapse
Affiliation(s)
- Guanzhen Gao
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310012, China; (G.G.); (H.W.); (L.K.); (P.H.C.); (P.R.)
| | - Chuanqi He
- Institute of Biotechnology, Fuzhou University, Fuzhou 350002, China;
| | - Huiqin Wang
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310012, China; (G.G.); (H.W.); (L.K.); (P.H.C.); (P.R.)
| | - Jingke Guo
- Department of Food and Biological Engineering, Zhicheng College, Fuzhou University, Fuzhou 350002, China;
| | - Lijing Ke
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310012, China; (G.G.); (H.W.); (L.K.); (P.H.C.); (P.R.)
| | - Jianwu Zhou
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310012, China; (G.G.); (H.W.); (L.K.); (P.H.C.); (P.R.)
- Correspondence: ; Tel.: +86-571-8807-1024; Fax: +86-571-8805-6656
| | - Pik Han Chong
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310012, China; (G.G.); (H.W.); (L.K.); (P.H.C.); (P.R.)
| | - Pingfan Rao
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310012, China; (G.G.); (H.W.); (L.K.); (P.H.C.); (P.R.)
| |
Collapse
|
16
|
He W, Zhu W, Bu Y, Wang W, Li X, Li J, Zhang Y. Formation of colloidal micro-nano particles and flavor characteristics of Greenland halibut bone soup. J Food Sci 2021; 87:216-230. [PMID: 34841524 DOI: 10.1111/1750-3841.15979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022]
Abstract
In this study, halibut bone, a byproduct of Greenland halibut processing, was prepared into a thick soup through a non-frying process. The formation of colloidal micro-nano particles and flavor characteristics in halibut bone soup was explored. The results showed that the nutrients in halibut bones migrated to the soup continuously with the cooking process and reached the highest concentration (total sugars, 38.16 mg/100 ml; water-soluble proteins, 25.71 mg/ml; fatty acids, 2.15 g/100 ml; solids, 1.14 g/100 ml) at 150 min. Taste substances such as organic acids, 5'-nucleotides and total free amino acids (TFAAs) content in halibut bone soup also reached maximum at 150 min. At this time, results for particle size showed that MNPs with uniform size (725.62 nm) were formed, which made the bone soup milky white, stable, and had good tasting. Headspace-gas chromatography-ion mobility spectrometry results showed that a total of 59 volatile substances were detected from the halibut bone soup. The content of volatile flavor substances in the 150 min group was lower than that in the 90-120 min group. Meanwhile, aldehydes and ketones gradually became esters. PRACTICAL APPLICATION: Soup is an indispensable part of the world food culture. In order to increase the added value of Greenland halibut, halibut bone soup was studied in this paper. This study found that halibut bone soup that had not been fried, formed the MNPs and has a more harmonious and pleasant flavor. Thus, non-fried halibut bone soup is a good processing method and can improve economic efficiency.
Collapse
Affiliation(s)
- Wei He
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Wenhui Zhu
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Ying Bu
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Wenxuan Wang
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Yuyu Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
17
|
Zhu W, He W, Wang W, Bu Y, Li X, Li J, Zhang Y. Effects of thermoultrasonic treatment on characteristics of micro-nano particles and flavor in Greenland halibut bone soup. ULTRASONICS SONOCHEMISTRY 2021; 79:105785. [PMID: 34653917 PMCID: PMC8527050 DOI: 10.1016/j.ultsonch.2021.105785] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/26/2021] [Accepted: 10/06/2021] [Indexed: 05/25/2023]
Abstract
In order to investigate the effects of thermoultrasonic treatment (TUT) on the formation of colloidal micro-nano particles (MNPs) and the quality of halibut bone soup, nutrients, particle characteristics, and flavor characteristics were analyzed. The morphology of MNPs was studied using an optical microscope. Results showed that TUT could increase the nutrient content (total sugars, 22.15 mg/100 mL; water soluble proteins, 173.24 mg/mL; fatty acids, 1779.7 mg/100 mL; solids, 3.16 g/100 mL), reduce the particle size (605.92 nm) and interfacial tension. Meanwhile, TUT make the halibut bone soup has better emulsifying characteristics and stability. The contents of flavor substances, such as esters, 5'-nucleotides, organic acids in the halibut bone soup were more abundant, while the contents of hexanal and 1-octen-3-ol and fishy off-flavor were reduced in TUT group. The overall odor and taste outline were more harmonious. Therefore, TUT can be used in the production of high quality fish bone soup, and TUT could be considered as a good deep processing technology for halibut bone and improve economic efficiency.
