1
|
Oey O, Sunjaya AP. Applications of nanoparticles in cardiovascular imaging and therapeutics. Asian Cardiovasc Thorac Ann 2022; 30:653-660. [PMID: 35259973 DOI: 10.1177/02184923221087003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiovascular disease (CVD) is a major health problem afflicting millions of people worldwide. Early detection methods are lacking, and current therapies have significant limitations. Recently, there has been a surge in the number of studies investigating the utilisation of nanoparticles in cardiovascular imaging and therapy. With respect to cardiovascular imaging, previous studies have looked at the role of nanoparticles in thrombus formation, angiogenesis, blood pool and stem cell imaging. Whereas, with respect to therapy, nanoparticles have been studied for delivering drugs and nucleic acids, specifically to the site of interest; in the context of cardiac regeneration; and its potential in refining current therapy guidelines for CVD management. This review aims to extensively summarise the studies that have been conducted investigating the role of nanoparticles in different aspects of cardiovascular imaging and therapy.
Collapse
Affiliation(s)
- Oliver Oey
- 94920St John of God Midland Hospital, Perth, Australia.,85075Faculty of Medicine, University of Western Australia, Perth, Australia
| | - Anthony Paulo Sunjaya
- 98994Faculty of Medicine, University of New South Wales, Sydney, Australia.,98994The George Institute for Global Health, Sydney, Australia
| |
Collapse
|
2
|
Liew LC, Ho BX, Soh BS. Mending a broken heart: current strategies and limitations of cell-based therapy. Stem Cell Res Ther 2020; 11:138. [PMID: 32216837 PMCID: PMC7098097 DOI: 10.1186/s13287-020-01648-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
The versatility of pluripotent stem cells, attributable to their unlimited self-renewal capacity and plasticity, has sparked a considerable interest for potential application in regenerative medicine. Over the past decade, the concept of replenishing the lost cardiomyocytes, the crux of the matter in ischemic heart disease, with pluripotent stem cell-derived cardiomyocytes (PSC-CM) has been validated with promising pre-clinical results. Nevertheless, clinical translation was hemmed in by limitations such as immature cardiac properties, long-term engraftment, graft-associated arrhythmias, immunogenicity, and risk of tumorigenicity. The continuous progress of stem cell-based cardiac therapy, incorporated with tissue engineering strategies and delivery of cardio-protective exosomes, provides an optimistic outlook on the development of curative treatment for heart failure. This review provides an overview and current status of stem cell-based therapy for heart regeneration, with particular focus on the use of PSC-CM. In addition, we also highlight the associated challenges in clinical application and discuss the potential strategies in developing successful cardiac-regenerative therapy.
Collapse
Affiliation(s)
- Lee Chuen Liew
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Beatrice Xuan Ho
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Boon-Seng Soh
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore. .,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore. .,Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
3
|
Parrotta EI, Scalise S, Scaramuzzino L, Cuda G. Stem Cells: The Game Changers of Human Cardiac Disease Modelling and Regenerative Medicine. Int J Mol Sci 2019; 20:E5760. [PMID: 31744081 PMCID: PMC6888119 DOI: 10.3390/ijms20225760] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
A comprehensive understanding of the molecular basis and mechanisms underlying cardiac diseases is mandatory for the development of new and effective therapeutic strategies. The lack of appropriate in vitro cell models that faithfully mirror the human disease phenotypes has hampered the understanding of molecular insights responsible of heart injury and disease development. Over the past decade, important scientific advances have revolutionized the field of stem cell biology through the remarkable discovery of reprogramming somatic cells into induced pluripotent stem cells (iPSCs). These advances allowed to achieve the long-standing ambition of modelling human disease in a dish and, more interestingly, paved the way for unprecedented opportunities to translate bench discoveries into new therapies and to come closer to a real and effective stem cell-based medicine. The possibility to generate patient-specific iPSCs, together with the new advances in stem cell differentiation procedures and the availability of novel gene editing approaches and tissue engineering, has proven to be a powerful combination for the generation of phenotypically complex, pluripotent stem cell-based cellular disease models with potential use for early diagnosis, drug screening, and personalized therapy. This review will focus on recent progress and future outcome of iPSCs technology toward a customized medicine and new therapeutic options.
Collapse
Affiliation(s)
- Elvira Immacolata Parrotta
- Department of Experimental and Clinical Medicine, Research Center for Advanced Biochemistry and Molecular Biology, University “Magna Graecia” of Catanzaro, 88100 Loc., Germaneto, Catanzaro, Italy; (S.S.); (L.S.); (G.C.)
| | | | | | | |
Collapse
|
4
|
Han Y, Yang W, Cui W, Yang K, Wang X, Chen Y, Deng L, Zhao Y, Jin W. Retracted Article: Development of functional hydrogels for heart failure. J Mater Chem B 2019; 7:1563-1580. [DOI: 10.1039/c8tb02591f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hydrogel-based approaches were reviewed for cardiac tissue engineering and myocardial regeneration in ischemia-induced heart failure, with an emphasis on functional studies, translational status, and clinical advancements.
Collapse
Affiliation(s)
- Yanxin Han
- Department of Cardiology
- Institute of Cardiovascular Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Wenbo Yang
- Department of Cardiology
- Institute of Cardiovascular Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases
- Shanghai Institute of Traumatology and Orthopaedics
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Ke Yang
- Department of Cardiology
- Institute of Cardiovascular Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Xiaoqun Wang
- Department of Cardiology
- Institute of Cardiovascular Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Yanjia Chen
- Department of Cardiology
- Institute of Cardiovascular Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Lianfu Deng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases
- Shanghai Institute of Traumatology and Orthopaedics
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Yuanjin Zhao
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases
- Shanghai Institute of Traumatology and Orthopaedics
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Wei Jin
- Department of Cardiology
- Institute of Cardiovascular Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| |
Collapse
|
5
|
Kwiatkowski P, Sai-Sudhakar C, Philips A, Parthasarathy S, Sun B. Development of a Novel Large Animal Model of Ischemic Heart Failure Using Autologous Platelet Aggregates. Int J Artif Organs 2018. [DOI: 10.1177/039139881003300201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Current animal models of heart failure lack the biomass of thrombus that occurs in patients undergoing myocardial infarction. We propose a novel animal model of ischemic cardiomyopathy developed by sequential direct injections of autologous platelet aggregates into the coronary circulation resulting in development of ischemic cardiac insufficiency. Methods Autologous platelets from adult sheep were isolated and aggregated. Aggregated platelets were then injected into the coronary circulation of anesthetized animals under fluoroscopic guidance. Troponin I levels were monitored for first three days after embolization to validate cardiac tissue injury. Progression of heart failure was corroborated by monitoring changes in echo-based assessment of ejection fraction and left ventricular end-systolic and end-diastolic dimensions. Thrombus-based obstruction of coronary artery was confirmed with histopathology review by mepacrine labeling of pre-aggregated platelets. Results All experimental animals developed heart failure-like cardiac insufficiency confirmed by elevated levels of troponin I and associated with significant drop in the ejection fraction. Conclusions Sequential injections of aggregated platelets into coronary circulation lead to progressive development of ischemic cardiac insufficiency. This phenomenon seems to mimic development of ischemic heart failure seen in human patients and opens multiple research opportunities to fill the existing gap between basic research and clinical practice.
Collapse
Affiliation(s)
- Pawel Kwiatkowski
- Division of Cardiothoracic Surgery, Department of Surgery, The Ohio State University Medical Center, Columbus, OH - USA
| | - Chittoor Sai-Sudhakar
- Division of Cardiothoracic Surgery, Department of Surgery, The Ohio State University Medical Center, Columbus, OH - USA
| | - Angela Philips
- Division of Cardiothoracic Surgery, Department of Surgery, The Ohio State University Medical Center, Columbus, OH - USA
| | - Sampath Parthasarathy
- Division of Cardiothoracic Surgery, Department of Surgery, The Ohio State University Medical Center, Columbus, OH - USA
| | - Benjamin Sun
- Division of Cardiothoracic Surgery, Department of Surgery, The Ohio State University Medical Center, Columbus, OH - USA
| |
Collapse
|
6
|
Bone Marrow-Derived Stem Cell Populations Are Differentially Regulated by Thyroid or/and Ovarian Hormone Loss. Int J Mol Sci 2017; 18:ijms18102139. [PMID: 29048335 PMCID: PMC5666821 DOI: 10.3390/ijms18102139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/19/2017] [Accepted: 09/28/2017] [Indexed: 02/08/2023] Open
Abstract
Bone marrow-derived stem cells (BMDSCs) play an essential role in organ repair and regeneration. The molecular mechanisms by which hormones control BMDSCs proliferation and differentiation are unclear. Our aim in this study was to investigate how a lack of ovarian or/and thyroid hormones affects stem cell number in bone marrow lineage. To examine the effect of thyroid or/and ovarian hormones on the proliferative activity of BMDSCs, we removed the thyroid or/and the ovaries of adult female rats. An absence of ovarian and thyroid hormones was confirmed by Pap staining and Thyroid Stimulating Hormone (TSH) measurement, respectively. To obtain the stem cells from the bone marrow, we punctured the iliac crest, and aspirated and isolated cells by using a density gradient. Specific markers were used by cytometry to identify the different BMDSCs types: endothelial progenitor cells (EPCs), precursor B cells/pro-B cells, and mesenchymal stem cells (MSCs). Interestingly, our results showed that hypothyroidism caused a significant increase in the percentage of EPCs, whereas a lack of ovarian hormones significantly increased the precursor B cells/pro-B cells. Moreover, the removal of both glands led to increased MSCs. In conclusion, both ovarian and thyroid hormones appear to have key and diverse roles in regulating the proliferation of cells populations of the bone marrow.
