1
|
Gilbert MJH, Hardison EA, Farrell AP, Eliason EJ, Anttila K. Measuring maximum heart rate to study cardiac thermal performance and heat tolerance in fishes. J Exp Biol 2024; 227:jeb247928. [PMID: 39450710 DOI: 10.1242/jeb.247928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The thermal sensitivity of heart rate (fH) in fishes has fascinated comparative physiologists for well over a century. We now know that elevating fH is the primary mechanism through which fishes increase convective oxygen delivery during warming to meet the concomitant rise in tissue oxygen consumption. Thus, limits on fH can constrain whole-animal aerobic metabolism. In this Review, we discuss an increasingly popular methodology to study these limits, the measurement of pharmacologically induced maximum fH (fH,max) during acute warming of an anaesthetized fish. During acute warming, fH,max increases exponentially over moderate temperatures (Q10∼2-3), but this response is blunted with further warming (Q10∼1-2), with fH,max ultimately reaching a peak (Q10≤1) and the heartbeat becoming arrhythmic. Because the temperatures at which these transitions occur commonly align with whole-animal optimum and critical temperatures (e.g. aerobic scope and the critical thermal maximum), they can be valuable indicators of thermal performance. The method can be performed simultaneously on multiple individuals over a few hours and across a broad size range (<1 to >6000 g) with compact equipment. This simplicity and high throughput make it tractable in lab and field settings and enable large experimental designs that would otherwise be impractical. As with all reductionist approaches, the method does have limitations. Namely, it requires anaesthesia and pharmacological removal of extrinsic cardiac regulation. Nonetheless, the method has proven particularly effective in the study of patterns and limits of thermal plasticity and holds promise for helping to predict and mitigate outcomes of environmental change.
Collapse
Affiliation(s)
- Matthew J H Gilbert
- Institute of Arctic Biology and Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Emily A Hardison
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Anthony P Farrell
- Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Katja Anttila
- University of Turku, Department of Biology, 20014 Turku, Finland
| |
Collapse
|
2
|
Sandrelli RM, Gamperl AK. The upper temperature and hypoxia limits of Atlantic salmon (Salmo salar) depend greatly on the method utilized. J Exp Biol 2023; 226:jeb246227. [PMID: 37622446 PMCID: PMC10560559 DOI: 10.1242/jeb.246227] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
In this study, Atlantic salmon were: (i) implanted with heart rate (fH) data storage tags (DSTs), pharmacologically stimulated to maximum fH, and warmed at 10°C h-1 (i.e. tested using a 'rapid screening protocol'); (ii) fitted with Doppler® flow probes, recovered in respirometers and given a critical thermal maximum (CTmax) test at 2°C h-1; and (iii) implanted with fH DSTs, recovered in a tank with conspecifics for 4 weeks, and had their CTmax determined at 2°C h-1. Fish in respirometers and those free-swimming were also exposed to a stepwise decrease in water oxygen level (100% to 30% air saturation) to determine the oxygen level at which bradycardia occurred. Resting fH was much lower in free-swimming fish than in those in respirometers (∼49 versus 69 beats min-1) and this was reflected in their scope for fH (∼104 versus 71 beats min-1) and CTmax (27.7 versus 25.9°C). Further, the Arrhenius breakpoint temperature and temperature at peak fH for free-swimming fish were considerably greater than for those tested in the respirometers and given a rapid screening protocol (18.4, 18.1 and 14.6°C; and 26.5, 23.2 and 20.2°C, respectively). Finally, the oxygen level at which bradycardia occurred was significantly higher in free-swimming salmon than in those in respirometers (∼62% versus 53% air saturation). These results: highlight the limitations of some lab-based methods of determining fH parameters and thermal tolerance in fishes; and suggest that scope for fH may be a more reliable and predictive measure of a fish's upper thermal tolerance than their peak fH.
Collapse
Affiliation(s)
- Rebeccah M. Sandrelli
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St John's, NL, Canada, A1C 5S7
| | - A. Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St John's, NL, Canada, A1C 5S7
| |
Collapse
|
3
|
Gamperl AK, Thomas AL, Syme DA. Can temperature-dependent changes in myocardial contractility explain why fish only increase heart rate when exposed to acute warming? J Exp Biol 2022; 225:274498. [PMID: 35076075 PMCID: PMC8920037 DOI: 10.1242/jeb.243152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/20/2022] [Indexed: 11/21/2022]
Abstract
Fish increase heart rate (fH), not stroke volume (VS), when acutely warmed as a way to increase cardiac output (Q). To assess whether aspects of myocardial function may have some basis in determining temperature-dependent cardiac performance, we measured work and power (shortening, lengthening and net) in isolated segments of steelhead trout (Oncorhynchus mykiss) ventricular muscle at the fish's acclimation temperature (14°C), and at 22°C, when subjected to increased rates of contraction (30–105 min−1, emulating increased fH) and strain amplitude (8–14%, mimicking increased VS). At 22°C, shortening power (indicative of Q) increased in proportion to fH, and the work required to re-lengthen (stretch) the myocardium (fill the heart) was largely independent of fH. In contrast, the increase in shortening power was less than proportional when strain was augmented, and lengthening work approximately doubled when strain was increased. Thus, the derived relationships between fH, strain and myocardial shortening power and lengthening work, suggest that increasing fH would be preferable as a mechanism to increase Q at high temperatures, or in fact may be an unavoidable response given constraints on muscle mechanics as temperatures rise. Interestingly, at 14°C, lengthening work increased substantially at higher fH, and the duration of lengthening (i.e. diastole) became severely constrained when fH was increased. These data suggest that myocardial contraction/twitch kinetics greatly constrain maximal fH at cool temperatures, and may underlie observations that fish elevate VS to an equal or greater extent than fH to meet demands for increased Q at lower temperatures. Summary: Myocardial contraction and twitch kinetics provide mechanistic explanations as to why heart rate, but not stroke volume, increases in fish with temperature, and why maximal heart rate is constrained at cool/cold temperatures.