Collapse
Affiliation(s)
- Wenhui Zhu
- College of Food Science and Engineering, Bohai University. Jinzhou, Liaoning 121013, China
| | - Wei He
- College of Food Science and Engineering, Bohai University. Jinzhou, Liaoning 121013, China
| | - Wenxuan Wang
- College of Food Science and Engineering, Bohai University. Jinzhou, Liaoning 121013, China
| | - Ying Bu
- College of Food Science and Engineering, Bohai University. Jinzhou, Liaoning 121013, China.
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University. Jinzhou, Liaoning 121013, China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University. Jinzhou, Liaoning 121013, China.
| | - Yuyu Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
18
|
Zhao J, Zhao Q, Lu JZ, Ye D, Mu S, Yang XD, Zhang WD, Ma BL. Natural Nano-Drug Delivery System in Coptidis Rhizoma Extract with Modified Berberine Hydrochloride Pharmacokinetics. Int J Nanomedicine 2021; 16:6297-6311. [PMID: 34552326 PMCID: PMC8451076 DOI: 10.2147/ijn.s323685] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose This study aimed to evaluate the pharmaceutical and pharmacokinetic effects of the natural nanoparticles (Nnps) isolated from Coptidis Rhizoma extract on berberine hydrochloride (BBR) and systematically explore the related mechanisms. Methods Firstly, Nnps were isolated from Coptidis Rhizoma extract and then an Nnps-BBR complex was prepared. After qualitative and quantitative analysis in terms of size, Zeta potential, morphology, and composition of the Nnps and the Nnps-BBR complex, the effects of the Nnps on the crystallization of BBR were characterized. The effects of the Nnps on the solubility and dissolution of BBR were then evaluated. In addition, the effects of the Nnps on BBR in terms of cellular uptake, transmembrane transport, metabolic stability, and pharmacokinetics in mice were studied. Results The Nnps had an average size of 166.6 ± 1.3 nm and Zeta potential of −12.5 ± 0.2 mV. The Nnps were formed by denaturation of co-existing plant proteins with molecular weight < 30 kDa. The Nnps adsorbed or dispersed BBR, thereby promoting BBR transformation from crystal to amorphous form and improving its solubility and dissolution. The Nnps carried and promoted BBR uptake by human colonic adenocarcinoma (Caco-2) cells via caveolae-mediated endocytosis, reducing P-gp-mediated efflux of BBR in mice gut sacs and Madin-Darby canine kidney cells stably expressing the transporter P-gp (MDCK-MDR1) cells. Moreover, the Nnps improved BBR metabolic stability in mouse intestinal S9, promoting BBR intestinal absorption in mice, as shown by increased peak BBR concentration (Cmax, 1182.3 vs 310.2 ng/mL) and exposure level (AUC0–12 h, 2842.8 vs 1447.0 ng·h/mL) in mouse portal vein. In addition, the Nnps increased BBR exposure level in mouse livers (95,443.2 vs 43,586.2 ng·h/g liver). Conclusion The proteinaceous nanoparticles isolated from Coptidis Rhizoma extract can form a natural nano-drug delivery system with BBR, thereby significantly improving the pharmacokinetics of oral BBR.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Qing Zhao
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jing-Ze Lu
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Dan Ye
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Sheng Mu
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Xiao-Di Yang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Wei-Dong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.,School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Bing-Liang Ma
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| |
Collapse
|
19
|
The Meridian Tropism and Classification of Red Yeast Rice Investigated by Monitoring Dermal Electrical Potential. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1696575. [PMID: 34462638 PMCID: PMC8403050 DOI: 10.1155/2021/1696575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/20/2021] [Accepted: 08/14/2021] [Indexed: 11/17/2022]
Abstract
Red yeast rice is a traditional Chinese medicine and food that has been purported to color food, ferment, and lower cholesterol. In order to study the antioxidative capacity of red yeast rice and the effects on electrical potential difference (EPD) of 12 acupuncture meridians, the pH value, oxidation reduction potential (ORP), ABTS, FRAP, T-SOD, and particle size distribution of red yeast rice were analyzed. 20 volunteers were recruited and randomly divided into two groups, the red yeast rice group (10 g red yeast rice and 40 g water) and control CK group (50 g water). The left 12 acupuncture meridians' EPD was real-time monitored. Samples were taken at the 10th minutes. The whole procedure continued for 70 minutes. It is shown that the pH value of the red yeast rice was 4.22, the ORP was 359.63 mV, the ABTS was 0.48 mmol Trolox, the FRAP was 0.08 mmol FeSO4, the T-SOD was 4.71 U, and the average particle size was 108 nm (7.1%) and 398.1 nm (92.9%). The results of 12 acupuncture meridians' EPD showed that the red yeast rice can significantly affect the EPD of stomach, heart, small intestine, and liver meridians.
