1
|
Pertierra LR, Convey P, Barbosa A, Biersma EM, Cowan D, Diniz-Filho JAF, de Los Ríos A, Escribano-Álvarez P, Fraser CI, Fontaneto D, Greve M, Griffiths HJ, Harris M, Hughes KA, Lynch HJ, Ladle RJ, Liu XP, le Roux PC, Majewska R, Molina-Montenegro MA, Peck LS, Quesada A, Ronquillo C, Ropert-Coudert Y, Sancho LG, Terauds A, Varliero G, Vianna JA, Wilmotte A, Chown SL, Olalla-Tárraga MÁ, Hortal J. Advances and shortfalls in knowledge of Antarctic terrestrial and freshwater biodiversity. Science 2025; 387:609-615. [PMID: 39913585 DOI: 10.1126/science.adk2118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/08/2025] [Indexed: 04/23/2025]
Abstract
Antarctica harbors many distinctive features of life, yet much about the diversity and functioning of Antarctica's life remains unknown. Evolutionary histories and functional ecology are well understood only for vertebrates, whereas research on invertebrates is largely limited to species descriptions and some studies on environmental tolerances. Knowledge on Antarctic vegetation cover showcases the challenges of characterizing population trends for most groups. Recent community-level microbial studies have provided insights into the functioning of life at its limits. Overall, biotic interactions remain largely unknown across all groups, restricted to basic information on trophic level placement. Insufficient knowledge of many groups limits the understanding of ecological processes on the continent. Remedies for the current situation rely on identifying the caveats of each ecological discipline and finding targeted solutions. Such precise delimitation of knowledge gaps will enable a more aware, representative, and strategic systematic conservation planning of Antarctica.
Collapse
Affiliation(s)
- L R Pertierra
- Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Mostoles, Spain
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Millennium Institute of Biodiversity of Antarctic and sub-Antarctic Ecosystems (BASE), Santiago, Chile
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - P Convey
- Millennium Institute of Biodiversity of Antarctic and sub-Antarctic Ecosystems (BASE), Santiago, Chile
- British Antarctic Survey, Cambridge, UK
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - A Barbosa
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, MNCN-CSIC, Madrid, Spain
| | - E M Biersma
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - D Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - J A F Diniz-Filho
- Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
- National Institute for Science and Technology in Ecology, Evolution, and Biodiversity Conservation (INCT EECBio), Universidade Federal de Goiás, Goiânia, Brazil
| | - A de Los Ríos
- Departamento de Biogeoquimica y Ecologia Microbiana, Museo Nacional de Ciencias Naturales, MNCN-CSIC, Madrid, Spain
| | - P Escribano-Álvarez
- Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Mostoles, Spain
| | - C I Fraser
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - D Fontaneto
- Natural Research Council, Water Research Institute (CNR-IRSA), Verbania, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - M Greve
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | | | - M Harris
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | | | - H J Lynch
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA
| | - R J Ladle
- National Institute for Science and Technology in Ecology, Evolution, and Biodiversity Conservation (INCT EECBio), Universidade Federal de Goiás, Goiânia, Brazil
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
| | - X P Liu
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - P C le Roux
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - R Majewska
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | | | - L S Peck
- British Antarctic Survey, Cambridge, UK
| | - A Quesada
- Departamento de Biologia, Universidad Autónoma de Madrid, Cantoblanco, Spain
| | - C Ronquillo
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Y Ropert-Coudert
- Centre d'Etudes Biologiques de Chizé, La Rochelle Université, Villiers-en-Bois, France
| | - L G Sancho
- Departamento de Biologia Vegetal II, Universidad Complutense de Madrid, Madrid, Spain
| | - A Terauds
- Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water, Kingston, TAS, Australia
- Securing Antarctica's Environmental Future, Queensland University of Technology, Brisbane, QLD, Australia
| | - G Varliero
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - J A Vianna
- Millennium Institute of Biodiversity of Antarctic and sub-Antarctic Ecosystems (BASE), Santiago, Chile
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute Center for Genome Regulation, Santiago, Chile
| | - A Wilmotte
- Bios Research Unit, University of Liège, Liège, Belgium
| | - S L Chown
- Securing Antarctica's Environmental Future, Monash University, Melbourne, VIC, Australia
| | - M Á Olalla-Tárraga
- Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Mostoles, Spain
| | - J Hortal