Collapse
|
7
|
Wang B, Zhang L, Cao H, Yang J, Wu M, Ma Y, Fan H, Zhan Z, Liu Z. Myoblast transplantation improves cardiac function after myocardial infarction through attenuating inflammatory responses. Oncotarget 2017; 8:68780-68794. [PMID: 28978156 PMCID: PMC5620296 DOI: 10.18632/oncotarget.18244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/15/2017] [Indexed: 01/13/2023] Open
Abstract
Myocardial infarction (MI) is a highly prevalent cardiac emergency, which results in adverse cardiac remodeling and then exacerbates progressive heart failure. Inflammatory responses in cardiac tissue after MI is necessary for myocardium repair and wound healing. However, the excessive inflammation is also a key component of subsequent heart failure pathology. Myoblast transplantation after MI have been fulfilled attractive effects on cardiac repair, but the complications of transplantation and the underlying mechanisms have not been fully elucidated. Here, we found that human myoblast transplantation into minipig myocardium decreased the infiltration of inflammatory cells, the expression levels of many pro-inflammatory genes and the activation of inflammation-related signal pathways, while upregulated the expression levels of anti-inflammatory genes such as IL-10 in cardiac tissue of minipig post-MI, which was contributed to the improved cardiac function, the decreased infarct area and the attenuated myocardial fibrosis. Moreover, co-culture of human myoblasts inhibited the production of IL-1β and TNF-α as well as activation of MAPK and NF-κB signaling pathway induced by damage-associated molecular patterns such as HMGB1 and HSP60 in human THP-1 cells, which was partially attributed to the up-regulated production of IL-10. Collectively, these results indicate that myoblast transplantation ameliorates heart injury and improves cardiac function post-MI through inhibiting the inflammatory response, which provides the novel mechanism for myoblast transplantation therapy of MI.
Collapse
Affiliation(s)
- Bo Wang
- Key Laboratory of Arrhythmias of the Ministry of Education of China and Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Likui Zhang
- Department of Cardiac Surgery and Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Hao Cao
- Department of Cardiac Surgery and Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Junqi Yang
- Key Laboratory of Arrhythmias of the Ministry of Education of China and Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Manya Wu
- Key Laboratory of Arrhythmias of the Ministry of Education of China and Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yali Ma
- Key Laboratory of Arrhythmias of the Ministry of Education of China and Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Huimin Fan
- Department of Cardiac Surgery and Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhenzhen Zhan
- Key Laboratory of Arrhythmias of the Ministry of Education of China and Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhongmin Liu
- Department of Cardiac Surgery and Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
8
|
Differential regeneration of myocardial infarction depending on the progression of disease and the composition of biomimetic hydrogel. J Biosci Bioeng 2014; 118:461-8. [PMID: 24856052 DOI: 10.1016/j.jbiosc.2014.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 11/22/2022]
Abstract
Hydrogel has been used for regenerating myocardial infraction (MI) as a delivery vehicle for cells and growth factors. This study showed that injectable hyaluronic acid (HA)-based hydrogels alone would effectively regenerate the damaged infarcted heart tissue. We found that there are two major factors of regeneration in MI. One is molecular weight of HA and another is the progression of MI; sub-acute and chronic. Rat MI model was prepared by ligating the left anterior descending coronary artery (LAD). Four weeks after injection of hydrogel, functional analysis of the heart and histological analysis was assessed. When different molecular weight HA-based hydrogels with 50 kDa, 130 kDa, and 170 kDa were applied to the infarcted area in the sub-acute model, 50 kDa HA-based hydrogel showed the most significant regeneration of myocardium as well as functional recovery among samples. For the disease progression, 50 kDa HA-based hydrogels were injected to sub-acute and chronic MI models. The regeneration activity was significantly decreased in the chronic models reflecting that injection timing of the therapeutic agents is also major determinants in the regeneration process. These results suggest that injection time and composition of hydrogel are two major points treating MI.
Collapse
|
9
|
Inaba Y, Davidson BP, Kim S, Liu YN, Packwood W, Belcik JT, Xie A, Lindner JR. Echocardiographic evaluation of the effects of stem cell therapy on perfusion and function in ischemic cardiomyopathy. J Am Soc Echocardiogr 2014; 27:192-9. [PMID: 24315764 PMCID: PMC3946830 DOI: 10.1016/j.echo.2013.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND Small animal models of ischemic left ventricular (LV) dysfunction are important for the preclinical optimization of stem cell therapy. The aim of this study was to test the hypothesis that temporal changes in LV function and regional perfusion after cell therapy can be assessed in mice using echocardiographic imaging. METHODS Wild-type mice (n = 25) were studied 7 and 28 days after permanent ligation of the left anterior descending coronary artery. Animals were randomized to receive closed-chest ultrasound-guided intramyocardial delivery of saline (n = 13) or 5 × 10(5) multipotential adult progenitor cells (MAPCs; n = 12) on day 7. LV end-diastolic and end-systolic volumes, LV ejection fraction, and stroke volume were measured using high-frequency echocardiography. Multiplanar assessments of perfusion and defect area size were made using myocardial contrast echocardiography. RESULTS Between days 7 and 28, MAPC-treated animals had 40% to 50% reductions in defect size (P < .001) and 20% to 30% increases in total perfusion (P < .01). Perfusion did not change in nontreated controls. Both LV end-diastolic and end-systolic volumes increased between days 7 and 28 in both groups, but LV end-systolic volume increased to a lesser degree in MAPC-treated compared with control mice (+4.2 ± 7.9 vs +19.2 ± 22.0 μL, P < .05). LV ejection fraction increased in the MAPC-treated mice and decreased in control mice (+3.0 ± 4.3% vs -5.6 ± 5.9%, P < .01). There was a significant linear relation between the change in LV ejection fraction and the change in either defect area size or total perfusion. CONCLUSIONS High-frequency echocardiography and myocardial contrast echocardiography in murine models of ischemic LV dysfunction can be used to assess the response to stem cell therapy and to characterize the relationship among spatial flow, ventricular function, and ventricular remodeling.
Collapse
Affiliation(s)
- Yoichi Inaba
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Brian P Davidson
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Sajeevani Kim
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Ya Ni Liu
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - William Packwood
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - J Todd Belcik
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Aris Xie
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
10
|
Sanganalmath SK, Bolli R. Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ Res 2013; 113:810-34. [PMID: 23989721 PMCID: PMC3892665 DOI: 10.1161/circresaha.113.300219] [Citation(s) in RCA: 443] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/07/2013] [Indexed: 12/28/2022]
Abstract
Despite significant therapeutic advances, the prognosis of patients with heart failure (HF) remains poor, and current therapeutic approaches are palliative in the sense that they do not address the underlying problem of the loss of cardiac tissue. Stem cell-based therapies have the potential to fundamentally transform the treatment of HF by achieving what would have been unthinkable only a few years ago-myocardial regeneration. For the first time since cardiac transplantation, a therapy is being developed to eliminate the underlying cause of HF, not just to achieve damage control. Since the initial report of cell therapy (skeletal myoblasts) in HF in 1998, research has proceeded at lightning speed, and numerous preclinical and clinical studies have been performed that support the ability of various stem cell populations to improve cardiac function and reduce infarct size in both ischemic and nonischemic cardiomyopathy. Nevertheless, we are still at the dawn of this therapeutic revolution. Many important issues (eg, mechanism(s) of action of stem cells, long-term engraftment, optimal cell type(s), and dose, route, and frequency of cell administration) remain to be resolved, and no cell therapy has been conclusively shown to be effective. The purpose of this article is to critically review the large body of work performed with respect to the use of stem/progenitor cells in HF, both at the experimental and clinical levels, and to discuss current controversies, unresolved issues, challenges, and future directions. The review focuses specifically on chronic HF; other settings (eg, acute myocardial infarction, refractory angina) are not discussed.