Collapse
|
20
|
Effect of Ginger on Chemical Composition, Physical and Sensory Characteristics of Chicken Soup. Foods 2021; 10:foods10071456. [PMID: 34201805 PMCID: PMC8307344 DOI: 10.3390/foods10071456] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 02/03/2023] Open
Abstract
In order to investigate the effect of ginger on taste components and sensory characteristics in chicken soup, the content of amino acids, organic acids, 5′-nucleotides, and mineral elements were determined in chicken soup sample. With the ginger added, free amino acids in chicken soup obviously increased and exceeded the total amounts in ginger soup and chicken soup. The content of glutamic acid (122.74 μg/mL) was the highest among 17 free amino acids in ginger chicken soup. Meanwhile, six organic acids detected in chicken soup all obviously increased, among which lactic acid (1523.58 μg/mL) and critic acid (4692.41 μg/mL) exceeded 1000 μg/mL. The content of 5′-nucleotides had no obvious difference between ginger chicken soup and chicken soup. Compared with chicken soup, ginger chicken soup had a smaller particle size (136.43 nm) and color difference (79.69), but a higher viscosity. With ginger added in chicken soup, the content of seven mineral elements was reduced, and the content of total sugar increased. Results from an electronic tongue indicated a difference in taste profiles among the soups. The taste components and sensory quality of chicken soup were obviously affected by adding the ginger.
Collapse
|
21
|
Radix Pseudostellariae protein-curcumin nanocomplex: Improvement on the stability, cellular uptake and antioxidant activity of curcumin. Food Chem Toxicol 2021; 151:112110. [PMID: 33713747 DOI: 10.1016/j.fct.2021.112110] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/22/2021] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
Radix Pseudostellariae protein (RPP) with satisfactory antioxidant activity and self-assembled ability was extracted from dried Radix Pseudostellariae. In this study, RPP-curcumin nanocomplex (RPP-Cur) was fabricated, and its improvement on the stability, cellular uptake and antioxidant activity of curcumin was investigated. RPP-Cur with homogeneously spherical structure exhibited good stability, which could maintain the morphology against simulated gastrointestinal digestion and up to 300 mM ionic concentration. After RPP nanoparticles encapsulation, the retention of curcumin increased 1.45 times under UV irradiation for 6 h. Besides, RPP-Cur exhibited additive reducing power of curcumin and RPP. The transport efficiency of hydrophobic curcumin across Caco-2 cells monolayer was greatly improved by RPP nanoparticle by 3.7 folds. RPP-Cur was able to be internalized by Caco-2 cells dose-dependently via macropinocytosis and clathrin-mediated endocytosis. The cellular uptake efficiency of embedded curcumin in RPP nanoparticles by Caco-2 cells was significantly higher than that of free curcumin, which might contribute to the enhanced intracellular antioxidant activity of RPP-Cur. These findings suggest that the proteins from Radix Pseudostellariae have potential to be developed into novel delivery system with intrinsic antioxidant activity for the hydrophobic active molecules in healthy food field.