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
- National Institute for Science and Technology in Ecology, Evolution, and Biodiversity Conservation (INCT EECBio), Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
2
|
Kristiansen SM, Leinaas HP, van Gestel CAM, Borgå K. Thermal adaptation affects the temperature-dependent toxicity of the insecticide imidacloprid to soil invertebrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173845. [PMID: 38871314 DOI: 10.1016/j.scitotenv.2024.173845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Terrestrial ectotherms are vulnerable to climate change since their biological rates depend on the ambient temperature. As temperature may interact with toxicant exposure, climate change may cause unpredictable responses to toxic stress. A population's thermal adaptation will impact its response to temperature change, but also to interactive effects from temperature and toxicants, but these effects are still not fully understood. Here, we assessed the combined effects of exposure to the insecticide imidacloprid across the temperatures 10-25 °C of two populations of the Collembola Hypogastrura viatica (Tullberg, 1872), by determining their responses in multiple life history traits. The con-specific populations differ considerably in thermal adaptations; one (arctic) is a temperature generalist, while the other (temperate) is a warm-adapted specialist. For both populations, the sub-lethal concentrations of imidacloprid became lethal with increasing temperature. Although the thermal maximum is higher for the warm-adapted population, the reduction in survival was stronger. Growth was reduced by imidacloprid in a temperature-dependent manner, but only at the adult life stage. The decrease in adult body size combined with the absence of an effect on the age at first reproduction suggests a selection on the timing of maturation. Egg production was reduced by imidacloprid in both populations, but the negative effect was only dependent on temperature in the warm-adapted population, with no effect at 10 °C, and decreases of 41 % at 15 °C, and 74 % at 20 °C. For several key traits, the population best adapted to utilize high temperatures was also the most sensitive to toxic stress at higher temperatures. It could be that by allocating more energy to faster growth, development, and reproduction at higher temperatures, the population had less energy for maintenance, making it more sensitive to toxic stress. Our findings demonstrate the need to take into account a population's thermal adaptation when assessing the interactive effects between temperature and other stressors.
Collapse
Affiliation(s)
- Silje M Kristiansen
- Department of Biosciences, University of Oslo, Blindernvn 31, 0316 Oslo, Norway.
| | - Hans P Leinaas
- Department of Biosciences, University of Oslo, Blindernvn 31, 0316 Oslo, Norway
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boolelaan 1108, 1081, HZ, Amsterdam, the Netherlands
| | - Katrine Borgå
- Department of Biosciences, University of Oslo, Blindernvn 31, 0316 Oslo, Norway
| |
Collapse
|
3
|
Christoffersen SN, Pertoldi C, Sørensen JG, Kristensen TN, Bruhn D, Bahrndorff S. Strong acclimation effect of temperature and humidity on heat tolerance of the Arctic collembolan Megaphorura arctica. J Exp Biol 2024; 227:jeb247394. [PMID: 38841875 DOI: 10.1242/jeb.247394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024]
Abstract
The Arctic is a highly variable environment in which extreme daily and seasonal temperature fluctuations can occur. With climate change, an increase in the occurrence of extreme high temperatures and drought events is expected. While the effects of cold and dehydration stress on polar arthropods are well studied in combination, little is known about how these species respond to the combined effects of heat and dehydration stress. In this paper, we investigated how the heat tolerance of the Arctic collembola Megaphorura arctica is affected by combinations of different temperature and humidity acclimation regimes under controlled laboratory conditions. The effect of acclimation temperature was complex and highly dependent on both acclimation time and temperature, and was found to have a positive, negative or no effect depending on experimental conditions. Further, we found marked effects of the interaction between temperature and humidity on heat tolerance, with lower humidity severely decreasing heat tolerance when the acclimation temperature was increased. This effect was more pronounced with increasing acclimation time. Lastly, the effect of acclimation on heat tolerance under a fluctuating temperature regime was dependent on acclimation temperature and time, as well as humidity levels. Together, these results show that thermal acclimation alone has moderate or no effect on heat tolerance, but that drought events, likely to be more frequent in the future, in combination with high temperature stress can have large negative impacts on heat tolerance of some Arctic arthropods.