Collapse
Affiliation(s)
- Santosh K Sanganalmath
- Division of Cardiovascular Medicine and Institute of Molecular Cardiology, University of Louisville, KY, USA
| | | |
Collapse
|
11
|
Nour S, Yang D, Dai G, Wang Q, Feng M, Lila N, Chachques JC, Wu G. Intrapulmonary shear stress enhancement: a new therapeutic approach in acute myocardial ischemia. Int J Cardiol 2013; 168:4199-208. [PMID: 23932859 DOI: 10.1016/j.ijcard.2013.07.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 02/18/2013] [Accepted: 07/13/2013] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Ischemic heart disease (IHD) is a leading cause of mortality with insufficient results of current therapies, most probably due to maintained endothelial dysfunction conditions. Alternatively, we propose a new treatment that promotes endothelial shear stress (ESS) enhancement using an intrapulmonary pulsatile catheter. METHODS Twelve piglets, divided in equal groups of 6: pulsatile (P) and non-pulsatile (NP), underwent permanent left anterior descending coronary artery ligation through sternotomy. After 1 h of ischemia and heparin injection (150 IU/kg): in P group, a pulsatile catheter was introduced into the pulmonary trunk and pulsated intermittently over 1 h, and irrespective of heart rate (110 bpm). In NP group, nitrates were given (7 ± 2 mg/kg/min) for 1 h. RESULTS In P group all 6 animals survived ischemia for 120 min, but in NP group only 2 animals survived. The 4 animals that died during the experiment in NP group survived for 93 ± 14 min. Hemodynamics and cardiac output (CO) were significantly improved in P group compared with NP group: CO was 0.92 ± 0.15 vs. 0.52 ± 0.08 in NP group (L/min; p < 0.05), respectively. Vascular resistances (dynes.s.cm(-5)/kg) were significantly (p < 0.05) lower in P group versus NP group: pulmonary resistance was 119 ± 13 vs. 400 ± 42 and systemic resistance was 319 ± 43 vs. 1857 ± 326, respectively. Myocardial apoptosis was significantly (p < 0.01) lower in P group (0.66 ± 0.07) vs. (4.18 ± 0.27) in NP group. Myocardial endothelial NO synthase mRNA expression was significantly (p < 0.01) greater in P group (0.90 ± 0.09) vs. (0.25 ± 0.04) in NP group. CONCLUSIONS Intrapulmonary pulsatile catheter could improve hemodynamics and myocardial contractility in acute myocardial ischemia. This represents a cost-effective method, suitable for emergency setting as a first priority, regardless of classical coronary reperfusion.
Collapse
Affiliation(s)
- Sayed Nour
- Laboratory of Biosurgical Research (Alain Carpentier Foundation), Pompidou Hospital, University Paris Descartes, 75015 Paris, France; Division of Cardiology and the Key Laboratory on Assisted Circulation, Ministry of Health of China, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Lu F, Zhao X, Wu J, Cui Y, Mao Y, Chen K, Yuan Y, Gong D, Xu Z, Huang S. MSCs transfected with hepatocyte growth factor or vascular endothelial growth factor improve cardiac function in the infarcted porcine heart by increasing angiogenesis and reducing fibrosis. Int J Cardiol 2012; 167:2524-32. [PMID: 22981278 DOI: 10.1016/j.ijcard.2012.06.052] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 04/04/2012] [Accepted: 06/09/2012] [Indexed: 11/17/2022]
Abstract
BACKGROUND Cell transplantation and gene therapy have been demonstrated to have beneficial effects after a myocardial infarction (MI). Here, we used a large animal model of MI to investigate the beneficial effects of mesenchymal stem cells (MSCs) transfected with hepatocyte growth factor (HGF) or vascular endothelial growth factor (VEGF) genes. METHODS A porcine MI model was created by balloon occlusion of the distal left anterior descending artery for 90 min followed by reperfusion. At 1 week after MI, the pigs were infused via the coronary vein with saline (n=8), MSCs + AdNull(n=8), MSC+VEGF(n=10), or MSC+HGF(n=10). Cardiac function and myocardial perfusion were evaluated by using echocardiography and gated cardiac perfusion imaging before and 4 weeks after transplantation. Morphometric and histological analyses were performed. RESULTS All cell-implanted groups had better cardiac function than the saline control group. There were further functional improvements in the MSC+HGF group, accompanied by smaller infarct sizes, increased cell survival, and less collagen deposition. Blood vessel densities in the damaged area and cardiac perfusion were significantly greater in the MSC+AdNull group than in the saline control group, and further increased in the MSC+VEGF/HGF groups. Tissue fibrosis was significantly less extensive in the MSC and MSC+VEGF groups than in the saline control group and was most reduced in the MSC+HGF group. CONCLUSION MSCs (alone or transfected with VEGF/HGF) delivered into the infarcted porcine heart via the coronary vein improved cardiac function and perfusion, probably by increasing angiogenesis and reducing fibrosis. MSC+HGF was superior to MSC+VEGF, possibly owing to its enhanced antifibrotic effect.
Collapse
Affiliation(s)
- Fanglin Lu
- Institute of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Soler-Botija C, Bagó JR, Bayes-Genis A. A bird's-eye view of cell therapy and tissue engineering for cardiac regeneration. Ann N Y Acad Sci 2012; 1254:57-65. [DOI: 10.1111/j.1749-6632.2012.06519.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
van der Spoel TIG, Jansen of Lorkeers SJ, Agostoni P, van Belle E, Gyongyosi M, Sluijter JPG, Cramer MJ, Doevendans PA, Chamuleau SAJ. Human relevance of pre-clinical studies in stem cell therapy: systematic review and meta-analysis of large animal models of ischaemic heart disease. Cardiovasc Res 2011; 91:649-58. [DOI: 10.1093/cvr/cvr113] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
15
|
Chachques JC. Development of bioartificial myocardium using stem cells and nanobiotechnology templates. Cardiol Res Pract 2010; 2011:806795. [PMID: 21253535 PMCID: PMC3021848 DOI: 10.4061/2011/806795] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 11/16/2010] [Indexed: 12/12/2022] Open
Abstract
Cell-based regenerative therapy is undergoing experimental and clinical trials in cardiology, in order to limit the consequences of decreased contractile function and compliance of damaged ventricles following myocardial infarction. Over 1000 patients have been treated worldwide with cell-based procedures for myocardial regeneration. Cellular cardiomyoplasty seems to reduce the size and fibrosis of infarct scars, limit adverse postischemic remodelling, and improve diastolic function. The development of a bioartificial myocardium is a new challenge; in this approach, tissue-engineered procedures are associated with cell therapy. Organ decellularization for bioscaffolds fabrication is a new investigated concept. Nanomaterials are emerging as the main candidates to ensure the achievement of a proper instructive cellular niche with good drug release/administration properties. Investigating the electrophysiological properties of bioartificial myocardium is the challenging objective of future research, associating a multielectrode network to provide electrical stimulation could improve the coupling of grafted cells and scaffolds with host cardiomyocytes. In summary, until now stem cell transplantation has not achieved clear hemodynamic benefits for myocardial diseases. Supported by relevant scientific background, the development of myocardial tissue engineering may constitute a new avenue and hope for the treatment of myocardial diseases.
Collapse
Affiliation(s)
- Juan Carlos Chachques
- Department of Cardiovascular Surgery and Laboratory of Biosurgical Research, Pompidou Hospital, University Paris Descartes, 20 rue Leblanc, 75015 Paris, France
| |
Collapse
|
16
|
Povsic TJ, O'Connor CM. Cell therapy for heart failure: the need for a new therapeutic strategy. Expert Rev Cardiovasc Ther 2010; 8:1107-26. [PMID: 20670189 DOI: 10.1586/erc.10.99] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Improvements in the treatment of ischemic heart disease have led to a significant growth in the numbers of patients with systolic heart failure secondary to myocardial injury. Current therapies fail to address the loss of contractile tissue due to myocardial injury. Cell therapy is singular in its promise of primarily treating this underlying issue through salvage of viable myocardium or generation of new contractile tissue. Multiple cell types have been used to target acute myocardial infarction, chronic ischemic heart disease and heart failure due to infarction. Bone marrow mononuclear cells have been used to increase myocardial salvage after acute infarction. Randomized trials of over 800 patients have demonstrated no safety issues, and meta-analyses have suggested an improvement in left ventricular function in treated patients with trends toward improvements in hard cardiac end points. Cell therapy for chronic ischemic heart disease with bone marrow angiogenic progenitors has shown similar safety and trends toward improvement in function. While these therapies have targeted patients with viable myocardium, myoblasts have been used to treat patients with left ventricular dysfunction secondary to transmural infarction. Cell types with cardiomyogenic potential, including induced pluripotent stem cells and cardiac progenitor cells, offer the promise of true myocardial regeneration. Future studies with these cells may open the door for true myocardial regeneration.