Collapse
|
22
|
Cruz J, Trombley J, Carrington L, Cheng X. Properties of the Novel Chinese Herbal Medicine Formula Qu Du Qiang Fei I Hao Fang Warrant Further Research to Determine Its Clinical Efficacy in COVID-19 Treatment. Med Acupunct 2021; 33:71-82. [PMID: 33613814 PMCID: PMC7894031 DOI: 10.1089/acu.2020.1466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Introduction: COVID-19, the infectious disease induced by the virus severe acute respiratory syndrome-related coronavirus-2, has caused increasing global health concerns, and novel strategies to prevent or ameliorate the condition are needed. Traditional Chinese Medicine (TCM) herbal formulas have been used in the treatment of epidemics in China for over 2000 years. This study investigated the therapeutic effects of Qu Du Qiang Fei I Hao Fang (QDQF1) "Eliminating Virus and Strengthening Lung-No.1 Formula," in the treatment and prevention of COVID-19. QDQF1 consists of Shēng Huáng Qí, Běi Shā Shēn, Chuān Jié Gěng, Zhì Fáng Fēng, Qīng Lián Qiáo, Jīn Yín Huā, Bǎn Lán Gēn, Chǎo Cāng Zhú, Zǐ Huā Dì Dīng, and Shēng gān căo. Materials and Methods: A literature survey was performed by conducting systematic electronic searches in PubMed, Science Direct, Google Scholar, and in books. Results: Each herb in this formula has long been used to treat various diseases due to their pharmacologic, antiviral, anti-inflammatory, and antimicrobial effects that inhibit microbial adherence to mucosal or epithelial surfaces, inhibit endotoxin shock, and selectively inhibit microbial growth. Conclusion: The herbs chosen for the QDQF1 formula have been historically paired, and cast a wide net over the potential COVID-19 symptomatology. Their combined functions provide comprehensive and balanced therapeutics from both TCM and allopathic perspectives. Individual herbs and herbal combinations are analyzed for their applicability to pertinent TCM patterns of COVID-19 presentations, including heat and cold patterns, damp and phlegm syndromes, toxicity, and deficiency patterns. A further study in a randomized, double-blind, and placebo-controlled trial of QDQF1 is recommended to assess its therapeutic efficacy in the treatment of COVID-19.
Collapse
Affiliation(s)
- Jennifer Cruz
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Doctoral Program of Acupuncture & Oriental Medicine, The Atlantic Institute of Oriental Medicine, Fort Lauderdale, FL, USA
| | - Jason Trombley
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Doctoral Program of Acupuncture & Oriental Medicine, The Atlantic Institute of Oriental Medicine, Fort Lauderdale, FL, USA
| | - Linda Carrington
- Doctoral Program of Acupuncture & Oriental Medicine, The Atlantic Institute of Oriental Medicine, Fort Lauderdale, FL, USA
| | - Xiaodong Cheng
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
23
|
Ke L, Xu W, Gao J, Gao G, Wang H, Zhou J, Liu J, Rao P, Xu Y. Isolation and characterization of thermo-tolerant polyphenol oxidases in a black tea infusion. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Zou J, Xu M, Zou Y, Yang B. Chemical compositions and sensory characteristics of pork rib and Silkie chicken soups prepared by various cooking techniques. Food Chem 2020; 345:128755. [PMID: 33302100 DOI: 10.1016/j.foodchem.2020.128755] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 01/21/2023]
Abstract
Meat soup is an important diet with desirable taste and abundant nutrients. Unveiling the chemical composition of soup will help to understand the health effects. In this work, pork ribs and Silkie chicken were used to prepare soups by boiling, steaming and four-stage stewing, respectively. The chemical composition and sensory qualities of these soups were obviously influenced by the cooking technique. Silkie chicken and pork rib soups prepared by four-stage stewing technique had particle size smaller than 850 nm, smaller chromatic aberration, higher stability, higher levels of free amino acids, lower levels of fat and total triglycerides than the other two techniques. More abundant flavor and taste characteristics were also detected. The high temperature boiling technique could promote the accumulation of the mineral elements in soup. According to healthy and sensory concerns, stewing was the best choice for preparing soups of pork rib and Silkie chicken.