Collapse
Affiliation(s)
- A Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL. A1C 5S7, Canada
| | - Alexander L Thomas
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL. A1C 5S7, Canada
| | - Douglas A Syme
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
4
|
Digital RNA-seq analysis of the cardiac transcriptome response to thermal stress in turbot Scophthalmus maximus. J Therm Biol 2021; 104:103141. [DOI: 10.1016/j.jtherbio.2021.103141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/03/2021] [Accepted: 11/26/2021] [Indexed: 11/19/2022]
|
5
|
Crossley DA, Stieglitz JD, Benetti DD, Grosell M. The effects of acute temperature change and digestive status on in situ cardiac function in mahi-mahi (Coryphaena hippurus). Comp Biochem Physiol A Mol Integr Physiol 2021; 255:110915. [PMID: 33621645 DOI: 10.1016/j.cbpa.2021.110915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/25/2022]
Abstract
In this study, we investigated the effect of acute increases in temperature on cardiovascular function of mahi-mahi (Coryphaena hippurus). We also describe, for the first time, an artery that supplies the gastrointestinal tract that originates from the fourth branchial artery. We used vascular casting to verify the anatomical location of this unique celiaco-mesenteric artery. We predicted that blood flow in this vessel would be correlated with the digestive state of the animal. Increasing water temperature from 25.0 to 30.5 °C resulted in a linear increase in heart rate (fH) from 165 ± 4 beats∙min-1to 232 ± 7 beats∙min-1. Over this temperature range, fH strongly correlated with water temperature (R2 = 0.79). At 31 °C fH no longer correlated with water temperature, and at 34 °C fH had dropped to 114 ± 19 beats∙min-1. Furthermore, we found that mahi are capable of maintaining constant cardiac output over a temperature range from 25 to 31 °C. Cardiac function appeared to be compromised at temperatures >31 °C. In fed anesthetized fish, blood flow was pulsatile in the celiaco-mesenteric artery and was not in fasted fish. In fed fish, blood flow in the left celiaco-mesenteric artery was 1.99 ± 0.78 ml·min-1·kg-1 compared to the total cardiac output of 168.6 ± 12.7 ml·min-1·kg-1. The data suggest that mahi can differentially regulate gastric blood flow based on feeding state, which may explain the high digestive efficiency and very high growth rates of these pelagic predators.
Collapse
Affiliation(s)
- Dane A Crossley
- Department of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, TX 76203, United States.
| | - John D Stieglitz
- Department of Marine Ecosystems and Society, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149-1098, United States
| | - Daniel D Benetti
- Department of Marine Ecosystems and Society, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149-1098, United States
| | - Martin Grosell
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149-1098, United States
| |
Collapse
|
6
|
Abstract
In the 1950s, Arthur C. Guyton removed the heart from its pedestal in cardiovascular physiology by arguing that cardiac output is primarily regulated by the peripheral vasculature. This is counterintuitive, as modulating heart rate would appear to be the most obvious means of regulating cardiac output. In this Review, we visit recent and classic advances in comparative physiology in light of this concept. Although most vertebrates increase heart rate when oxygen demands rise (e.g. during activity or warming), experimental evidence suggests that this tachycardia is neither necessary nor sufficient to drive a change in cardiac output (i.e. systemic blood flow, Q̇ sys) under most circumstances. Instead, Q̇ sys is determined by the interplay between vascular conductance (resistance) and capacitance (which is mainly determined by the venous circulation), with a limited and variable contribution from heart function (myocardial inotropy). This pattern prevails across vertebrates; however, we also highlight the unique adaptations that have evolved in certain vertebrate groups to regulate venous return during diving bradycardia (i.e. inferior caval sphincters in diving mammals and atrial smooth muscle in turtles). Going forward, future investigation of cardiovascular responses to altered metabolic rate should pay equal consideration to the factors influencing venous return and cardiac filling as to the factors dictating cardiac function and heart rate.
Collapse
Affiliation(s)
- William Joyce
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark .,Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Tobias Wang
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
7
|
Safi H, Zhang Y, Schulte PM, Farrell AP. The effect of acute warming and thermal acclimation on maximum heart rate of the common killifish Fundulus heteroclitus. JOURNAL OF FISH BIOLOGY 2019; 95:1441-1446. [PMID: 31613985 DOI: 10.1111/jfb.14159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Common killifish Fundulus heteroclitus were acclimated to ecologically relevant temperatures (5, 15 and 33°C) and their maximum heart rate (fHmax ) was measured at each acclimation temperature during an acute warming protocol. Acclimation to 33°C increased peak fHmax by up to 32% and allowed the heart to beat rhythmically at a temperature 10°C higher when compared with acclimation to 5°C. Independent of acclimation temperature, peak fHmax occurred about 3°C cooler than the temperature that first produced cardiac arrhythmias. Thus, when compared with previously published values for the critical thermal maximum of F. heteroclitus, the temperature for peak fHmax was cooler and the temperature that first produced cardiac arrhythmias was similar to these critical thermal maxima. The considerable thermal plasticity of fHmax demonstrated in the present study is entirely consistent with eurythermal ecology of killifish, as shown previously for another eurythermal fish Gillichthys mirabilis.
Collapse
Affiliation(s)
- Hamid Safi
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yangfan Zhang
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patricia M Schulte
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony P Farrell
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Marchant JL, Farrell AP. Membrane and calcium clock mechanisms contribute variably as a function of temperature to setting cardiac pacemaker rate in zebrafish Danio rerio. JOURNAL OF FISH BIOLOGY 2019; 95:1265-1274. [PMID: 31429079 DOI: 10.1111/jfb.14126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Here, we show that heart rate in zebrafish Danio rerio is dependent upon two pacemaking mechanisms and it possesses a limited ability to reset the cardiac pacemaker with temperature acclimation. Electrocardiogram recordings, taken from individual, anaesthetised zebrafish that had been acclimated to 18, 23 or 28°C were used to follow the response of maximum heart rate (fHmax ) to acute warming from 18°C until signs of cardiac failure appeared (up to c. 40°C). Because fHmax was similar across the acclimation groups at almost all equivalent test temperatures, warm acclimation was limited to one significant effect, the 23°C acclimated zebrafish had a significantly higher (21%) peak fHmax and reached a higher (3°C) test temperature than the 18°C acclimated zebrafish. Using zatebradine to block the membrane hyperpolarisation-activated cyclic nucleotide-gated channels (HCN) and examine the contribution of the membrane clock mechanisms to cardiac pacemaking, f Hmax was significantly reduced (by at least 40%) at all acute test temperatures and significantly more so at most test temperatures for zebrafish acclimated to 28°C vs. 23°C. Thus, HCN channels and the membrane clock were not only important, but could be modified by thermal acclimation. Using a combination of ryanodine (to block sarcoplasmic calcium release) and thapsigargin (to block sarcoplasmic calcium reuptake) to examine the contribution of sarcoplasmic reticular handling of calcium and the calcium clock, f Hmax was again consistently reduced independent of the test temperature and acclimation temperature, but to a significantly lesser degree than zatebradine for zebrafish acclimated to both 28 and 18°C. Thus, the calcium clock mechanism plays an additional role in setting pacemaker activity that was independent of temperature. In conclusion, the zebrafish cardiac pacemaker has a limited temperature acclimation ability compared with known effects for other fishes and involves two pacemaking mechanisms, one of which was independent of temperature.