Collapse
Affiliation(s)
- Thomas J Povsic
- Division of Cardiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
17
|
Sim EKW, Haider HK, Lila N, Schussler O, Chachques JC, Ye L. Genesis of myocardial repair with cardiac progenitor cells and tissue engineering. HEART ASIA 2010; 2:109-11. [PMID: 27325955 DOI: 10.1136/ha.2009.001651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Accepted: 05/18/2010] [Indexed: 11/04/2022]
Abstract
BACKGROUND There is mounting evidence to suggest that the heart has regenerative potential in the event of myocardial injury. Recent studies have shown that a resident population of cardiac progenitor cells (CPCs) in the heart contains both vasculogenic and myogenic lineages. CPCs are able to migrate to the site of injury in the heart for participation in the healing process. The resident CPCs in the heart may also be activated through outside pharmacological intervention to promote their participation in the intrinsic repair process. In the light of these characteristics, CPCs provide a logical source for the heart cell therapy. During the regenerative cardiac process, stem cell niches (a specialised environment surrounding stem cells) provide crucial support needed for their maintenance. DISCUSSION Compromised niche function may lead to the selection of stem cells that no longer depend on self-renewal factors produced by its environment. The objective of stem cell transplantation associated with tissue-engineered approaches is to create a new modality in the treatment of heart failure. The use of efficient scaffolds will aid to re-establish a favourable microenvironment for stem cell survival, multiplication, differentiation and function. Cardiac tissue engineering using natural and/or synthetic materials in this regard provides a novel possibility in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Eugene K W Sim
- Gleneagles JPMC Cardiac Centre, Brunei Darussalam & Mount Elizabeth Medical Centre, Singapore
| | - Husnain Kh Haider
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Nermine Lila
- Laboratory of Biosurgical Research, Alain Carpentier Foundation, European Hospital Georges Pompidou, University Paris Descartes, Paris, France
| | - Olivier Schussler
- Laboratory of Biosurgical Research, Alain Carpentier Foundation, European Hospital Georges Pompidou, University Paris Descartes, Paris, France
| | - Juan C Chachques
- Laboratory of Biosurgical Research, Alain Carpentier Foundation, European Hospital Georges Pompidou, University Paris Descartes, Paris, France
| | - Lei Ye
- Cardiovascular Research Institute, Department of Medicine, National University of Singapore, Singapore
| |
Collapse
|
18
|
Abstract
Acute ischemic injury and chronic cardiomyopathies can cause irreversible loss of cardiac tissue leading to heart failure. Cellular therapy offers a new paradigm for treatment of heart disease. Stem cell therapies in animal models show that transplantation of various cell preparations improves ventricular function after injury. The first clinical trials in patients produced some encouraging results, despite limited evidence for the long-term survival of transplanted cells. Ongoing research at the bench and the bedside aims to compare sources of donor cells, test methods of cell delivery, improve myocardial homing, bolster cell survival, and promote cardiomyocyte differentiation. This article reviews progress toward these goals.
Collapse
Affiliation(s)
- John A. Schoenhard
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University, MRB IV P425C, 2213 Garland Avenue, Nashville, TN 37232 USA
- Department of Cell and Developmental Biology, Vanderbilt University, MRB IV P425C, 2213 Garland Avenue, Nashville, TN 37232 USA
| | - Antonis K. Hatzopoulos
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University, MRB IV P425C, 2213 Garland Avenue, Nashville, TN 37232 USA
- Department of Cell and Developmental Biology, Vanderbilt University, MRB IV P425C, 2213 Garland Avenue, Nashville, TN 37232 USA
| |
Collapse
|
19
|
Abstract
Cell-based myocardial regenerative therapy is undergoing experimental and clinical trials in order to limit the consequences of decreased contractile function and compliance of damaged ventricles owing to ischemic and nonischemic myocardial diseases. A variety of myogenic and angiogenic cell types have been proposed, such as skeletal myoblasts, mononuclear and mesenchymal bone marrow cells, circulating blood-derived progenitors, adipose-derived stromal cells, induced pluripotent stem cells, umbilical cord cells, endometrial mesenchymal stem cells, adult testis pluripotent stem cells and embryonic cells. Current indications for stem cell therapy concern patients who have had a left- or right-ventricular infarction or idiopathic dilated cardiomyopathies. Other indications and potential applications include patients with diabetic cardiomyopathy, Chagas heart disease (American trypanosomiasis), ischemic mitral regurgitation, left ventricular noncompacted myocardium and pediatric cardiomyopathy. Suitable sources of cells for cardiac implant will depend on the types of diseases to be treated. For acute myocardial infarction, a cell that reduces myocardial necrosis and augments vascular blood flow will be desirable. For heart failure, cells that replace or promote myogenesis, reverse apoptopic mechanisms and reactivate dormant cell processes will be useful. It is important to note that stem cells are not an alternative to heart transplantation; selected patients should be in an early stage of heart failure as the goal of this regenerative approach is to avoid or delay organ transplantation. Since the cell niche provides crucial support needed for stem cell maintenance, the most interesting and realistic perspectives include the association of intramyocardial cell transplantation with tissue-engineered scaffolds and multisite cardiac pacing in order to transform a passive regenerative approach into a 'dynamic cellular support', a promising method for the creation of 'bioartificial myocardium'.
Collapse
Affiliation(s)
- Juan C Chachques
- Department of Cardiovascular Surgery, Pompidou Hospital, 20 rue Leblanc, 75015 Paris, France.
| |
Collapse
|
20
|
Shafy A, Lavergne T, Latremouille C, Cortes-Morichetti M, Carpentier A, Chachques JC. Association of electrostimulation with cell transplantation in ischemic heart disease. J Thorac Cardiovasc Surg 2009; 138:994-1001. [PMID: 19660354 DOI: 10.1016/j.jtcvs.2009.02.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 01/02/2009] [Accepted: 02/03/2009] [Indexed: 01/16/2023]
Abstract
BACKGROUND Until now, cell therapy has constituted a passive therapeutic approach; the only effects seem to be related to the reduction of the myocardial fibrosis and the limitation of the adverse ventricular remodeling. Cardiac resynchronization therapy is indicated in patients with heart failure to correct conduction disorders associated with chronic systolic and diastolic dysfunction. The association of electrostimulation with cellular cardiomyoplasty could be a way to transform passive cell therapy into "dynamic cellular support." Electrostimulation of ventricles following skeletal myoblast implantation should induce the contraction of the transplanted cells and a higher expression of slow myosin, which is better adapted for chronic ventricular assistance. The purpose of this study is to evaluate myogenic cell transplantation in an ischemic heart model associated with cardiac resynchronization therapy. METHODS Twenty two sheep were included. All animals underwent myocardial infarction by ligation of 2 coronary artery branches (distal left anterior descending artery and D2). After 4 weeks, autologous cultured myoblasts were injected in the infarcted areas with or without pacemaker implantation. Atrial synchronized biventricular pacing was performed using epicardial electrodes. Echocardiography was performed at 4 weeks (baseline) and 12 weeks after infarction. RESULTS Echocardiography showed a significant improvement in ejection fraction and limitation of left ventricular dilatation in cell therapy with cardiac resynchronization therapy as compared with the other groups. Viable cells were identified in the infarcted areas. Differentiation of myoblasts into myotubes and enhanced expression of slow myosin heavy chain was observed in the electrostimulated group. Transplantation of cells with cardiac resynchronization therapy caused an increase in diastolic wall thickening in the infarcted zone relative to cells-only group and cardiac resynchronization therapy-only group. CONCLUSIONS Biventricular pacing seems to induce synchronous contraction of transplanted myoblasts and the host myocardium, thus improving ventricular function. Electrostimulation was related with enhanced expression of slow myosin and the organization of myoblasts in myotubes, which are better adapted at performing cardiac work. Patients with heart failure presenting myocardial infarct scars and indication for cardiac resynchronization therapy might benefit from simultaneous cardiac pacing and cell therapy.