Collapse
Affiliation(s)
- Jian Zou
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450000, China
| | - Meijuan Xu
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450000, China
| | - Yifan Zou
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450000, China
| | - Bao Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
25
|
Micro-nano particle formation and transformation mechanisms of broth in meat braised processing. Food Chem 2020; 342:128383. [PMID: 33097328 DOI: 10.1016/j.foodchem.2020.128383] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/25/2020] [Accepted: 10/10/2020] [Indexed: 11/23/2022]
Abstract
The formation and transformation mechanisms of micro-nano particles (MNPs) in broth during meat braising were systematically investigated through a sophisticated controlled process. Dynamic changes in the morphology, composition and spatial distribution of MNPs were comprehensively characterized, and subsequently the mechanisms were visually uncovered from microcosmic-spatial perspectives. MNPs formed as circular-shape colloidal systems with an aggrandizing tendency for particle number and size and gradually stabilize eventually. Specifically, the major MNPs gradually increased the size from <400 nm to ~1500 nm and accumulated triglycerides and glycoconjugates resulting from lipid oxidation, Maillard reaction, etc. Continuous formation of MNPs in broth progressively facilitated the spatial coalescence and self-assembly of free substances driven by intermolecular interactions, and consequently principal nutrients and flavor compounds further accumulated in the MNPs by the braising process. Hence, this work not only revealed the MNP formation and transformation mechanisms but offered a foundation for investigating MNP-dependent effect on broth flavor.
Collapse
|
26
|
Synergistic Mechanisms of Constituents in Herbal Extracts during Intestinal Absorption: Focus on Natural Occurring Nanoparticles. Pharmaceutics 2020; 12:pharmaceutics12020128. [PMID: 32028739 PMCID: PMC7076514 DOI: 10.3390/pharmaceutics12020128] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
The systematic separation strategy has long and widely been applied in the research and development of herbal medicines. However, the pharmacological effects of many bioactive constituents are much weaker than those of the corresponding herbal extracts. Thus, there is a consensus that purer herbal extracts are sometimes less effective. Pharmacological loss of purified constituents is closely associated with their significantly reduced intestinal absorption after oral administration. In this review, pharmacokinetic synergies among constituents in herbal extracts during intestinal absorption were systematically summarized to broaden the general understanding of the pharmaceutical nature of herbal medicines. Briefly, some coexisting constituents including plant-produced primary and secondary metabolites, promote the intestinal absorption of active constituents by improving solubility, inhibiting first-pass elimination mediated by drug-metabolizing enzymes or drug transporters, increasing the membrane permeability of enterocytes, and reversibly opening the paracellular tight junction between enterocytes. Moreover, some coexisting constituents change the forms of bioactive constituents via mechanisms including the formation of natural nanoparticles. This review will focus on explaining this new synergistic mechanism. Thus, herbal extracts can be considered mixtures of bioactive compounds and pharmacokinetic synergists. This review may provide ideas and strategies for further research and development of herbal medicines.