Collapse
Affiliation(s)
| | - Cino Pertoldi
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg East, Denmark
- Aalborg Zoo, Mølleparkvej 63, 9000 Aalborg, Denmark
| | | | | | - Dan Bruhn
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg East, Denmark
| | - Simon Bahrndorff
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg East, Denmark
| |
Collapse
|
4
|
Graciani TS, Bandeira FO, Cardoso EJBN, Alves PRL. Influence of temperature and soil moisture on the toxic potential of clothianidin to collembolan Folsomia candida in a tropical field soil. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:82-92. [PMID: 36648631 DOI: 10.1007/s10646-023-02621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Climate change can alter the toxic effects of pesticides on soil invertebrates. However, the nature and magnitude of the influence of climatic factors on clothianidin impacts in tropical soils are still unknown. The influence of increasing atmospheric temperature and the reduction in soil moisture on the toxicity and risk of clothianidin (seed dressing formulation Inside FS®) were assessed through chronic toxicity tests with collembolans Folsomia candida in a tropical field soil (Entisol). The risk of clothianidin for collembolans was estimated using the Toxicity-Exposure Ratio (TER) approach. Organisms were exposed to increasing clothianidin concentrations at 20, 25 and 27 °C in combination with two soil moisture conditions (30 and 60% of the maximum water holding capacity-WHC). The effect of temperature and soil moisture content on clothianidin toxicity was verified through the number of F. candida juveniles generated after 28 days of exposure to the spiked soil. The toxicities estimated at 25 °C (EC50_30%WHC = 0.014 mg kg-1; EC50_60%WHC = 0.010 mg kg-1) and 27 °C (EC50_30%WHC = 0.006 mg kg-1; EC50_60%WHC = 0.007 mg kg-1) were 2.9-3.0-fold (25 °C) and 4.3-6.7-fold (27 °C) higher than those found at 20 °C (EC50_30%WHC = 0.040 mg kg-1; EC50_60%WHC = 0.030 mg kg-1), indicating that clothianidin toxicity increases with temperature. No clear influence of soil moisture content on clothianidin toxicity could be observed once the EC50 values estimated at 30% and 60% WHC, within the same temperature, did not significantly differ. A significant risk was detected in all temperatures and soil moisture scenarios studied, and the TER values indicate that the risk can increase with increasing temperatures. Our results revealed that temperature could overlap with soil moisture in regulating clothianidin toxicity and reinforce the importance of including climatic factors in the prospective risk assessment of pesticides.
Collapse
Affiliation(s)
| | - Felipe Ogliari Bandeira
- Department of Soil Science, Santa Catarina State University, Av. Luiz de Camões, 2090, 88520-000, Lages, SC, Brazil
| | | | - Paulo Roger Lopes Alves
- Federal University of Fronteira Sul, Av. Fernando Machado 108 E, 89802112, Chapecó, SC, Brazil.
| |
Collapse
|
5
|
Beet CR, Hogg ID, Cary SC, McDonald IR, Sinclair BJ. The Resilience of Polar Collembola (Springtails) in a Changing Climate. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100046. [PMID: 36683955 PMCID: PMC9846479 DOI: 10.1016/j.cris.2022.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/30/2022] [Accepted: 09/08/2022] [Indexed: 06/17/2023]
Abstract
Assessing the resilience of polar biota to climate change is essential for predicting the effects of changing environmental conditions for ecosystems. Collembola are abundant in terrestrial polar ecosystems and are integral to food-webs and soil nutrient cycling. Using available literature, we consider resistance (genetic diversity; behavioural avoidance and physiological tolerances; biotic interactions) and recovery potential for polar Collembola. Polar Collembola have high levels of genetic diversity, considerable capacity for behavioural avoidance, wide thermal tolerance ranges, physiological plasticity, generalist-opportunistic feeding habits and broad ecological niches. The biggest threats to the ongoing resistance of polar Collembola are increasing levels of dispersal (gene flow), increased mean and extreme temperatures, drought, changing biotic interactions, and the arrival and spread of invasive species. If resistance capacities are insufficient, numerous studies have highlighted that while some species can recover from disturbances quickly, complete community-level recovery is exceedingly slow. Species dwelling deeper in the soil profile may be less able to resist climate change and may not recover in ecologically realistic timescales given the current rate of climate change. Ultimately, diverse communities are more likely to have species or populations that are able to resist or recover from disturbances. While much of the Arctic has comparatively high levels of diversity and phenotypic plasticity; areas of Antarctica have extremely low levels of diversity and are potentially much more vulnerable to climate change.
