1
|
Angrand L, Masson JD, Rubio-Casillas A, Nosten-Bertrand M, Crépeaux G. Inflammation and Autophagy: A Convergent Point between Autism Spectrum Disorder (ASD)-Related Genetic and Environmental Factors: Focus on Aluminum Adjuvants. TOXICS 2022; 10:toxics10090518. [PMID: 36136483 PMCID: PMC9502677 DOI: 10.3390/toxics10090518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 05/10/2023]
Abstract
Autism spectrum disorder (ASD), schizophrenia, and bipolar disorder are genetically complex and heterogeneous neurodevelopmental disorders (NDDs) resulting from genetic factors and gene-environment (GxE) interactions for which onset occurs in early brain development. Recent progress highlights the link between ASD and (i) immunogenetics, neurodevelopment, and inflammation, and (ii) impairments of autophagy, a crucial neurodevelopmental process involved in synaptic pruning. Among various environmental factors causing risk for ASD, aluminum (Al)-containing vaccines injected during critical periods have received special attention and triggered relevant scientific questions. The aim of this review is to discuss the current knowledge on the role of early inflammation, immune and autophagy dysfunction in ASD as well as preclinical studies which question Al adjuvant impacts on brain and immune maturation. We highlight the most recent breakthroughs and the lack of epidemiological, pharmacokinetic and pharmacodynamic data constituting a "scientific gap". We propose additional research, such as genetic studies that could contribute to identify populations at genetic risk, improving diagnosis, and potentially the development of new therapeutic tools.
Collapse
Affiliation(s)
- Loïc Angrand
- Univ Paris Est Créteil, INSERM, IMRB, F-94010 Créteil, France; (L.A.); (J.-D.M.)
- Ecole Nationale Vétérinaire d’Alfort IMRB, F-94700 Maisons-Alfort, France
- INSERM UMR-S 1270, 75005 Paris, France;
- Sorbonne Université, Campus Pierre et Marie Curie, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Jean-Daniel Masson
- Univ Paris Est Créteil, INSERM, IMRB, F-94010 Créteil, France; (L.A.); (J.-D.M.)
- Ecole Nationale Vétérinaire d’Alfort IMRB, F-94700 Maisons-Alfort, France
| | - Alberto Rubio-Casillas
- Biology Laboratory, Autlán Regional Preparatory School, University of Guadalajara, Autlán 48900, Jalisco, Mexico;
- Autlán Regional Hospital, Health Secretariat, Autlán 48900, Jalisco, Mexico
| | - Marika Nosten-Bertrand
- INSERM UMR-S 1270, 75005 Paris, France;
- Sorbonne Université, Campus Pierre et Marie Curie, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Guillemette Crépeaux
- Univ Paris Est Créteil, INSERM, IMRB, F-94010 Créteil, France; (L.A.); (J.-D.M.)
- Ecole Nationale Vétérinaire d’Alfort IMRB, F-94700 Maisons-Alfort, France
- Correspondence:
| |
Collapse
|
2
|
Masson JD, Angrand L, Badran G, de Miguel R, Crépeaux G. Clearance, biodistribution, and neuromodulatory effects of aluminum-based adjuvants. Systematic review and meta-analysis: what do we learn from animal studies? Crit Rev Toxicol 2022; 52:403-419. [PMID: 36112128 DOI: 10.1080/10408444.2022.2105688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Aluminum (Al) salts are commonly used as adjuvants in human and veterinary vaccines for almost a century. Despite this long history of use and the very large number of exposed individuals, data in the literature concerning the fate of these molecules after injection and their potential effects on the nervous system is limited. In the context of (i) an increase of exposure to Al salts through vaccination; (ii) the absence of safety values determined by health regulators; (iii) the lack of robustness of the studies used as references to officially claim Al adjuvant innocuity; (iv) the publication of several animal studies investigating Al salts clearance/biopersistence and neurotoxicity; we have examined in this review all published studies performed on animals and assessing Al adjuvants kinetics, biodistribution, and neuromodulation since the first work of A. Glenny in the 1920s. The diversity of methodological approaches, results, and potential weaknesses of the 31 collected studies are exposed. A large range of protocols has been used, including a variety of exposure schedule and analyses methods, making comparisons between studies uneasy. Nevertheless, published data highlight that when biopersistence, translocation, or neuromodulation were assessed, they were documented whatever the different in vivo models and methods used. Moreover, the studies pointed out the crucial importance of the different Al adjuvant physicochemical properties and host genetic background on their kinetics, biodistribution, and neuromodulatory effects. Regarding the state of the art on this key public health topic, further studies are clearly needed to determine the exact safety level of Al salts.