Collapse
|
27
|
Ping Y, Li Y, Lü S, Sun Y, Zhang W, Wu J, Liu T, Li Y. A study of nanometre aggregates formation mechanism and antipyretic effect in Bai-Hu-Tang, an ancient Chinese herbal decoction. Biomed Pharmacother 2020; 124:109826. [PMID: 31978766 DOI: 10.1016/j.biopha.2020.109826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Bai-Hu-Tang (BHT), a Chinese herbal decoction used as an antipyretic agent, results from the combination of Anemarrhena asphodeloides Bunge, Glycyrrhizae, Japonica rice, and Gypsum. In our previous study, we identified nanoaggregates in BHT. However, the present study aimed to analyze and elucidate the mechanism of nanoaggregate formation and to investigate its antipyretic effect. METHODS A BHT decoction extract was split into 15 groups, and in each group, the extract was further separated into two solutions: Nano-phase and Decoction. The physicochemical properties of these solutions, such as particle size, salinity, conductivity, and surface tension were investigated, and analyzed the 15 groups of by transmission electron microscopy (TEM) and fingerprint chromatography. Furthermore, the antipyretic effect of nanoaggregates was evaluated through enzyme-linked immunosorbent assays, HE staining, Western Blot, and Real-time PCR. RESULTS In the 15 groups, the salinity and conductivity results showed a promoting and stabilizing effect towards the Nano-phase formation. Analysis of the surface tension indicated good solubilization of Radix Glycyrrhizae. The TEM analysis of the BHT separated extracts revealed that only in the presence of Japonica rice the Nano-phase is formed. Sixteen common peaks were identified in the BHT fingerprint chromatogram, and the main chemical components were Neomangiferin, Mangiferin, Liquiritin, and Ammonium glycyrrhizinate. Furthermore, BHT and nanoaggregates from Bai-Hu-Tang (N-BHT) groups did not differ in the main chemical components. Additionally, the N-BHT group had the same antipyretic effect compared with the BHT group. However, the pathological analysis indicated that treatment with N-BHT could ameliorate the lung damage in the rat. At the same time, N-BHT group inhibited expression of several proteins, specifically IL-1β, TRPV4, NF-κB, and TNF-α, which agreed with the Real-time PCR results. CONCLUSION We identified the key factors that are involved in the nano-phase formation. Also, by Western blot and Real-time PCR methods, we investigated the N-BHT mechanism of antipyretic action. The discovery of the N-BHT formation would provide a new idea of studying traditional Chinese medicine decoction.
Collapse
Affiliation(s)
- Yang Ping
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China; College of Pharmacy, Jiamusi University, Jiamusi 154007, Heilongjiang, China
| | - Yingpeng Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shaowa Lü
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yali Sun
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Wanmeng Zhang
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Jialin Wu
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Ting Liu
- School of Pharmacy, Harbin Medical University (Daqing), 163319, Daqing, China.
| | - Yongji Li
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
28
|
Xiao P, Huang H, Li X, Chen J, Duan JA. Characterization, evaluation of nutritional parameters of Radix isatidis protein and its antioxidant activity in D-galactose induced ageing mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:297. [PMID: 31694618 PMCID: PMC6836523 DOI: 10.1186/s12906-019-2726-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/23/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND Radix isatidis (Isatis indigotica Fort.) is an ancient medicinal herb, which has been applied to the prevention and treatment of influenza virus since ancient times. In recent years, the antioxidant activity of Radix isatidis has been widely concerned by researchers. Our previous studies have shown that Radix isatidis protein (RIP) has good antioxidant activity in vitro. In this study, the composition of the protein was characterized and its antioxidant activity in vivo was evaluated. METHODS The model of oxidative damage in mice was established by subcutaneous injection of D-galactose for 7 weeks. Commercially available kits were used to determine the content of protein and several oxidation indexes in different tissues of mice. The tissue samples were stained with hematoxylin and eosin (H&E) and the pathological changes were observed by optical microscope. The molecular weight of RIP was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The amino acid composition of RIP was determined by a non-derivative method developed by our research group. RESULTS RIP significantly increased the activities of antioxidant enzymes such as SOD, CAT, GSH-Px and total antioxidant capability (TAOC) but decreased the MDA level in the serum, kidney and liver. H&E stained sections of liver and kidney revealed D-galactose could cause serious injury and RIP could substantially attenuate the injury. The analysis of SDS-PAGE showed that four bands with molecular weights of 19.2 kDa, 21.5 kDa, 24.8 kDa and 40.0 kDa were the main protein components of RIP. CONCLUSIONS The results suggested that RIP had excellent antioxidant activity, which could be explored as a health-care product to retard aging and a good source of protein nutrition for human consumption.