Collapse
Affiliation(s)
- Clare R. Beet
- Te Aka Mātuatua - School of Science, Te Whare Wānanga o Waikato - University of Waikato, Hamilton, New Zealand
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
| | - Ian D. Hogg
- Te Aka Mātuatua - School of Science, Te Whare Wānanga o Waikato - University of Waikato, Hamilton, New Zealand
- Canadian High Arctic Research Station, Polar Knowledge Canada, Cambridge Bay, Nunavut, Canada
| | - S. Craig Cary
- Te Aka Mātuatua - School of Science, Te Whare Wānanga o Waikato - University of Waikato, Hamilton, New Zealand
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
| | - Ian R. McDonald
- Te Aka Mātuatua - School of Science, Te Whare Wānanga o Waikato - University of Waikato, Hamilton, New Zealand
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
| | - Brent J. Sinclair
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
6
|
Majeed MZ, Sayed S, Bo Z, Raza A, Ma CS. Bacterial Symbionts Confer Thermal Tolerance to Cereal Aphids Rhopalosiphum padi and Sitobion avenae. INSECTS 2022; 13:insects13030231. [PMID: 35323529 PMCID: PMC8949882 DOI: 10.3390/insects13030231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary This study assesses the putative association between the chronic and acute thermal tolerance of cereal aphids Rhopalosiphum padi (L.) and Sitobion avenae (F.) and the abundance of their bacterial symbionts. Thermal tolerance indices were determined for 5-day-old apterous aphid individuals and were associated with the aphid-specific and total bacterial symbionts’ gene abundance (copy numbers). The results show a significantly higher bacterial symbionts’ gene abundance in temperature-tolerant aphid individuals than the susceptible ones for both aphid species. Moreover, the gene abundance of total (16S rRNA) bacteria and most of the aphid-specific bacterial symbionts for both cereal aphid species were significantly and positively associated with their critical thermal maxima values. Overall, the findings of the study suggest the potential role of the bacterial symbionts of aphids in conferring thermal tolerance to their hosts. Abstract High-temperature events are evidenced to exert significant influence on the population performance and thermal biology of insects, such as aphids. However, it is not yet clear whether the bacterial symbionts of insects mediate the thermal tolerance traits of their hosts. This study is intended to assess the putative association among the chronic and acute thermal tolerance of two cereal aphid species, Rhopalosiphum padi (L.) and Sitobion avenae (F.), and the abundance of their bacterial symbionts. The clones of aphids were collected randomly from different fields of wheat crops and were maintained under laboratory conditions. Basal and acclimated CTmax and chronic thermal tolerance indices were measured for 5-day-old apterous aphid individuals and the abundance (gene copy numbers) of aphid-specific and total (16S rRNA) bacterial symbionts were determined using real-time RT-qPCR. The results reveal that R. padi individuals were more temperature tolerant under chronic exposure to 31 °C and also exhibited about 1.0 °C higher acclimated and basal CTmax values than those of S. avenae. Moreover, a significantly higher bacterial symbionts’ gene abundance was recorded in temperature-tolerant aphid individuals than the susceptible ones for both aphid species. Although total bacterial (16S rRNA) abundance per aphid was higher in S. avenae than R. padi, the gene abundance of aphid-specific bacterial symbionts was nearly alike for both of the aphid species. Nevertheless, basal and acclimated CTmax values were positively and significantly associated with the gene abundance of total symbiont density, Buchnera aphidicola, Serratia symbiotica, Hamilton defensa, Regiella insecticola and Spiroplasma spp. for R. padi, and with the total symbiont density, total bacteria (16S rRNA) and with all aphid-specific bacterial symbionts (except Spiroplasma spp.) for S. avenae. The overall study results corroborate the potential role of the bacterial symbionts of aphids in conferring thermal tolerance to their hosts.