Collapse
Affiliation(s)
- Abdel Shafy
- Laboratory of Biosurgical Research, Pompidou Hospital, University of Paris, Paris, France
| | | | | | | | | | | |
Collapse
|
21
|
Seidel M, Borczyńska A, Rozwadowska N, Kurpisz M. Cell-based therapy for heart failure: skeletal myoblasts. Cell Transplant 2009; 18:695-707. [PMID: 19500482 DOI: 10.3727/096368909x470810] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Satellite cells are committed precursor cells residing in the skeletal muscle. These cells provide an almost unlimited regeneration potential to the muscle, contrary to the heart, which, although proved to contain cardiac stem cells, possesses a very limited ability for self-renewal. The idea that myoblasts (satellite cell progenies) may repopulate postinfarction scar occurred around the mid-1990s. Encouraging results of preclinical studies triggered extensive research, which led to the onset of clinical trials. These trials have shown that autologous skeletal myoblast transplantation to cure heart failure is feasible and relatively safe (observed incidences of arrhythmia). Because most of the initial studies on myoblast application into postischemic heart have been carried out as an adjunct to routine surgical procedures, the true clinical outcome of such therapy in regard to cell implantation is blurred and requires to be elucidated. The mechanism by which implantation of skeletal myoblast may improve heart function is not clear, especially in the light of inability of these cells to couple electromechanically with a host myocardium. Successful myoblast therapy depends on a number of factors, including: delivery to the target tissue, long-term survival, efficacious engraftment, differentiation into cardiomyocytes, and integration into the new, unique microenvironment. All these steps constitute a potential goal for cell manipulation aiming to improve the overall outcome of such therapy. Precise understanding of the mechanism by which cells improve cardiac function is essential in giving the sensible direction of further research.
Collapse
Affiliation(s)
- Monika Seidel
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | | | | | | |
Collapse
|
22
|
|
23
|
Leonardi F, Passeri B, Fusari A, De Razza P, Beghi C, Lorusso R, Corradi A, Botti P. Cardiac Troponin I (cTnI) concentration in an ovine model of myocardial ischemia. Res Vet Sci 2008; 85:141-4. [DOI: 10.1016/j.rvsc.2007.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 09/12/2007] [Accepted: 09/13/2007] [Indexed: 11/29/2022]
|
24
|
Roncalli J, Tongers J, Renault MA, Losordo DW. Biological approaches to ischemic tissue repair: gene- and cell-based strategies. Expert Rev Cardiovasc Ther 2008; 6:653-68. [PMID: 18510483 DOI: 10.1586/14779072.6.5.653] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gene therapy is a potential therapeutic strategy for treatment of ischemic vascular diseases; however, the clinical application of gene therapy has met some anticipated challenges. Recent randomized, controlled trials suggest that patients with cardiovascular disease may also benefit from cell-based therapies, and the optimal treatment regimen may combine both approaches to take advantage of potential synergy between the underlying therapeutic mechanisms. This review discusses recent research into both gene and cell therapy and considers the potential application of a combined treatment approach for cardiovascular and cerebrovascular ischemic diseases.
Collapse
Affiliation(s)
- Jerome Roncalli
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
25
|
Chachques JC, Trainini JC, Lago N, Masoli OH, Barisani JL, Cortes-Morichetti M, Schussler O, Carpentier A. Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM clinical trial): one year follow-up. Cell Transplant 2008; 16:927-34. [PMID: 18293891 DOI: 10.3727/096368907783338217] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cell transplantation for the regeneration of ischemic myocardium is limited by poor graft viability and low cell retention. In ischemic cardiomyopathy the extracellular matrix is deeply altered; therefore, it could be important to associate a procedure aiming at regenerating myocardial cells and restoring the extracellular matrix function. We evaluated intrainfarct cell therapy associated with a cell-seeded collagen scaffold grafted onto infarcted ventricles. In 15 patients (aged 54.2 +/- 3.8 years) presenting LV postischemic myocardial scars and with indication for a single OP-CABG, autologous mononuclear bone marrow cells (BMC) were implanted during surgery in the scar. A 3D collagen type I matrix seeded with the same number of BMC was added on top of the scarred area. There was no mortality and no related adverse events (follow-up 15 +/- 4.2 months). NYHA FC improved from 2.3 +/- 0.5 to 1.4 +/- 0.3 (p = 0.005). LV end-diastolic volume evolved from 142 +/- 24 to 117 +/- 21 ml (p = 0.03), and LV filling deceleration time improved from 162 +/- 7 to 196 +/- 8 ms (p = 0.01). Scar area thickness progressed from 6 +/- 1.4 to 9 +/- 1.5 mm (p = 0.005). EF improved from 25 +/- 7% to 33 +/- 5% (p = 0.04). Simultaneous intramyocardial injection of mononuclear bone marrow cells and fixation of a BMC-seeded matrix onto the epicardium is feasible and safe. The cell-seeded collagen matrix seems to increase the thickness of the infarct scar with viable tissues and helps to normalize cardiac wall stress in injured regions, thus limiting ventricular remodeling and improving diastolic function. Patients' improvements cannot be conclusively related to the cells and matrix due to the association of CABG. Cardiac tissue engineering seems to extend the indications and benefits of stem cell therapy in cardiology, becoming a promising way for the creation of a "bioartificial myocardium." Efficacy and safety of this approach should be evaluated in a large randomized controlled trial.
Collapse
Affiliation(s)
- Juan C Chachques
- *Department of Cardiovascular Surgery, Pompidou Hospital, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Chachques JC, Trainini JC, Lago N, Cortes-Morichetti M, Schussler O, Carpentier A. Myocardial Assistance by Grafting a New Bioartificial Upgraded Myocardium (MAGNUM trial): clinical feasibility study. Ann Thorac Surg 2008; 85:901-8. [PMID: 18291168 DOI: 10.1016/j.athoracsur.2007.10.052] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 10/12/2007] [Accepted: 10/12/2007] [Indexed: 01/11/2023]
Abstract
BACKGROUND Cell transplantation for the regeneration of ischemic myocardium is limited by poor graft viability and low cell retention. In ischemic cardiomyopathy, the extracellular matrix is deeply altered; therefore, it could be important to associate a procedure aiming at regenerating myocardial cells and restoring the extracellular matrix function. We evaluated the feasibility and safety of intrainfarct cell therapy associated with a cell-seeded collagen scaffold grafted onto infarcted ventricles. METHODS In 20 consecutive patients presenting with left ventricular postischemic myocardial scars and indication for coronary artery bypass graft surgery, bone marrow cells were implanted during surgery. In the last 10 patients, we added a collagen matrix seeded with bone marrow cells, placed onto the scar. RESULTS There was no mortality and any related adverse events (follow-up 10 +/- 3.5 months). New York Heart Association functional class improved in both groups from 2.3 +/- 0.5 to 1.3 +/- 0.5 (matrix, p = 0.0002) versus 2.4 +/- 0.5 to 1.5 +/- 0.5 (no matrix, p = 0.001). Left ventricular end-diastolic volume evolved from 142.4 +/- 24.5 mL to 112.9 +/- 27.3 mL (matrix, p = 0.02) versus 138.9 +/- 36.1 mL to 148.7 +/- 41 mL (no matrix, p = 0.57), left ventricular filling deceleration time improved significantly in the matrix group from 162 +/- 7 ms to 198 +/- 9 ms (p = 0.01) versus the no-matrix group (from 159 +/- 5 ms to 167 +/- 8 ms, p = 0.07). Scar area thickness progressed from 6 +/- 1.4 to 9 mm +/- 1.1 mm (matrix, p = 0.005) versus 5 +/- 1.5 mm to 6 +/- 0.8 mm (no matrix, p = 0.09). Ejection fraction improved in both groups, from 25.3% +/- 7.3% to 32% +/- 5.4% (matrix, p = 0.03) versus 27.2% +/- 6.9% to 34.6% +/- 7.3% (no matrix, p = 0.031). CONCLUSIONS This tissue-engineered approach is feasible and safe and appears to improve the efficiency of cellular cardiomyoplasty. The cell-seeded collagen matrix increases the thickness of the infarct scar with viable tissue and helps to normalize cardiac wall stress in injured regions, thus limiting ventricular remodeling and improving diastolic function.