Collapse
Affiliation(s)
- James L Marchant
- Zoology Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony P Farrell
- Zoology Department, University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Ma KGL, Gamperl AK, Syme DA, Weber LP, Rodnick KJ. Echocardiography and electrocardiography reveal differences in cardiac hemodynamics, electrical characteristics, and thermal sensitivity between northern pike, rainbow trout, and white sturgeon. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 331:427-442. [PMID: 31385459 DOI: 10.1002/jez.2310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022]
Abstract
Doppler and B-mode ultrasonography and electrocardiography (ECG) were used to determine cardiac hemodynamics and electrical characteristics in 12°C-acclimated and metomidate-anesthetized northern pike, rainbow trout and white sturgeon (7-9 per species) at 12°C and 20°C, and at a comparable heart rate (fH , ~60 beats/min). Despite similar relative ventricle masses and cardiac output (Q), interspecific differences were observed at 12°C in fH , ventricular filling and ejection, stroke volume, the duration ECG intervals, and cardiac valve cross-sectional areas. Vis-a-fronte filling of the atrium due to ventricular contraction was observed in all species. However, biphasic ventricular filling (i.e., due to central venous pressure and then atrial contraction) was only observed in rainbow trout and white sturgeon. Changes in atrial and ventricular performance varied between the species as temperature increased from 12°C to 20°C. Rainbow trout had the highest thermal sensitivity for fH (Q10 = 3.73), which doubled Q, and the largest increase in transvalvular blood velocity during ventricular filling. Conversely, northern pike had the lowest Q10 for fH (1.58) and did not increase Q. At ~60 beats/min, the rainbow trout heart had the shortest period of electrical activity, which also resulted in the longest recovery period (TP interval) between successive beats. The QT interval at ~60 beats/min was also longer in the white sturgeon versus the other species. These results suggest that interspecific differences in fish cardiac hemodynamics may be related to cardiac morphology, the duration of electrical impulses through the heart, cardiac thermal sensitivity, and valve dimensions.
Collapse
Affiliation(s)
- Kathleen G L Ma
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - A Kurt Gamperl
- Department of Ocean Sciences and Biology, Memorial University, St. Johns, Newfoundland, Canada.,Department of Biology, Memorial University, St. Johns, Newfoundland, Canada
| | - Douglas A Syme
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Lynn P Weber
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kenneth J Rodnick
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho
| |
Collapse
|
10
|
Joyce W, White DW, Raven PB, Wang T. Weighing the evidence for using vascular conductance, not resistance, in comparative cardiovascular physiology. J Exp Biol 2019; 222:222/6/jeb197426. [DOI: 10.1242/jeb.197426] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
ABSTRACT
Vascular resistance and conductance are reciprocal indices of vascular tone that are often assumed to be interchangeable. However, in most animals in vivo, blood flow (i.e. cardiac output) typically varies much more than arterial blood pressure. When blood flow changes at a constant pressure, the relationship between conductance and blood flow is linear, whereas the relationship between resistance and blood flow is non-linear. Thus, for a given change in blood flow, the change in resistance depends on the starting point, whereas the attendant change in conductance is proportional to the change in blood flow regardless of the starting conditions. By comparing the effects of physical activity at different temperatures or between species – concepts at the heart of comparative cardiovascular physiology – we demonstrate that the difference between choosing resistance or conductance can be marked. We also explain here how the ratio of conductance in the pulmonary and systemic circulations provides a more intuitive description of cardiac shunt patterns in the reptilian cardiovascular system than the more commonly used ratio of resistance. Finally, we posit that, although the decision to use conductance or resistance should be made on a case-by-case basis, in most circumstances, conductance is a more faithful portrayal of cardiovascular regulation in vertebrates.
Collapse
Affiliation(s)
- William Joyce
- Department of Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| | - Daniel W. White
- School of Arts & Sciences, University of Houston-Victoria, Victoria, TX 77901, USA
| | - Peter B. Raven
- Department of Physiology and Anatomy, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Tobias Wang
- Department of Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
- Aarhus Institute of Advanced Sciences (AIAS), Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
11
|
Joyce W, Egginton S, Farrell AP, Crockett EL, O'Brien KM, Axelsson M. Exploring nature's natural knockouts: in vivo cardiorespiratory performance of Antarctic fishes during acute warming. ACTA ACUST UNITED AC 2018; 221:jeb.183160. [PMID: 29967219 DOI: 10.1242/jeb.183160] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/25/2018] [Indexed: 01/09/2023]
Abstract
We tested the hypothesis that blackfin icefish (Chaenocephalus aceratus), one of the six species in the family Channichthyidae (the icefishes) that do not express haemoglobin and myoglobin, lack regulatory cardiovascular flexibility during acute warming and activity. The experimental protocols were designed to optimize the surgical protocol and minimize stress. First, minimally invasive heart rate (fH) measurements were made during a thermal ramp until cardiac failure in C. aceratus and compared with those from the closely related red-blooded black rockcod (Notothenia coriiceps). Then, integrative cardiovascular adjustments were more extensively studied using flow probes and intravascular catheters in C. aceratus during acute warming (from 0 to 8°C) at rest and after imposed activity. Chaenocephalus aceratus had a lower routine fH than N. coriiceps (9 beats min-1 versus 14 beats min-1) and a lower peak fH during acute warming (38 beats min-1 versus 55 beats min-1) with a similar cardiac breakpoint temperature (13 and 14°C, respectively). Routine cardiac output (Q̇) for C. aceratus at ∼0°C was much lower (26.6 ml min-1 kg-1) than previously reported, probably because fish in the present study had a low fH (12 beats min-1) indicative of a high routine vagal tone and low stress. Chaenocephalus aceratus increased oxygen consumption during acute warming and with activity. Correspondingly, Q̇ increased considerably (maximally 86.3 ml min-1 kg-1), as did vascular conductance (5-fold). Thus, unlike earlier suggestions, these data provide convincing evidence that icefish can mount a well-developed cardiovascular regulation of heart rate, cardiac output and vascular conductance, and this regulatory capacity provides flexibility during acute warming.
Collapse
Affiliation(s)
- William Joyce
- Department of Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| | - Stuart Egginton
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Anthony P Farrell
- Department of Zoology, and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC 45, Canada
| | | | - Kristin M O'Brien
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775-7000, USA
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, 4139 90 Gothenburg, Sweden
| |
Collapse
|
12
|
Joyce W, Elsey RM, Wang T, Crossley DA. Maximum heart rate does not limit cardiac output at rest or during exercise in the American alligator (Alligator mississippiensis). Am J Physiol Regul Integr Comp Physiol 2018; 315:R296-R302. [DOI: 10.1152/ajpregu.00027.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In most vertebrates, increases in cardiac output result from increases in heart rate (fH) with little or no change in stroke volume (Vs), and maximum cardiac output (Q̇) is typically attained at or close to maximum fH. We therefore tested the hypothesis that increasing maximum fH may increase maximum Q̇. To this end, we investigated the effects of elevating fH with right atrial pacing on Q̇ in the American alligator ( Alligator mississippiensis) at rest and while swimming. During normal swimming, Q̇ increased entirely by virtue of a tachycardia (29 ± 1 to 40 ± 3 beats/min), whereas Vs remained stable. In both resting and swimming alligators, increasing fH with right atrial pacing resulted in a parallel decline in Vs that resulted in an unchanged cardiac output. In swimming animals, this reciprocal relationship extended to supraphysiological fH (up to ~72 beats/min), which suggests that maximum fH does not limit maximum cardiac output and that fH changes are secondary to the peripheral factors (for example vascular capacitance) that determine venous return at rest and during exercise.