Collapse
Affiliation(s)
- Muhammad Zeeshan Majeed
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Climate Change Biology Research Group, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Department of Entomology, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
- Correspondence: (M.Z.M.); (C.-S.M.)
| | - Samy Sayed
- Department of Science and Technology, University College-Ranyah, Taif University, B.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Zhang Bo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Climate Change Biology Research Group, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Ahmed Raza
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Cereal Fungal Diseases Research Group, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Department of Plant Pathology, Sub-Campus Depalpur, University of Agriculture, Okara 56300, Pakistan
| | - Chun-Sen Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Climate Change Biology Research Group, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Correspondence: (M.Z.M.); (C.-S.M.)
| |
Collapse
|
7
|
Glycoside hydrolases from the tunics of two Antarctic ascidians (Ascidia challengeri and Pyura bouvetensis) and the tropical species Phallusia nigra. Polar Biol 2021. [DOI: 10.1007/s00300-021-02837-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Bahrndorff S, Lauritzen JMS, Sørensen MH, Noer NK, Kristensen TN. Responses of terrestrial polar arthropods to high and increasing temperatures. J Exp Biol 2021; 224:238094. [PMID: 34424971 DOI: 10.1242/jeb.230797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Terrestrial arthropods in the Arctic and Antarctic are exposed to extreme and variable temperatures, and climate change is predicted to be especially pronounced in these regions. Available ecophysiological studies on terrestrial ectotherms from the Arctic and Antarctic typically focus on the ability of species to tolerate the extreme low temperatures that can occur in these regions, whereas studies investigating species plasticity and the importance of evolutionary adaptation to periodically high and increasing temperatures are limited. Here, we provide an overview of current knowledge on thermal adaptation to high temperatures of terrestrial arthropods in Arctic and Antarctic regions. Firstly, we summarize the literature on heat tolerance for terrestrial arthropods in these regions, and discuss variation in heat tolerance across species, habitats and polar regions. Secondly, we discuss the potential for species to cope with increasing and more variable temperatures through thermal plasticity and evolutionary adaptation. Thirdly, we summarize our current knowledge of the underlying physiological adjustments to heat stress in arthropods from polar regions. It is clear that very little data are available on the heat tolerance of arthropods in polar regions, but that large variation in arthropod thermal tolerance exists across polar regions, habitats and species. Further, the species investigated show unique physiological adjustments to heat stress, such as their ability to respond quickly to increasing or extreme temperatures. To understand the consequences of climate change on terrestrial arthropods in polar regions, we suggest that more studies on the ability of species to cope with stressful high and variable temperatures are needed.
Collapse
Affiliation(s)
- Simon Bahrndorff
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Jannik M S Lauritzen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Mathias H Sørensen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Natasja K Noer
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Torsten N Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark.,Department of Animal Science, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| |
Collapse
|
9
|
Kuyucu AC, Chown SL. Time course of acclimation of critical thermal limits in two springtail species (Collembola). JOURNAL OF INSECT PHYSIOLOGY 2021; 130:104209. [PMID: 33609519 DOI: 10.1016/j.jinsphys.2021.104209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 01/12/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Critical thermal limits are one of the most important sources of information on the possible impacts of climate change on soil microarthropods. The extent of plasticity of tolerance limits can provide valuable insights about the likely responses of ectotherms to environmental change. Although many studies have investigated various aspects of the acclimatory response of thermal limits to temperature changes in arthropods, the number of studies focusing on the temporal dynamics of this plastic response is relatively small. Collembola, one of the key microarthropods groups in almost all soil ecosystems around the world, have been the focus of several thermal acclimation studies. Yet the time course of acclimation and its reversal have not been widely studied in this group. Here we investigated the time course of acclimation of critical thermal maxima (CTmax) and minima (CTmin) of two springtail species. We exposed a Cryptopygus species from temperate southern Australia to high and low temperature conditions and Mucrosomia caeca from Sub-Antarctic Macquarie Island to high temperature conditions. Upper thermal limits in both species were found to be highly constrained, as CTmax did not show substantial response to high and low temperature acclimation both in the Cryptopygus species and M. caeca, whereas CTmin showed significant responses to high and low temperature conditions. The acclimation begins to stabilize in approximately seven days in all treatments except for the acclimation of CTmin under high temperature conditions, where the pattern of change suggests that this acclimation might take longer to be completed. Although reversal of this acclimation also begins to stabilize under 7 days, re-acclimation was relatively slow as we did not observe a very clear settling point in 2 of the 3 re-acclimation treatments. The observed limits on the plasticity of CTmax indicate that both of these species may be very limited in their ability to respond plastically to short-term rapid changes in temperature (i.e temperature extremes).