Collapse
Affiliation(s)
- J-D Masson
- INSERM, IMRB, Univ Paris Est Créteil, Créteil, France
| | - L Angrand
- INSERM, IMRB, Univ Paris Est Créteil, Créteil, France.,École Nationale Vétérinaire d'Alfort, IMRB, Maisons-Alfort, France
| | - G Badran
- INSERM, IMRB, Univ Paris Est Créteil, Créteil, France.,Laboratoire SABNP, Université d'Evry Val d'Essonne, Paris, France
| | - R de Miguel
- Department of Animal Pathology, University of Zaragoza, Zaragoza, Spain
| | - G Crépeaux
- INSERM, IMRB, Univ Paris Est Créteil, Créteil, France.,École Nationale Vétérinaire d'Alfort, IMRB, Maisons-Alfort, France
| |
Collapse
|
3
|
Ćirović A, Ćirović A, Nikolić D, Ivanovski A, Ivanovski P. The adjuvant aluminum fate - Metabolic tale based on the basics of chemistry and biochemistry. J Trace Elem Med Biol 2021; 68:126822. [PMID: 34333362 DOI: 10.1016/j.jtemb.2021.126822] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/24/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022]
Abstract
Aluminum is inevitable component of many vaccines. The benefit of the vaccines is undeniable but effects of aluminum toxicity might be underestimated and neglected. In this review, we highlighted the mechanims of aluminum toxicity, which is still in debate. So far, all the papers that disscused the adverse aluminum effects pointed two mechanisms responsible for Al toxicity, direct Al toxicity and aluminum induced cell damage via the oxidative metabolism. According to our knowledge, which is based on basic principles of biochemistry and inorganic chemistry, we suggested that aluminum highly interferes with iron metabolism eventually resulting in iron-mediated cell damage. More importantly, in this paper, we offered easily feasible solutions, in order to avoid aluminum toxicity in the future. We suggest that as it once was, Calcium Phosphate again to be used as the adjuvant or better solution that the vaccine adjuvants should be based on zinc compounds or even better would be non-metal adjuvants, such as microcrystalline tyrosine and monosodium urate. Until an adequate adjuvant is provided, we suggest instant postponement of vaccination with vaccines which use aluminum as the adjuvant until the 12 months of age.
Collapse
Affiliation(s)
- Aleksandar Ćirović
- Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, Belgrade, 11000, Serbia; Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, Belgrade, 11000, Serbia.
| | - Ana Ćirović
- Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, Belgrade, 11000, Serbia; Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, Belgrade, 11000, Serbia.
| | - Dimitrije Nikolić
- Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, Belgrade, 11000, Serbia; University Children's Hospital, Tirsova 10, Belgrade, Serbia.
| | - Ana Ivanovski
- Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, Belgrade, 11000, Serbia.
| | - Petar Ivanovski
- Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, Belgrade, 11000, Serbia.
| |
Collapse
|
4
|
Boretti A. Reviewing the association between aluminum adjuvants in the vaccines and autism spectrum disorder. J Trace Elem Med Biol 2021; 66:126764. [PMID: 33930617 DOI: 10.1016/j.jtemb.2021.126764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/19/2021] [Accepted: 04/22/2021] [Indexed: 01/21/2023]
Abstract
The manuscript reviews the association between aluminum adjuvants (AlAd) in vaccines and autism spectrum disorder (ASD). Aluminum (Al) is neurotoxic. Infants who have received AlAd in vaccines show a higher rate of ASD. The behavior of mice changes with Al injection. Patients suffering from ASD have higher concentrations of Al in their brains. Thus, AlAd is an etiologic factor in ASD. Immune efficacy led to the use of the AlAd in vaccines; however, the safety of those who are vaccinated with such vaccines has not been considered. The mechanisms of action of AlAd and the pharmacodynamics of injected AlAd used in vaccines are not well-characterized. The association between aluminum adjuvants in the vaccines and autism spectrum disorder is suggested by multiple lines of evidence.
Collapse
Affiliation(s)
- Alberto Boretti
- Prince Mohammad Bin Fahd University, P.O. Box 1664, Al Khobar, 31952, Saudi Arabia.
| |
Collapse
|
5
|
Dórea JG. Neurotoxic effects of combined exposures to aluminum and mercury in early life (infancy). ENVIRONMENTAL RESEARCH 2020; 188:109734. [PMID: 32544722 DOI: 10.1016/j.envres.2020.109734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Aluminum and mercury are environmentally ubiquitous. Individually they are both neurotoxic elements with shared neuro-pathogenic pathways: oxidative stress, altered neurotransmission, and disruption of the neuroendocrine and immune systems. In the infant, Al and Hg differ in type of exposure, absorption, distribution (brain access), and metabolism. In environmentally associated exposure (breast milk and infant formulas) their co-occurrences fluctuate randomly, but in Thimerosal-containing vaccines (TCVs) they occur combined in a proprietary ratio; in these cases, low-doses of Thimerosal-ethylmercury (EtHg) and adjuvant-Al present the most widespread binary mixture in less developed countries. Although experimental studies at low doses of the binary Hg and Al mixture are rare, when studied individually they have been shown to affect neurological outcomes negatively. In invitro systems, comparative neurotoxicity between Al and Hg varies in relation to the measured parameters but seems less for Al than for Hg. While neurotoxicity of environmental Hg (mainly fish methyl-Hg, MeHg) is associated with neurobehavioral outcomes in children, environmental Al is not associated, except in certain clinical conditions. Therefore, the issues of their neurotoxic effects (singly or combined) are discussed. In the infant (up to six months) the organic-Hg and Al body burdens from a full TCV schedule are estimated to reach levels higher than that originating from breastfeeding or from high aluminum soy-based formulas. Despite worldwide exposure to both Al and Hg (inorganic Hg, MeHg, and Thimerosal/EtHg), our knowledge on this combined exposure is insufficient to predict their combined neurotoxic effects (and with other co-occurring neurotoxicants).
Collapse
Affiliation(s)
- José G Dórea
- Universidade de Brasília, Brasília, 70919-970, DF, Brazil.
| |
Collapse
|