Collapse
Affiliation(s)
- William Joyce
- Department of Zoophysiology, Aarhus University, Aarhus, Denmark
| | - Ruth M. Elsey
- Louisiana Department of Wildlife and Fisheries, Rockefeller Wildlife Refuge, Grand Chenier, Louisiana
| | - Tobias Wang
- Department of Zoophysiology, Aarhus University, Aarhus, Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Dane A. Crossley
- Department of Biological Sciences, Developmental Integrative Biology Cluster, University of North Texas, Denton, Texas
| |
Collapse
|
13
|
Ekström A, Axelsson M, Gräns A, Brijs J, Sandblom E. Influence of the coronary circulation on thermal tolerance and cardiac performance during warming in rainbow trout. Am J Physiol Regul Integr Comp Physiol 2017; 312:R549-R558. [DOI: 10.1152/ajpregu.00536.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 11/22/2022]
Abstract
Thermal tolerance in fish may be related to an oxygen limitation of cardiac function. While the hearts of some fish species receive oxygenated blood via a coronary circulation, the influence of this oxygen supply on thermal tolerance and cardiac performance during warming remain unexplored. Here, we analyzed the effect in vivo of acute warming on coronary blood flow in adult sexually mature rainbow trout ( Onchorhynchus mykiss) and the consequences of chronic coronary ligation on cardiac function and thermal tolerance in juvenile trout. Coronary blood flow at 10°C was higher in females than males (0.56 ± 0.08 vs. 0.30 ± 0.08 ml·min−1·g ventricle−1), and averaged 0.47 ± 0.07 ml·min−1·g ventricle−1 across sexes. Warming increased coronary flow in both sexes until 14°C, at which it peaked and plateaued at 0.78 ± 0.1 and 0.61 ± 0.1 ml·min−1·g ventricle−1 in females and males, respectively. Thus, the scope for increasing coronary flow was 101% in males, but only 39% in females. Coronary-ligated juvenile trout exhibited elevated heart rate across temperatures, reduced Arrhenius breakpoint temperature for heart rate (23.0 vs. 24.6°C), and reduced upper critical thermal maximum (25.3 vs. 26.3°C). To further analyze the effects of coronary flow restriction on cardiac rhythmicity, electrocardiogram characteristics were determined before and after coronary occlusion in anesthetized trout. Occlusion resulted in reduced R-wave amplitude and an elevated S-T segment, indicating myocardial ischemia, while heart rate was unaffected. This suggests that the tachycardia in ligated trout across temperatures in vivo was mainly to compensate for reduced cardiac contractility to maintain cardiac output. Moreover, our findings show that coronary flow increases with warming in a sex-specific manner. This may improve whole animal thermal tolerance, presumably by sustaining cardiac oxygenation and contractility at high temperatures.
Collapse
Affiliation(s)
- Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden; and
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden; and
| | - Albin Gräns
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, Sweden
| | - Jeroen Brijs
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden; and
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden; and
| |
Collapse
|
14
|
|
15
|
Brijs J, Sandblom E, Dekens E, Näslund J, Ekström A, Axelsson M. Cardiac remodeling and increased central venous pressure underlie elevated stroke volume and cardiac output of seawater-acclimated rainbow trout. Am J Physiol Regul Integr Comp Physiol 2017; 312:R31-R39. [DOI: 10.1152/ajpregu.00374.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/11/2016] [Accepted: 11/23/2016] [Indexed: 11/22/2022]
Abstract
Substantial increases in cardiac output (CO), stroke volume (SV), and gastrointestinal blood flow are essential for euryhaline rainbow trout ( Oncorhyncus mykiss) osmoregulation in seawater. However, the underlying hemodynamic mechanisms responsible for these changes are unknown. By examining a range of circulatory and cardiac morphological variables of seawater- and freshwater-acclimated rainbow trout, the present study revealed a significantly higher central venous pressure (CVP) in seawater-acclimated trout (~0.09 vs. −0.02 kPa). This serves to increase cardiac end-diastolic volume in seawater and explains the elevations in SV (~0.41 vs. 0.27 ml/kg) and CO (~21.5 vs. 14.2 ml·min−1·kg−1) when compared with trout in freshwater. Furthermore, these hemodynamic modifications coincided with a significant increase in the proportion of compact myocardium, which may be necessary to compensate for the increased wall tension associated with a larger stroke volume. Following a temperature increase from 10 to 16.5°C, both acclimation groups exhibited similar increases in heart rate (Q10 of ~2), but SV tended to decrease in seawater-acclimated trout despite the fact that CVP was maintained in both groups. This resulted in CO of seawater- and freshwater-acclimated trout stabilizing at a similar level after warming (~26 ml·min−1·kg−1). The consistently higher CVP of seawater-acclimated trout suggests that factors other than compromised cardiac filling constrained the SV and CO of these individuals at high temperatures. The present study highlights, for the first time, the complex interacting effects of temperature and water salinity on cardiovascular responses in a euryhaline fish species.
Collapse
Affiliation(s)
- Jeroen Brijs
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Esmée Dekens
- Institute for Life Sciences and Chemistry, University of Applied Sciences, Utrecht, The Netherlands; and
| | - Joacim Näslund
- Faculty of Science, Department of Ecosystem Biology, University of South Bohemia, České Budějovice, Czech Republic
| | - Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
16
|
|
17
|
Callaghan NI, Tunnah L, Currie S, MacCormack TJ. Metabolic Adjustments to Short-Term Diurnal Temperature Fluctuation in the Rainbow Trout (Oncorhynchus mykiss). Physiol Biochem Zool 2016; 89:498-510. [DOI: 10.1086/688680] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Long-term hypoxia exposure alters the cardiorespiratory physiology of steelhead trout (Oncorhynchus mykiss), but does not affect their upper thermal tolerance. J Therm Biol 2016; 68:149-161. [PMID: 28797475 DOI: 10.1016/j.jtherbio.2016.03.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 11/24/2022]
Abstract
It has been suggested that exposure to high temperature or hypoxia may confer tolerance to the other oxygen-limited stressor (i.e., 'cross-tolerance'). Thus, we investigated if chronic hypoxia-acclimation (>3 months at 40% air saturation) improved the steelhead trout's critical thermal maximum (CTMax), or affected key physiological variables that could impact upper thermal tolerance. Neither CTMax (24.7 vs. 25.3°C) itself, nor oxygen consumption ( [Formula: see text] ), haematocrit, blood haemoglobin concentration, or heart rate differed between hypoxia- and normoxia-acclimated trout when acutely warmed. However, the cardiac output (Q̇) of hypoxia-acclimated fish plateaued earlier compared to normoxia-acclimated fish due to an inability to maintain stroke volume (SV), and this resulted in a ~50% lower maximum Q̇. Despite this reduced maximum cardiac function, hypoxia-acclimated trout were able to consume more O2 per volume of blood pumped as evidenced by the equivalent [Formula: see text] . These results provide additional evidence that long-term hypoxia improves tissue oxygen utilization, and that this compensates for diminished cardiac pumping capacity. The limited SV in hypoxia-acclimated trout in vivo was not associated with changes in cardiac morphology or in vitro maximum SV, but the affinity and density of myocardial ß-adrenoreceptors were lower and higher, respectively, than in normoxia-acclimated fish. These data suggest that alterations in ventricular filling dynamics or myocardial contractility constrain cardiac function in hypoxia-acclimated fish at high temperatures. Our results do not support (1) 'cross-tolerance' between high temperature and hypoxia when hypoxia is chronic, or (2) that cardiac function is always the determinant of temperature-induced changes in fish [Formula: see text] , and thus thermal tolerance, as suggested by the oxygen- and capacity-limited thermal tolerance (OCLTT) theory.