Collapse
Affiliation(s)
- Juan C Chachques
- Department of Cardiovascular Surgery, Pompidou Hospital, Paris, France.
| | | | | | | | | | | |
Collapse
|
27
|
Dinsmore JH, Dib N. Stem cells and cardiac repair: a critical analysis. J Cardiovasc Transl Res 2008; 1:41-54. [PMID: 20559957 DOI: 10.1007/s12265-007-9008-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 12/27/2007] [Indexed: 01/11/2023]
Abstract
Utilizing stem cells to repair the damaged heart has seen an intense amount of activity over the last 5 years or so. There are currently multiple clinical studies in progress to test the efficacy of various different cell therapy approaches for the repair of damaged myocardium that were only just beginning to be tested in preclinical animal studies a few years earlier. This rapid transition from preclinical to clinical testing is striking and is not typical of the customary timeframe for the progress of a therapy from bench-to-bedside. Doubtless, there will be many more trials to follow in the upcoming years. With the plethora of trials and cell alternatives, there has come not only great enthusiasm for the potential of the therapy, but also great confusion about what has been achieved. Cell therapy has the potential to do what no drug can: regenerate and replace damaged tissue with healthy tissue. Drugs may be effective at slowing the progression of heart failure, but none can stop or reverse the process. However, tissue repair is not a simple process, although the idea on its surface is quite simple. Understanding cells, the signals that they respond to, and the keys to appropriate survival and tissue formation are orders of magnitude more complicated than understanding the pathways targeted by most drugs. Drugs and their metabolites can be monitored, quantified, and their effects correlated to circulating levels in the body. Not so for most cell therapies. It is quite difficult to measure cell survival except through ex vivo techniques like histological analysis of the target organ. This makes the emphasis on preclinical research all the more important because it is only in the animal studies that research has the opportunity to readily harvest the target tissues and perform the detailed analyses of what has happened with the cells. This need for detailed and usually time-intensive research in animal studies stands in contrast to the rapidity with which therapies have progressed to the clinic. It is now becoming clear through a number of notable examples that progress to the clinic may have occurred too quickly, before adequate testing and independent verification of results could be completed (Check, Nature 446:485-486, 2007; Chien, J Clin Investig 116:1838-1840, 2006; Giles, Nature 442:344-347, 2006). Broad reproducibility and transfer of results from one lab to another has been and always will be essential for the successful application of any cell therapy. So, what is the prognosis for cell therapy to repair heart damage? Will there be an approved cell therapy, or multiple ones, or will it require combinations of more than one cell type to be successful? These are questions often asked. The answers are difficult to know and even more difficult to predict because there are so many variables associated with cell-based therapies. There is much about the biology of cell systems that we still do not understand. Much of the pluripotency or transdifferentiation phenomena (see below) being observed go against accepted and well-tested principles for cell development and fate choice, and has caused a reevaluation of long-accepted theories. Clearly, new pathways for tissue repair and regeneration have been uncovered, but will these new pathways be sufficient to effect significant tissue repair and regeneration? Despite the false starts so far, there is the strong likelihood one or possibly multiple cell therapies will succeed. Clearly, important information has been gained, which should better guide the field to achieving success. When there is the successful verification in patients of a cell therapy, there will be an explosion of technological advances around the approach(es) that succeed. Whatever cells get approved accompanying them will be: more effective delivery methods; growth and storage methods; combination therapies, mixes of cells or cells + gene therapies; combinations with biomaterials and technologies for immune protection, allowing allografting. There are many parallel paths of technology development waiting to be brought together once there is an effective cellular approach. The coming years will no doubt bring some exciting developments.
Collapse
Affiliation(s)
- Jonathan H Dinsmore
- Advanced Cell Technology and Mytogen, Inc., Bldg. 96, 13th St., Charlestown, MA 02129, USA.
| | | |
Collapse
|
28
|
Elmadbouh I, Michel JB, Chachques JC. Mesothelial cell transplantation in myocardial infarction. Int J Artif Organs 2007; 30:541-9. [PMID: 17628855 DOI: 10.1177/039139880703000612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mesothelial cells (MCs) are accessible in human patients by excision and digestion of epiploon or from peritoneal fluid or lavage. MCs are easy to culture to obtain large quantities in vitro and they can be genetically modified with interesting therapeutic genes. The important potential of MCs in tissue engineering has been shown during epiplooplasty to different organs and also in creating artificial blood conduits. MC of epicardium is probably the precursor of coronary arteries during embryogenesis. MCs secrete a broad spectrum of angiogenic cytokines, growth factors and extracellular matrix, which could be useful for repairing damaged tissues. MCs are transitional mesodermal-derived cells and considered as progenitor stem cell, have similar morphological and functional properties with endothelial cells and conserve properties of transdifferentiation. MC therapy in myocardial infarction induced neoangiogenesis in infarcted scar and preserved heart function. In conclusion, a potential therapeutic strategy would be to implant or re-implant genetically modified MCs in post-infarction injury to enhance tissue repair and healing. Imparting therapeutic target genes such as angiogenic genes would also be useful for inducing neovascularization.
Collapse
Affiliation(s)
- I Elmadbouh
- INSERM unit 698, Cardiovascular Remodelling, CHU Xavier Bichat-Claude Bernard, Paris, France
| | | | | |
Collapse
|
29
|
Kocher AA, Schlechta B, Gasparovicova A, Wolner E, Bonaros N, Laufer G. Stem cells and cardiac regeneration. Transpl Int 2007; 20:731-46. [PMID: 17555531 DOI: 10.1111/j.1432-2277.2007.00493.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite many advances in cardiovascular medicine, heart failure (HF) remains the leading cause of death in developed countries affecting at least 10 million people in Western Europe alone. The poor long-term prognosis of HF patients, and immense public health implications has fuelled interest in finding new therapeutic modalities. Recent observations of the beneficial effect of stem cells on the damaged heart in animal experiments have generated tremendous excitement and stimulated clinical studies suggesting that this approach is feasible, safe, and potentially effective in humans. Cell-based myocardial regeneration is currently explored for a wide range of cardiac disease states, including acute and chronic ischemic myocardial damage, cardiomyopathy and as biological heart pacemakers. The aim of the present manuscript is to review the work that has been done to establish the role of stem cells in cardiac repair, give an update on the clinical trials performed so far, as well as to discuss critically the controversies, challenges and future surrounding this novel therapeutic concept.
Collapse
Affiliation(s)
- Alfred A Kocher
- Department of Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | | | | | |
Collapse
|
30
|
Renault MA, Losordo DW. Therapeutic myocardial angiogenesis. Microvasc Res 2007; 74:159-71. [PMID: 17950369 PMCID: PMC2172411 DOI: 10.1016/j.mvr.2007.08.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2007] [Revised: 08/15/2007] [Accepted: 08/17/2007] [Indexed: 01/23/2023]
Abstract
Armed with an improved understanding of the mediators of angiogenesis, physicians and scientists have made significant efforts at harnessing this naturally occurring process in order to treat patients with a variety of peripheral vascular and coronary ischemic syndromes. There is a growing population of patients with end-stage coronary artery disease (CAD) who are no longer candidates for mechanical revascularization, yet suffer from chronic myocardial ischemia who may benefit from regeneration of the depleted microvasculature.
Collapse
Affiliation(s)
- Marie-Ange Renault
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave., Tarry 12-703, Chicago, IL 60611, USA
| | | |
Collapse
|
31
|
Kondoh H, Sawa Y, Fukushima N, Matsumiya G, Miyagawa S, Kitagawa-Sakakida S, Imanishi Y, Kawaguchi N, Matsuura N, Matsuda H. Combined strategy using myoblasts and hepatocyte growth factor in dilated cardiomyopathic hamsters. Ann Thorac Surg 2007; 84:134-41. [PMID: 17588400 DOI: 10.1016/j.athoracsur.2007.03.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 03/10/2007] [Accepted: 03/19/2007] [Indexed: 11/30/2022]
Abstract
BACKGROUND There are few reports on treating dilated cardiomyopathy (DCM) with myoblast transplantation, and these show limited efficacy. Hepatocyte growth factor has cardioprotective effects on failed myocardium. Here, we combined these two treatments and analyzed cardiac function in DCM hamsters. METHODS Twenty-seven-week-old BIO TO-2 hamsters, which show moderate cardiac remodeling, were divided into four treatment groups: myoblast transplantation (T group, n = 24), human hepatocyte growth factor gene transfection (H group, n = 29), combined treatment (T+H group, n = 21), and medium alone (C group, n = 26). RESULTS Significantly better fractional shortening was observed in the T+H group compared with the others (14.9% +/- 1.0%, 11.7% +/- 1.5%, 11.3% +/- 1.3%, and 8.6% +/- 1.1 %, in the T+H, H, T, and C groups, respectively). Immunohistochemical analysis showed alpha- and beta-sarcoglycan expression in the hearts of the H and T+H groups but not in the other groups. There was less myocardial fibrosis in the H and T+H groups than in the other two, and neovascularization in the T+H group was significantly greater than in the other groups (266 +/- 24, 209 +/- 27, 199 +/- 36, and 96 +/- 17 vessels/mm2, in the T+H, H, T, and C groups, respectively). Survival was significantly prolonged in the H and T+H groups compared with the other groups. CONCLUSIONS Hepatocyte growth factor gene transfection and myoblast transplantation preserved the cardiac function of DCM hamsters, probably through different mechanisms, and the combined treatments preserved cardiac performance better than either treatment alone. The combined therapy is a promising strategy for treating DCM.