Collapse
Affiliation(s)
- Arda C Kuyucu
- Hacettepe University, Department of Biology, Ankara 06800, Turkey.
| | - Steven L Chown
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| |
Collapse
|
10
|
Ramachandran D, Lindo Z, Meehan ML. Feeding rate and efficiency in an apex soil predator exposed to short-term temperature changes. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2020.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Holmes CJ, Jennings EC, Gantz JD, Spacht D, Spangler AA, Denlinger DL, Lee RE, Hamilton TL, Benoit JB. The Antarctic mite, Alaskozetes antarcticus, shares bacterial microbiome community membership but not abundance between adults and tritonymphs. Polar Biol 2019. [DOI: 10.1007/s00300-019-02582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Differences in collembola species assemblages (Arthropoda) between spoil tips and surrounding environments are dependent on vegetation development. Sci Rep 2018; 8:18067. [PMID: 30584249 PMCID: PMC6305484 DOI: 10.1038/s41598-018-36315-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 11/19/2018] [Indexed: 11/08/2022] Open
Abstract
Spoil tip production is one of the most extreme means of soil destruction, replacing the native soil with a coarse substrate. In this paper, we aim to determine the colonization of soil biota in new substrates, using collembola assemblages as an indicator. In Northern France, we sampled collembola communities in 11 coal mine spoil tips and their surroundings divided in four stages of vegetation development: bare soil, meadow, shrub and tree covers. We demonstrated that collembola assemblages of spoil tips were different from those observed in the surrounding native soil. Collembola communities on bare soil were characterized by pioneer (based on the Indval index) or exotic species (new in Northern France). However, homogenization occurred with development of vegetation cover. Indeed, our data showed no difference in springtail diversity between spoil tips and their corresponding environments regarding the tree vegetation cover. Using the Indval method, we defined pioneer, colonizing, opportunist or stenoecious species as a function of substrate affinities. Using the same method, we defined specialists, elective, preferring or indifferent species as a function of vegetation cover affinities, showing similarities with previously published surveys. Hence, our results were obtained by a focused analysis of species and their particularity. Finally, we discussed the interest in and the complementarity between the species analysis approach and the methodology dealing with functional traits and of its importance in the decision process of restoration and/or conservation of nature.