Collapse
|
19
|
Powell MD, Gamperl AK. Effects of Loma morhua (Microsporidia) infection on the cardiorespiratory performance of Atlantic cod Gadus morhua (L). JOURNAL OF FISH DISEASES 2016; 39:189-204. [PMID: 25683657 DOI: 10.1111/jfd.12352] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/04/2014] [Indexed: 06/04/2023]
Abstract
The microsporidian Loma morhua infects Atlantic cod (Gadus morhua) in the wild and in culture and results in the formation of xenomas within the gill filaments, heart and spleen. Given the importance of the two former organs to metabolic capacity and thermal tolerance, the cardiorespiratory performance of cod with a naturally acquired infection of Loma was measured during an acute temperature increase (2 °C h(-1)) from 10 °C to the fish's critical thermal maximum (CT(Max)). In addition, oxygen consumption and swimming performance were measured during two successive critical swimming speed (U(crit)) tests at 10 °C. While Loma infection had a negative impact on cod cardiac function at warm temperatures, and on metabolic capacity in both the CT(Max) and U(crit) tests (i.e. a reduction of 30-40%), it appears that the Atlantic cod can largely compensate for these Loma-induced cardiorespiratory limitations. For example, (i) CT(Max) (21.0 ± 0.3 °C) and U(crit) (~1.75 BL s(-1)) were very comparable to those reported in previous studies using uninfected fish from the same founder population; and (ii) our data suggest that tissue oxygen extraction, and potentially the capacity for anaerobic metabolism, is enhanced in fish infected with this microsporidian.
Collapse
Affiliation(s)
- M D Powell
- Norwegian Institute for Water Research, Bergen, Norway
| | - A K Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NF, Canada
| |
Collapse
|
20
|
Costa IASF, Hein TW, Secombes CJ, Gamperl AK. Recombinant interleukin-1β dilates steelhead trout coronary microvessels: effect of temperature and role of the endothelium, nitric oxide and prostaglandins. J Exp Biol 2015; 218:2269-78. [PMID: 26026045 PMCID: PMC4528702 DOI: 10.1242/jeb.119255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/12/2015] [Indexed: 01/22/2023]
Abstract
Interleukin (IL)-1β is associated with hypotension and cardiovascular collapse in mammals during heat stroke, and the mRNA expression of this pro-inflammatory cytokine increases dramatically in the blood of Atlantic cod (Gadus morhua) at high temperatures. These data suggest that release of IL-1β at high temperatures negatively impacts fish cardiovascular function and could be a primary determinant of upper thermal tolerance in this taxa. Thus, we measured the concentration-dependent response of isolated steelhead trout (Oncorhynchus mykiss) coronary microvessels (<150 μm in diameter) to recombinant (r) IL-1β at two temperatures (10 and 20°C). Recombinant IL-1β induced a concentration-dependent vasodilation with vessel diameter increasing by approximately 8 and 30% at 10(-8) and 10(-7) mol l(-1), respectively. However, this effect was not temperature dependent. Both vessel denudation and cyclooxygenase blockade (by indomethacin), but not the nitric oxide (NO) antagonist L-NIO, inhibited the vasodilator effect of rIL-1β. In contrast, the concentration-dependent dilation caused by the endothelium-dependent calcium ionophore A23187 was completely abolished by L-NIO and indomethacin, suggesting that both NO and prostaglandin signaling mechanisms exist in the trout coronary microvasculature. These data: (1) are the first to demonstrate a functional link between the immune and cardiovascular systems in fishes; (2) suggest that IL-1β release at high temperatures may reduce systemic vascular resistance, and thus, the capacity of fish to maintain blood pressure; and (3) provide evidence that both NO and prostaglandins play a role in regulating coronary vascular tone, and thus, blood flow.
Collapse
Affiliation(s)
- Isabel A S F Costa
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada A1C 5S7
| | - Travis W Hein
- Department of Surgery, College of Medicine, Texas A&M Health Science Center, Baylor Scott & White Health, Temple, TX 76508, USA
| | - Christopher J Secombes
- School of Biological Sciences, Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - A Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada A1C 5S7
| |
Collapse
|
21
|
Costa IASF, Hein TW, Gamperl AK. Cold-acclimation leads to differential regulation of the steelhead trout (Oncorhynchus mykiss) coronary microcirculation. Am J Physiol Regul Integr Comp Physiol 2015; 308:R743-54. [PMID: 25715834 DOI: 10.1152/ajpregu.00353.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 02/21/2015] [Indexed: 11/22/2022]
Abstract
The regulation of vascular resistance in fishes has largely been studied using isolated large conductance vessels, yet changes in tissue perfusion/vascular resistance are primarily mediated by the dilation/constriction of small arterioles. Thus we adapted mammalian isolated microvessel techniques for use in fish and examined how several agents affected the tone/resistance of isolated coronary arterioles (<150 μm ID) from steelhead trout (Oncorhynchus mykiss) acclimated to 1, 5, and 10°C. At 10°C, the vessels showed a concentration-dependent dilation to adenosine (ADE; 61 ± 8%), sodium nitroprusside (SNP; 35 ± 10%), and serotonin (SER; 27 ± 2%) (all values maximum responses). A biphasic response (mild contraction then dilation) was observed in vessels exposed to increasing concentrations of epinephrine (EPI; 34 ± 9% dilation) and norepinephrine (NE; 32 ± 7% dilation), whereas the effect was less pronounced with bradykinin (BK; 12.5 ± 3.5% constriction vs. 6 ± 6% dilation). Finally, a mild constriction was observed after exposure to acetylcholine (ACh; 6.5 ± 1.4%), while endothelin (ET)-1 caused a strong dose-dependent increase in tone (79 ± 5% constriction). Acclimation temperature had varying effects on the responsiveness of vessels. The dilations induced by EPI, ADE, SER, and SNP were reduced/eliminated at 5°C and/or 1°C as compared with 10°C. In contrast, acclimation to 5 and 1°C increased the maximum constriction induced by ACh and the sensitivity of vessels to ET-1 (but not the maximum response) at 1°C was greater. Acclimation temperature had no effect on the response to NE, and responsiveness to BK was variable.