Collapse
Affiliation(s)
- Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, 210023 China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Hongzhi Huang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Xiang Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Jianwei Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Jin-ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| |
Collapse
|
29
|
Zhou J, Zhang J, Gao G, Wang H, He X, Chen T, Ke L, Rao P, Wang Q. Boiling Licorice Produces Self-Assembled Protein Nanoparticles: A Novel Source of Bioactive Nanomaterials. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9354-9361. [PMID: 31339706 DOI: 10.1021/acs.jafc.9b03208] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
As a popular ingredient for western and traditional Chinese medicine, the root and rhizome of Chinese licorice (Glycyrrhiza uralensis Fisch.) is often administered in the form of a decoction. The protein nanoparticles (NPs) self-assembled during the process of decoction. A major constitutive protein (GLP) was purified and determined to have a molecular weight of 28 kDa with an N-terminal sequence of NPDGL IACYC GQYCW. Over 80% of the purified GLP self-assembled into spherical NPs with diameters of 74.1 ± 0.7 nm and ζ-potential of -24.3 ± 1.7 mV when boiled in Tris-HCl buffer (pH = 7.9, 20 mM) at 100 °C for 60 min. Each nanoparticle was estimated by the SEC-MALLS approach to be composed of approximately 23 protein molecules. The NPs and GLP showed low cellular toxicity upon four types of cells including MDCK, L-02, HepG2, and Caco2 cells, while the NPs promoted proliferation of normal hepatocytes by 67%. The NPs solubilized the insoluble astragaloside IV by encapsulation. The results suggest a great potential for GLP-NPs as a promising prototype of a type of drug vehicle, a novel source of bioactive nanomaterials from herbal proteins, as well as a new mode of function with herbal components.
Collapse
Affiliation(s)
- Jianwu Zhou
- Food Nutrition Sciences Centre, School of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou 310012 , China
| | - Jian Zhang
- Food Nutrition Sciences Centre, School of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou 310012 , China
| | - Guanzhen Gao
- Food Nutrition Sciences Centre, School of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou 310012 , China
| | - Huiqin Wang
- Food Nutrition Sciences Centre, School of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou 310012 , China
| | - Xiaoyan He
- Institute of Biotechnology , Fuzhou University , Fuzhou 350000 , China
| | - Tianbao Chen
- School of Pharmacy , Queen's University Belfast , Belfast BT9 7BL , United Kingdom
| | - Lijing Ke
- Food Nutrition Sciences Centre, School of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou 310012 , China
| | - Pingfan Rao
- Food Nutrition Sciences Centre, School of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou 310012 , China
| | - Qiang Wang
- Institute of Food Science and Technology , Chinese Academy of Agricultural Sciences , Beijing 100193 , China
| |
Collapse
|
30
|
Wang H, Gao G, Ke L, Zhou J, Rao P. Isolation and Characterization of a Lectin-like Protein (SBLP) from the Dried Roots of Scutellaria baicalensis (Lamiaceae). Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801301232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A novel lectin-like protein with MW 63.2 kDa, designated as SBLP, has been isolated and characterized from the dried roots of Scutellaria baicalensis Georgi (Lamiaceae). SBLP was purified by ammonium sulfate precipitation and anion exchange chromatography. It is a glycoprotein according to a PAS staining assay and consisting of protein (86.0%) and sugar (14.0%). Its N-terminal amino acid sequence was determined as GSAVGFLY by Edman degradation. SBLP showed hemagglutinating activity against human and rooster erythrocytes, which were stable below 60°C and in the pH range of 4 −10. Furthermore, SBLP was found to be stimulated by Ca2+, Na+, Ba2+, Zn2+ ions, which suggested it was a metal-dependent lectin. SBLP inhibited the growth of Fusarium oxysporum f.sp. lycopersici and Alternaria eichhorniae in the a dose-dependent manner, and suppressed the proliferation of HepG2 tumor cells with an IC50 of 1.00 μM. This is the first report of a lectin from Radix Scutellariae.
Collapse
Affiliation(s)
- Huiqin Wang
- Food Nutrition Sciences Centre, Zhejiang Gongshang University, Hangzhou, China, 310012
| | - Guanzhen Gao
- Food Nutrition Sciences Centre, Zhejiang Gongshang University, Hangzhou, China, 310012
| | - Lijing Ke
- Food Nutrition Sciences Centre, Zhejiang Gongshang University, Hangzhou, China, 310012
| | - Jianwu Zhou
- Food Nutrition Sciences Centre, Zhejiang Gongshang University, Hangzhou, China, 310012
| | - Pingfan Rao
- Food Nutrition Sciences Centre, Zhejiang Gongshang University, Hangzhou, China, 310012
| |
Collapse
|