Collapse
Affiliation(s)
- Haruhiko Kondoh
- Department of Surgery, Division of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chachques JC, Azarine A, Mousseaux E, El Serafi M, Cortes-Morichetti M, Carpentier AF. MRI Evaluation of Local Myocardial Treatments: Epicardial Versus Endocardial (Cell-Fix Catheter) Injections. J Interv Cardiol 2007; 20:188-96. [PMID: 17524110 DOI: 10.1111/j.1540-8183.2007.00255.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AIMS We compared two procedures for local myocardial treatment: transepicardial versus transendocardial catheter injection. Transepicardial injections were performed under direct surgical visualization whereas transendocardial injections were performed using electrophysiological guidance. METHODS A left ventricle (LV) myocardial infarction (MI) was surgically created in 14 sheep. At 3 months, gadolinium was injected IV followed by the injection of super paramagnetic iron oxide (SPIO) into MI. Animals were divided in two groups: transepicardial injection (Group I) versus transendocardial (Group II) using "Cell-Fix" catheter injection. This catheter was developed to identify by electrophysiology the infarcted area and to stabilize injections suctioning the device to the endocardium. Postgadolinium delayed-enhancement magnetic resonance imaging (MRI) was performed to stain the infarct size. SPIO injections were used to assess the magnitude of the treated area. The ratio between SPIO black stained treatment areas and white gadolinium stained infarcted areas was calculated using MRI. RESULTS The electrophysiological recordings by the catheter for the MI versus normal LV wall were: R wave amplitude 4.16 versus 12.08 mV (P = 0.003), slew rate (slope of the signal) 0.36 V/s versus 1.04 V/s (P = 0.008). The ratio of the SPIO diffusion into the MI was 41.2 +/- 8.1% for surgical and 63.7 +/- 8.2% for percutaneous endocardial injections (P = 0.0132). CONCLUSION MRI allows evaluation of the extent of local myocardial treatments. The differences shown between epicardial and endocardial injections concerning the distribution of SPIO can be justified by the methodology of injection and by a more precise MI detection by electrophysiology. In conclusion, electrophysiological recordings to guide injections is superior to direct surgical visualization in terms of injecting into infarcted tissue.
Collapse
Affiliation(s)
- Juan C Chachques
- Department of Cardiovascular Surgery, Pompidou and Bicetre Hospitals, Paris, France.
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Patients with ischemic cardiomyopathy have a poor prognosis despite all pharmacological, interventional and surgical treatment modalities currently applied. Heart transplantation remains the ideal treatment for this group of patients but the scarcity of donors hinders its widespread application. The autologous transplantation of stem cells (SCs) for cardiac repair is emerging as a new therapy for patients with myocardial dysfunction early after an acute infarction or ischemic cardiomyopathy. The rationale of this novel method is the enhancement of the repair mechanisms achieved by tissue-specific and circulating stem/progenitor cells. SCs assist naturally occurring myocardial repair by contributing to increased myocardial perfusion and contractile performance especially in the setting of acute myocardial infarction (AMI), but also in patients with chronic ischemic heart failure and advanced, diffuse coronary artery disease. The exact mechanism of their action has not been fully elucidated. Few studies continue to suggest a formation of few new contractile tissue. The majority if investigators believe that these cells do not persist long in the myocardium but that they secrete vascular growth and other cardioprotective factors.
Collapse
|
34
|
Kanamori T, Watanabe G, Yasuda T, Nagamine H, Kamiya H, Koshida Y. Hybrid surgical angiogenesis: omentopexy can enhance myocardial angiogenesis induced by cell therapy. Ann Thorac Surg 2006; 81:160-7. [PMID: 16368356 DOI: 10.1016/j.athoracsur.2005.07.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 06/28/2005] [Accepted: 07/05/2005] [Indexed: 11/16/2022]
Abstract
BACKGROUND The conditions at the injection site are important in cell transplantation for severe ischemic heart disease. The omentum is both a well-vascularized tissue and a source of angiogenic factors. We examined the effectiveness of autologous bone marrow-derived mononuclear cells (BM-MNCs) with or without omentopexy in a large animal model. METHODS Myocardial infarction was generated in the lateral wall by ligation of coronary artery branches in miniswine. Animals received BM-MNC injection with or without omentopexy. Controls received saline only. Three weeks after surgery, regional myocardial blood flow and contractility were measured, and density of arterioles was evaluated immunohistologically. Angiography and postmortem examinations were performed to determine collateral communication. RESULTS Regional myocardial contractility was significantly improved by BM-MNC transplantation both with and without omentopexy (0.29 +/- 0.02 vs 0.11 +/- 0.03, p < 0.01, 0.30 +/- 0.02 vs 0.12 +/- 0.01, p < 0.01, respectively). Relative regional myocardial blood flow in the combined omentopexy group was significantly higher than the controls both at rest (1.05 +/- 0.11 vs 0.57 +/- 0.07, p < 0.01) and under stress (1.09 +/- 0.08 vs 0.40 +/- 0.10, p < 0.01). The number of arterioles (< 50 microm) in both groups were higher than the controls (88.1 +/- 5.00 vs 38.1 +/- 8.99, p < 0.01 and 109.2 +/- 9.91 vs 38.1 +/- 8.99, p < 0.01, respectively). The number of large arterioles (> 50 microm) in the combined omentopexy group was significantly higher than in both BM-MNC alone (26.9 +/- 2.4 vs 17.6 +/- 1.8, p = 0.011) and controls (26.9 +/- 2.4 vs 10.0 +/- 1.3, p < 0.01). Collateral communication between the omentum and myocardium was demonstrated by angiography and postmortem injection. CONCLUSIONS The BM-MNC transplantation may attenuate cardiac contractile dysfunction, and omentopexy may enhance angiogenesis induced by BM-MNC transplantation.
Collapse
Affiliation(s)
- Taro Kanamori
- Department of General and Cardiothoracic Surgery, Kanazawa University School of Medicine, Kanazawa, Japan.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Heart failure is the major cause of mortality in Western countries. Medical treatment of heart failure is associated with 50% survival at 5 years. Experimental models are required to better understand the progression of the disease and elaborate new therapy. Heart transplantation, left ventricular assist devices, artificial hearts, and cardiac bioassist techniques require animal models for testing and optimizing before they are implemented on human patients. The perfect model of heart failure that reproduces every aspect of the natural disease does not exist. Acute and chronic heart failure models have been developed to reproduce different aspect of the pathology.
Collapse
Affiliation(s)
- Eric Monnet
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | |
Collapse
|
36
|
Choi JS, Kim KB, Han W, Kim DS, Park JS, Lee JJ, Lee DS. Efficacy of Therapeutic Angiogenesis by Intramyocardial Injection of pCK-VEGF165 in Pigs. Ann Thorac Surg 2006; 82:679-86. [PMID: 16863784 DOI: 10.1016/j.athoracsur.2006.03.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 03/09/2006] [Accepted: 03/10/2006] [Indexed: 11/26/2022]
Abstract
BACKGROUND Intramyocardial injection of vascular endothelial growth factor (VEGF) plasmid DNA was studied to demonstrate improvement of regional myocardial function. METHODS Twenty-one pigs that had undergone ligation of the left anterior descending coronary artery were randomly allocated to one of two treatments: intramyocardial injection of pCK-VEGF165 (VEGF group) or pCK-Null (control group) into the ischemic border zone. Electrocardiogram-gated single-photon emission computed tomography was performed 30 and 60 days after the coronary ligation. Segmental variables of perfusion and function were automatically quantified using a 20-segment model. In the segmental analysis, 119 segments were selected for analysis (71 segments in the VEGF group; 48 segments in the control group). Histologic analysis was also performed in the myocardial tissue of the ischemic border zone. RESULTS At day 30, there were no significant differences in segmental perfusion, wall thickening, and wall motion between the two groups. In the VEGF group, all variables of perfusion, wall thickening, and wall motion were significantly improved at day 60 compared with those at day 30 (p < 0.05), while there were no differences in the control group. At day 60, perfusion (p = 0.018), wall motion (p = 0.004), and wall thickening (p = 0.068) of the VEGF group were improved compared with those of the control group. Histologic analysis showed that microcapillary density was significantly higher in the VEGF group than the control group (p < 0.001). CONCLUSIONS Intramyocardial injection of pCK-VEGF165 significantly augmented neoangiogenesis in the ischemic area and improved regional myocardial function as well as myocardial perfusion.