Collapse
Affiliation(s)
- Isabel A S F Costa
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Canada; and
| | - Travis W Hein
- Department of Surgery, College of Medicine, Texas A&M Health Science Center, Baylor Scott & White Health, Temple, Texas
| | - A K Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Canada; and
| |
Collapse
|
22
|
Ekström A, Jutfelt F, Sandblom E. Effects of autonomic blockade on acute thermal tolerance and cardioventilatory performance in rainbow trout, Oncorhynchus mykiss. J Therm Biol 2014; 44:47-54. [PMID: 25086973 DOI: 10.1016/j.jtherbio.2014.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
Abstract
Predicted future increases in global temperature may impose challenges for ectothermic animals like fish, but the physiological mechanisms determining the critical thermal maximum (CTmax) are not well understood. One hypothesis suggests that impaired cardiac performance, limited by oxygen supply, is an important underlying mechanism. Since vagal bradycardia is suggested to improve cardiac oxygenation and adrenergic stimulation may improve cardiac contractility and protect cardiac function at high temperatures, we predicted that pharmacological blockade of cardiac autonomic control would lower CTmax. Rainbow trout was instrumented with a flow probe and a ventilation catheter for cardioventilatory recordings and exposed to an acute thermal challenge until CTmax following selective pharmacological blockade of muscarinic or β-adrenergic receptors. Contrary to our prediction, CTmax (~26°C) was unchanged between treatments. While β-adrenergic blockade reduced heart rate it did not impair cardiac stroke volume across temperatures suggesting that compensatory increases in cardiac filling pressure may serve to maintain cardiac output. While warming resulted in significant tachycardia and increased cardiac output, a high cholinergic tone on the heart was observed at temperatures approaching CTmax. This may represent a mechanism to maintain scope for heart rate and possibly to improve myocardial contractility and oxygen supply at high temperatures. This is the first study evaluating the importance of autonomic cardiac control on thermal tolerance in fish. While no effects on CTmax were observed, this study raises important questions about the underlying mechanisms determining thermal tolerance limits in ectothermic animals.
Collapse
Affiliation(s)
- Andreas Ekström
- Department of Biology and Environmental Sciences, University of Gothenburg, Gothenburg Sweden.
| | - Fredrik Jutfelt
- Department of Biology and Environmental Sciences, University of Gothenburg, Gothenburg Sweden; The Sven Lovén Centre for Marine Sciences, Kristineberg, Fiskebäckskil, Sweden
| | - Erik Sandblom
- Department of Biology and Environmental Sciences, University of Gothenburg, Gothenburg Sweden
| |
Collapse
|
23
|
Anttila K, Eliason EJ, Kaukinen KH, Miller KM, Farrell AP. Facing warm temperatures during migration: cardiac mRNA responses of two adult Oncorhynchus nerka populations to warming and swimming challenges. JOURNAL OF FISH BIOLOGY 2014; 84:1439-1456. [PMID: 24684400 DOI: 10.1111/jfb.12367] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/31/2014] [Indexed: 06/03/2023]
Abstract
The main findings of the current study were that exposing adult sockeye salmon Onchorhynchus nerka to a warm temperature that they regularly encounter during their river migration induced a heat shock response at an mRNA level, and this response was exacerbated with forced swimming. Similar to the heat shock response, increased immune defence-related responses were also observed after warm temperature treatment and with a swimming challenge in two different populations (Chilko and Nechako), but with some important differences. Microarray analyses revealed that 347 genes were differentially expressed between the cold (12-13° C) and warm (18-19° C) treated fish, with stress response (GO:0006950) and response to fungus (GO:0009620) elevated with warm treatment, while expression for genes involved in oxidative phosphorylation (GO:0006119) and electron transport chain (GO:0022900) elevated for cold-treated fish. Analysis of single genes with real-time quantitative PCR revealed that temperature had the most significant effect on mRNA expression levels, with swimming and population having secondary influences. Warm temperature treatment for the Chilko population induced expression of heat shock protein (hsp) 90α, hsp90β and hsp30 as well as interferon-inducible protein. The Nechako population, which is known to have a narrower thermal tolerance window than the Chilko population, showed even more pronounced stress responses to the warm treatment and there was significant interaction between population and temperature treatment for hsp90β expression. Moreover, significant interactions were noted between temperature treatment and swimming challenge for hsp90α and hsp30, and while swimming challenge alone increased expression of these hsps, the expression levels were significantly elevated in warm-treated fish swum to exhaustion. In conclusion, it seems that adult O. nerka currently encounter conditions that induce several cellular defence mechanisms during their once-in-the-lifetime migration. As river temperatures continue to increase, it remains to be seen whether or not these cellular defences provide sufficient protection for all O. nerka populations.
Collapse
Affiliation(s)
- K Anttila
- Department of Biology, Section of Animal Physiology, University of Turku, FI-20014, Turku, Finland
| | | | | | | | | |
Collapse
|
24
|
Sidhu R, Anttila K, Farrell AP. Upper thermal tolerance of closely related Danio species. JOURNAL OF FISH BIOLOGY 2014; 84:982-995. [PMID: 24689673 DOI: 10.1111/jfb.12339] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 01/09/2014] [Indexed: 06/03/2023]
Abstract
The main finding of this study was that measuring maximum heart rate during incremental warming was an effective tool to estimate upper thermal limits in three small cyprinid Danio species, which differed significantly. Arrhenius breakpoint temperature for maximum heart rate, purportedly an index of optimum temperature, was 21·2 ± 0·4, 20·1 ± 0·4 and 18·9 ± 0·8° C (mean ± s.e.) for zebrafish Danio rerio, pearl danio Danio albolineatus and glowlight danio Danio choprae, respectively. The temperature where cardiac arrhythmias were first induced during warming (T(arr)) was 36·6 ± 0·7, 36·9 ± 0·8 and 33·2 ± 0·8° C (mean ± s.e.) and critical thermal maximum (T(Cm)) was 39·9 ± 0·1, 38·9 ± 0·1 and 37·2 ± 0·1° C (mean ± s.e.) for D. rerio, D. albolineatus and D. choprae, respectively. The finding that T(arr) was consistently 3-4° C lower than T(Cm) suggests that collapse of the cardiac life support system may be a critical trigger for upper temperature tolerance. The upper thermal limits established here, which correlate well with a broad natural environmental temperature range for D. rerio and a narrow one for D. choprae, suggest that upper thermal tolerance may be a genetic trait even among closely related species acclimated to common temperatures.
Collapse
Affiliation(s)
- R Sidhu
- Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4 Canada
| | | | | |
Collapse
|
25
|
Rodnick KJ, Gamperl AK, Nash GW, Syme DA. Temperature and sex dependent effects on cardiac mitochondrial metabolism in Atlantic cod (Gadus morhua L.). J Therm Biol 2014; 44:110-8. [PMID: 25086981 DOI: 10.1016/j.jtherbio.2014.02.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 02/09/2014] [Accepted: 02/10/2014] [Indexed: 11/15/2022]
Abstract
To test the hypothesis that impaired mitochondrial respiration limits cardiac performance at warm temperatures, and examine if any effect(s) are sex-related, the consequences of high temperature on cardiac mitochondrial oxidative function were examined in 10°C acclimated, sexually immature, male and female Atlantic cod. Active (State 3) and uncoupled (States 2 and 4) respiration were measured in isolated ventricular mitochondria at 10, 16, 20, and 24°C using saturating concentrations of malate and pyruvate, but at a submaximal (physiological) level of ADP (200µM). In addition, citrate synthase (CS) activity was measured at these temperatures, and mitochondrial respiration and the efficiency of oxidative phosphorylation (P:O ratio) were determined at [ADP] ranging from 25-200µM at 10 and 20°C. Cardiac morphometrics and mitochondrial respiration at 10°C, and the thermal sensitivity of CS activity (Q10=1.51), were all similar between the sexes. State 3 respiration at 200µM ADP increased gradually in mitochondria from females between 10 and 24°C (Q10=1.48), but plateaued in males above 16°C, and this resulted in lower values in males vs. females at 20 and 24°C. At 10°C, State 4 was ~10% of State 3 values in both sexes [i.e. a respiratory control ratio (RCR) of ~10] and P:O ratios were approximately 1.5. Between 20 and 24°C, State 4 increased more than State 3 (by ~70 vs. 14%, respectively), and this decreased RCR to ~7.5. The P:O ratio was not affected by temperature at 200μM ADP. However, (1) the sensitivity of State 3 respiration to increasing [ADP] (from 25 to 200μM) was reduced at 20 vs. 10°C in both sexes (Km values 105±7 vs. 68±10μM, respectively); and (2) mitochondria from females had lower P:O values at 25 vs. 100μM ADP at 20°C, whereas males showed a similar effect at 10°C but a much more pronounced effect at 20°C (P:O 1.05 at 25μM ADP vs. 1.78 at 100μMADP). In summary, our results demonstrate several sex-related differences in ventricular mitochondrial function in Atlantic cod, and suggest that myocardial oxidative function and possibly phosphorylation efficiency may be limited at temperatures of 20°C or above, particularly in males. These observations could partially explain why cardiac function in Atlantic cod plateaus just below this species׳ critical thermal maximum (~22°C) and may contribute to yet unidentified sex differences in thermal tolerance and swimming performance.
Collapse
Affiliation(s)
- Kenneth J Rodnick
- Department of Biological Sciences, Idaho State University, 921 South 8th Avenue, Mail Stop 8007, Pocatello, ID 83209-8007, USA.
| | - A Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John׳s, NL, Canada A1C 5S7
| | - Gordon W Nash
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John׳s, NL, Canada A1C 5S7
| | - Douglas A Syme
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| |
Collapse
|
26
|
Wilson CM, Stecyk JAW, Couturier CS, Nilsson GE, Farrell AP. Phylogeny and effects of anoxia on hyperpolarization-activated cyclic nucleotide-gated channel gene expression in the heart of a primitive chordate, the Pacific hagfish (Eptatretus stoutii). ACTA ACUST UNITED AC 2013; 216:4462-72. [PMID: 23997200 DOI: 10.1242/jeb.094912] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aneural heart of the Pacific hagfish, Eptatretus stoutii, varies heart rate fourfold during recovery from anoxia. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which play an important role in establishing the pacemaker rate of vertebrate hearts, were postulated to be present in this ancestral vertebrate heart, and it was also theorized that changes in hagfish heart rate with oxygen availability involved altered HCN expression. Partial gene cloning revealed six HCN isoforms in the hagfish heart. Hagfish representatives of HCN2, HCN3 and HCN4 were discovered, with HCN2 and HCN3 existing as isoforms designated as HCN2a, HCN2b, HCN3a, two paralogs of HCN3b, and HCN3c. Phylogenetic analysis revealed HCN3b and HCN3c to be ancestral, followed by HCN3a, HCN4 and HCN2. Moreover, HCN3a expression was dominant in both the atrial and ventricular chambers, suggesting that the HCN4 dominance in adult mammalian hearts appeared after hagfish divergence. HCN expression was higher in the atrium than in the ventricle, as might be expected given that atrial beating rate is known to be faster than the ventricular rate. In addition, mRNA expression under normoxic conditions was compared with that following 24 h of anoxia, and either a 2-h or 36-h recovery in normoxic water. In the ventricle, anoxia decreased HCN3a but not HCN4 expression. In contrast, atrial HCN3a expression significantly increased following 2 h of recovery, before returning to control levels following 36 h of recovery, possibly contributing to heart rate changes previously observed under these conditions.
Collapse
Affiliation(s)
- Christopher M Wilson
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | | | | | | | | |
Collapse
|
27
|
Syme DA, Gamperl AK, Nash GW, Rodnick KJ. Increased ventricular stiffness and decreased cardiac function in Atlantic cod (Gadus morhua) at high temperatures. Am J Physiol Regul Integr Comp Physiol 2013; 305:R864-76. [PMID: 23883672 DOI: 10.1152/ajpregu.00055.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We employed the work loop method to study the ability of ventricular and atrial trabeculae from Atlantic cod to sustain power production during repeated contractions at acclimation temperatures (10°C) and when acutely warmed (20°C). Oxygen tension (Po2) was lowered from 450 to 34% air saturation to augment the thermal stress. Preparations worked under conditions simulating either a large stroke volume (35 contractions/min rate, 8-12% muscle strain) or a high heart rate (70 contractions/min, 2-4% strain), with power initially equal under both conditions. The effect of declining Po2 on power was similar under both conditions but was temperature and tissue dependent. In ventricular trabeculae at 10°C (and atria at 20°C), shortening power declined across the full range of Po2 studied, whereas the power required to lengthen the muscle was unaffected. Conversely, in ventricular trabeculae at 20°C, there was no decline in shortening power but an increase in lengthening power when Po2 fell below 100% air saturation. Finally, when ventricular trabeculae were paced at rates of up to 115 contractions/min at 20°C (vs. the maximum of 70 contractions/min in vivo), they showed marked increases in both shortening and lengthening power. Our results suggest that although elevated heart rates may not impair ventricular power as they commonly do isometric force, limited atrial power and the increased work required to expand the ventricle during diastole may compromise ventricular filling and hence, stroke volume in Atlantic cod at warm temperatures. Neither large strains nor high contraction rates convey an apparent advantage in circumventing this.