Collapse
Affiliation(s)
- Jae-Sung Choi
- Department of Thoracic and Cardiovascular Surgery, Dongguk University International Hospital, Koyang, Korea
| | | | | | | | | | | | | |
Collapse
|
37
|
Nemocní po akutním infarktu myokardu - co více můžeme nabídnout? COR ET VASA 2006. [DOI: 10.33678/cor.2006.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Sesti C, Hale SL, Lutzko C, Kloner RA. Granulocyte colony-stimulating factor and stem cell factor improve contractile reserve of the infarcted left ventricle independent of restoring muscle mass. J Am Coll Cardiol 2005; 46:1662-9. [PMID: 16256866 DOI: 10.1016/j.jacc.2005.08.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Revised: 02/03/2005] [Accepted: 02/08/2005] [Indexed: 11/30/2022]
Abstract
OBJECTIVES We investigated whether granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF) could promote myocardial regeneration after coronary artery occlusion and improve left ventricular (LV) function. BACKGROUND Cytokine-induced mobilization of bone marrow stem cells in the heart may represent a promising strategy for replacing infarcted myocardium. METHODS Sprague-Dawley rats were subjected to permanent coronary occlusion. A treated group (n = 19) received G-CSF (100 microg/kg) and SCF (25 microg/kg) subcutaneously, starting 2 h after surgery and continuing daily for an additional 4 days. Control rats (n = 21) received sterile water. The peripheral blood content in hematopoietic progenitor cells was analyzed. RESULTS At eight weeks, LV angiograms (rest and dobutamine stress) and histologic analysis were performed. At rest, LV ejection fraction (LVEF) was 0.45 in controls and 0.52 in treated hearts (p = 0.16). For any infarct size, LVEF was greater in the treated group (p = 0.045). Under dobutamine stress, treated animals had smaller LV end-diastolic and -systolic volumes (0.37 +/- 0.04 ml and 0.16 +/- 0.03 ml) versus control animals (0.51 +/- 0.05 ml and 0.26 +/- 0.04 ml; p = 0.026 and 0.048) with a 7% improvement in ejection fraction. Scar thickness was 1.1 +/- 0.1 mm in treated hearts and 1.0 +/- 0.1 mm in controls (p = 0.36). Scar morphology was similar in both groups without obvious new muscle in the scar. CONCLUSIONS Because we did not find evidence of new muscle cells in the infarct area, our conclusion is that G-CSF and SCF enhanced the LV functional reserve of the heart without replacing scar tissue.
Collapse
Affiliation(s)
- Casilde Sesti
- Heart Institute, Good Samaritan Hospital, Cardiovascular Division, Keck School of Medicine at the University of Southern California, Los Angeles, California 90017-2395, USA
| | | | | | | |
Collapse
|
39
|
Shyu KG, Wang BW, Hung HF, Chang CC, Shih DTB. Mesenchymal stem cells are superior to angiogenic growth factor genes for improving myocardial performance in the mouse model of acute myocardial infarction. J Biomed Sci 2005; 13:47-58. [PMID: 16283432 DOI: 10.1007/s11373-005-9038-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Accepted: 09/21/2005] [Indexed: 10/25/2022] Open
Abstract
Both cell therapy and angiogenic growth factor gene therapy have been applied to animal studies and clinical trials. Little is known about the direct comparison between cell therapy and angiogenic growth factor gene therapy. The goal of this study was to compare the effects of human bone marrow-derived mesenchymal stem cells (hMSCs) transplantation and injection of angiogenic growth factor genes in a model of acute myocardial infarction in mice. The hMSCs were obtained from adult human bone marrow and expanded in vitro. The purity and characteristics of hMSCs were identified by flow cytometry and immunophenotyping. Immediately after ligation of the left anterior descending coronary artery in male severe combined immunodeficient (SCID) mice, culture-expanded hMSCs or angiogenic growth factor genes were injected intramuscularly at the left anterior free wall. The engrafted hMSCs were positive for cardiac marker, desmin. Infarct size was significantly smaller in the hMSCs-treated group than in the angiopoietin-1 (Ang-1) or vascular endothelial growth factor (VEGF)-treated group at day 28 after infarction. hMSCs transplantation was better in decreasing left ventricular end-diastolic dimension and increasing fractional shortening than Ang1 or VEGF gene therapy. Capillary density was markedly increased after hMSCs transplantation than Ang1 and VEGF gene therapy. In conclusion, intramyocardial transplantation of hMSCs improves cardiac function after acute myocardial infarction through enhancement of angiogenesis and myogenesis in the ischemic myocardium. hMSCs are superior to angiogenic growth factor genes for improving myocardial performance in the mouse model of acute myocardial infarction. Transplantation of MSCs may become the future therapy for acute myocardial infarction for myocardial regeneration.
Collapse
Affiliation(s)
- Kou-Gi Shyu
- Division of Cardiology, Department of Education and Research, Shin Kong Wu Ho-Su Memorial Hospital, 95 Wen-Chang Rd, Taipei, 111, Taiwan.
| | | | | | | | | |
Collapse
|
40
|
Chachques JC, Salanson-Lajos C, Lajos P, Shafy A, Alshamry A, Carpentier A. Cellular cardiomyoplasty for myocardial regeneration. Asian Cardiovasc Thorac Ann 2005; 13:287-96. [PMID: 16113008 DOI: 10.1177/021849230501300322] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The evolving challenge of managing patients with congestive heart failure is the need to develop new therapeutic strategies. The cellular, molecular, and genetic approaches investigated aim to reinforce the weak, failing heart muscle while restoring its functional potential. This approach is principally cellular therapy (i.e. cellular cardiomyoplasty), the preferred therapeutic choice because of its clinical applicability and regenerative capacity. Different stem cells: bone marrow cells, skeletal and smooth muscle cells, vascular endothelial cells, mesothelial cells, adipose tissue stroma cells, dental stem cells, and embryonic and fetal cells, have been proposed for regenerative medicine and biology. Stem cell mobilization with G-CSF cytokine was also proposed as a single therapy for myocardial infarction. We investigated the association of cell therapy with electrostimulation (dynamic cellular cardiomyoplasty), the use of autologous human serum for cell cultures, and a new catheter for simultaneous infarct detection and cell delivery. Our team conducted cell-based myogenic and angiogenic clinical trials for chronic ischemic heart disease. Cellular cardiomyoplasty constitutes a new approach for myocardial regeneration; the ultimate goal is to avoid the progression of ventricular remodeling and heart failure for patients presenting with ischemic and non-ischemic cardiomyopathies.
Collapse
Affiliation(s)
- Juan C Chachques
- Department of Cardiovascular Surgery, Pompidou Hospital, 20 rue Leblanc, Paris 75015, France.
| | | | | | | | | | | |
Collapse
|
41
|
Fazel S, Tang GHL, Angoulvant D, Cimini M, Weisel RD, Li RK, Yau TM. Current Status of Cellular Therapy for Ischemic Heart Disease. Ann Thorac Surg 2005; 79:S2238-47. [PMID: 15919259 DOI: 10.1016/j.athoracsur.2005.02.085] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 01/26/2005] [Accepted: 02/21/2005] [Indexed: 01/11/2023]
Abstract
Cellular therapy for acute myocardial infarction and ischemic cardiomyopathy has entered clinical trials across the globe. Early promising results have now provided the justification for larger randomized and blinded trials to address the efficacy of cellular therapy. A variety of fresh or cultured autologous cells have been delivered by catheter-guided endocardial, catheter-guided intracoronary, catheter-guided transvenous, and direct epicardial routes. This review will summarize the clinical data and highlight salient basic science data that support the ongoing efforts to identify the optimal cellular therapy both for acute myocardial infarction and chronic ischemic cardiomyopathy patients.
Collapse
Affiliation(s)
- Shafie Fazel
- Division of Cardiovascular Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
42
|
Rosengart TK, Chedrawy EG, Patejunas G, Retuarto M. Vascular endothelial growth factor before cells. J Thorac Cardiovasc Surg 2005; 129:696. [PMID: 15746767 DOI: 10.1016/j.jtcvs.2004.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|