Collapse
Affiliation(s)
- Douglas A Syme
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
28
|
Currie S, Ahmady E, Watters M, Perry S, Gilmour K. Fish in hot water: Hypoxaemia does not trigger catecholamine mobilization during heat shock in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol A Mol Integr Physiol 2013; 165:281-7. [DOI: 10.1016/j.cbpa.2013.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 03/10/2013] [Accepted: 03/10/2013] [Indexed: 11/26/2022]
|
29
|
Becker TA, DellaValle B, Gesser H, Rodnick KJ. Limited effects of exogenous glucose during severe hypoxia and a lack of hypoxia-stimulated glucose uptake in isolated rainbow trout cardiac muscle. ACTA ACUST UNITED AC 2013; 216:3422-32. [PMID: 23685969 DOI: 10.1242/jeb.085688] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examined whether exogenous glucose affects contractile performance of electrically paced ventricle strips from rainbow trout under conditions known to alter cardiomyocyte performance, ion regulation and energy demands. Physiological levels of d-glucose did not influence twitch force development for aerobic preparations (1) paced at 0.5 or 1.1 Hz, (2) at 15 or 23°C, (3) receiving adrenergic stimulation or (4) during reoxygenation with or without adrenaline after severe hypoxia. Contractile responses to ryanodine, an inhibitor of Ca(2+) release from the sarcoplasmic reticulum, were also not affected by exogenous glucose. However, glucose did attenuate the fall in twitch force during severe hypoxia. Glucose uptake was assayed in non-contracting ventricle strips using 2-[(3)H] deoxy-d-glucose (2-DG) under aerobic and hypoxic conditions, at different incubation temperatures and with different inhibitors. Based upon a lack of saturation of 2-DG uptake and incomplete inhibition of uptake by cytochalasin B and d-glucose, 2-DG uptake was mediated by a combination of facilitated transport and simple diffusion. Hypoxia stimulated lactate efflux sixfold to sevenfold with glucose present, but did not increase 2-DG uptake or reduce lactate efflux in the presence of cytochalasin B. Increasing temperature (14 to 24°C) also did not increase 2-DG uptake, but decreasing temperature (14 to 4°C) reduced 2-DG uptake by 45%. In conclusion, exogenous glucose improves mechanical performance under hypoxia but not under any of the aerobic conditions applied. The extracellular concentration of glucose and cold temperature appear to determine and limit cardiomyocyte glucose uptake, respectively, and together may help define a metabolic strategy that relies predominantly on intracellular energy stores.
Collapse
Affiliation(s)
- Tracy A Becker
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209-8007, USA
| | | | | | | |
Collapse
|
30
|
Marks C, Eme J, Elsey RM, Crossley DA. Chronic hypoxic incubation blunts thermally dependent cholinergic tone on the cardiovascular system in embryonic American alligator (Alligator mississippiensis). J Comp Physiol B 2013; 183:947-57. [DOI: 10.1007/s00360-013-0755-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 03/04/2013] [Accepted: 03/15/2013] [Indexed: 11/29/2022]
|
31
|
Eliason EJ, Clark TD, Hinch SG, Farrell AP. Cardiorespiratory collapse at high temperature in swimming adult sockeye salmon. CONSERVATION PHYSIOLOGY 2013; 1:cot008. [PMID: 27293592 PMCID: PMC4732444 DOI: 10.1093/conphys/cot008] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 03/30/2013] [Accepted: 03/31/2013] [Indexed: 05/09/2023]
Abstract
Elevated summer river temperatures are associated with high in-river mortality in adult sockeye salmon (Oncorhynchus nerka) during their once-in-a-lifetime spawning migration up the Fraser River (British Columbia, Canada). However, the mechanisms underlying the decrease in whole-animal performance and cardiorespiratory collapse above optimal temperatures for aerobic scope (T opt) remain elusive for aquatic ectotherms. This is in part because all the relevant cardiorespiratory variables have rarely been measured directly and simultaneously during exercise at supra-optimal temperatures. Using the oxygen- and capacity-limited thermal tolerance hypothesis as a framework, this study simultaneously and directly measured oxygen consumption rate (MO2), cardiac output [Formula: see text], heart rate (f H), and cardiac stroke volume (V s), as well as arterial and venous blood oxygen status in adult sockeye salmon swimming at temperatures that bracketed T opt to elucidate possible limitations in oxygen uptake into the blood or internal delivery through the oxygen cascade. Above T opt, the decline in MO2max and aerobic scope was best explained by a cardiac limitation, triggered by reduced scope for f H. The highest test temperatures were characterized by a negative scope for f H, dramatic decreases in maximal [Formula: see text] and maximal V s, and cardiac dysrhythmias. In contrast, arterial blood oxygen content and partial pressure were almost insensitive to supra-optimal temperature, suggesting that oxygen delivery to and uptake by the gill were not a limiting factor. We propose that the high-temperature-induced en route mortality in migrating sockeye salmon may be at least partly attributed to physiological limitations in aerobic performance due to cardiac collapse via insufficient scope for f H. Furthermore, this improved mechanistic understanding of cardiorespiratory collapse at high temperature is likely to have broader application to other salmonids and perhaps other aquatic ectotherms.
Collapse
Affiliation(s)
- Erika J. Eliason
- Department of Zoology, University of British Columbia, Vancouver, Canada V6T 1Z4
- Corresponding author: Tel: +1 604 822 1969; fax: +1 604 822 9102.
| | - Timothy D. Clark
- Department of Zoology, University of British Columbia, Vancouver, Canada V6T 1Z4
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada V6T 1Z4
- Department of Forest Sciences, University of British Columbia, Vancouver, Canada V6T 1Z4
| | - Scott G. Hinch
- Department of Forest Sciences, University of British Columbia, Vancouver, Canada V6T 1Z4
| | - Anthony P. Farrell
- Department of Zoology, University of British Columbia, Vancouver, Canada V6T 1Z4
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada V6T 1Z4
| |
Collapse
|
32
|
Keen A, Gamperl AK. Blood oxygenation and cardiorespiratory function in steelhead trout (Oncorhynchus mykiss) challenged with an acute temperature increase and zatebradine-induced bradycardia. J Therm Biol 2012. [DOI: 10.1016/j.jtherbio.2012.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Casselman MT, Anttila K, Farrell AP. Using maximum heart rate as a rapid screening tool to determine optimum temperature for aerobic scope in Pacific salmon Oncorhynchus spp. JOURNAL OF FISH BIOLOGY 2012; 80:358-377. [PMID: 22268435 DOI: 10.1111/j.1095-8649.2011.03182.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The mean ±s.e. optimum temperature (T(opt)) for aerobic scope in juvenile coho salmon Oncorhynchus kisutch was determined to be 17·0 ± 0·7° C. The repeated measures protocol took 3 weeks to complete the T(opt) determination using 12 fish tested at five temperatures separated by 2° C increments. This experiment also demonstrated that the T(opt) was associated with maximum heart rate (f(H)) failing to maintain a Q(10) -related increase with temperature. When maximum f(H) was produced in anaesthetized fish with pharmacological stimulation and f(H) measured from electrocardiogram recordings during acute warming, the Arrhenius break temperature (ABT) for Q(10) discontinuities in maximum f(H) (mean ±s.e. = 17·1 ± 0·5° C for 15 ppm clove oil and 16·5 ± 0·2° C for 50 ppm MS-222) was statistically indistinguishable from the T(opt) measured using aerobic scope. Such a determination took only 3 days rather than 3 weeks. Therefore, it is proposed that determining ABT for discontinuities in maximum f(H) in anaesthetized fish presents itself as a valuable, high-throughput screening tool to assess T(opt) in fishes, a metric that has become recognized as being extremely valuable in fish biology and fisheries management.
Collapse
Affiliation(s)
- M T Casselman
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4 Canada.
| | | | | |
Collapse
|
34
|
Petersen L, Dzialowski E, Huggett D. The interactive effects of a gradual temperature decrease and long-term food deprivation on cardiac and hepatic blood flows in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol A Mol Integr Physiol 2011; 160:311-9. [DOI: 10.1016/j.cbpa.2011.04.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 04/29/2011] [Accepted: 04/29/2011] [Indexed: 01/08/2023]
|