Collapse
|
13
|
Raschmanová N, Šustr V, Kováč Ľ, Parimuchová A, Devetter M. Testing the climatic variability hypothesis in edaphic and subterranean Collembola (Hexapoda). J Therm Biol 2018; 78:391-400. [DOI: 10.1016/j.jtherbio.2018.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/24/2018] [Accepted: 11/12/2018] [Indexed: 11/30/2022]
|
14
|
Meibers HE, Finch G, Gregg RT, Glenn S, Assani KD, Jennings EC, Davies B, Rosendale AJ, Holmes CJ, Gantz JD, Spacht DE, Lee RE, Denlinger DL, Weirauch MT, Benoit JB. Sex- and developmental-specific transcriptomic analyses of the Antarctic mite, Alaskozetes antarcticus, reveal transcriptional shifts underlying oribatid mite reproduction. Polar Biol 2018. [DOI: 10.1007/s00300-018-2427-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Bartlett J, Convey P, Hayward SAL. Not so free range? Oviposition microhabitat and egg clustering affects Eretmoptera murphyi (Diptera: Chironomidae) reproductive success. Polar Biol 2018; 42:271-284. [PMID: 30872891 PMCID: PMC6383618 DOI: 10.1007/s00300-018-2420-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 10/02/2018] [Accepted: 10/08/2018] [Indexed: 11/16/2022]
Abstract
Understanding the physiology of non-native species in Antarctica is key to elucidating their ability to colonise an area, and how they may respond to changes in climate. Eretmoptera murphyi is a chironomid midge introduced to Signy Island (Maritime Antarctic) from South Georgia (Sub-Antarctic) where it is endemic. Here, we explore the tolerance of this species' egg masses to heat and desiccation stress encountered within two different oviposition microhabitats (ground surface vegetation and underlying soil layer). Our data show that, whilst oviposition takes place in both substrates, egg sacs laid individually in soil are at the greatest risk of failing to hatch, whilst those aggregated in the surface vegetation have the lowest risk. The two microhabitats are characterised by significantly different environmental conditions, with greater temperature fluctuations in the surface vegetation, but lower humidity (%RH) and available water content in the soil. Egg sacs were not desiccation resistant and lost water rapidly, with prolonged exposure to 75% RH affecting survival for eggs in singly oviposited egg sacs. In contrast, aggregated egg sacs (n = 10) experienced much lower desiccation rates and survival of eggs remained above 50% in all treatments. Eggs had high heat tolerance in the context of the current microhabitat conditions on Signy. We suggest that the atypical (for this family) use of egg sac aggregation in E. murphyi has developed as a response to environmental stress. Current temperature patterns and extremes on Signy Island are unlikely to affect egg survival, but changes in the frequency and duration of extreme events could be a greater challenge.
Collapse
Affiliation(s)
| | - Pete Convey
- British Antarctic Survey, NERC, High Cross, Madingley Rd, Cambridge, CB3 0ET UK
| | | |
Collapse
|
16
|
Bowler K. Heat death in poikilotherms: Is there a common cause? J Therm Biol 2018; 76:77-79. [DOI: 10.1016/j.jtherbio.2018.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 11/25/2022]
|
17
|
Shortlidge EE, Eppley SM, Kohler H, Rosenstiel TN, Zúñiga GE, Casanova-Katny A. Passive warming reduces stress and shifts reproductive effort in the Antarctic moss, Polytrichastrum alpinum. ANNALS OF BOTANY 2017; 119:27-38. [PMID: 27794516 PMCID: PMC5218369 DOI: 10.1093/aob/mcw201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/15/2016] [Accepted: 08/05/2016] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS The Western Antarctic Peninsula is one of the most rapidly warming regions on Earth, and many biotic communities inhabiting this dynamic region are responding to these well-documented climatic shifts. Yet some of the most prevalent organisms of terrestrial Antarctica, the mosses, and their responses to warming have been relatively overlooked and understudied. In this research, the impacts of 6 years of passive warming were investigated using open top chambers (OTCs), on moss communities of Fildes Peninsula, King George Island, Antarctica. METHODS The effects of experimental passive warming on the morphology, sexual reproductive effort and stress physiology of a common dioicous Antarctic moss, Polytrichastrum alpinum ,: were tested, gaining the first species-specific mechanistic insight into moss responses to warming in the Antarctic. Additionally community analyses were conducted examining the impact of warming on overall moss percentage cover and sporophyte production in intact Antarctic moss communities. KEY RESULTS Our results show a generally greater percentage moss cover under warming conditions as well as increased gametangia production in P. alpinum Distinct morphological and physiological shifts in P. alpinum were found under passive warming compared with those without warming: warmed mosses reduced investment in cellular stress defences, but invested more towards primary productivity and gametangia development. CONCLUSIONS Taken together, results from this study of mosses under passive warming imply that in ice-free moss-dominated regions, continued climate warming will probably have profound impacts on moss biology and colonization along the Western Antarctic Peninsula. Such findings highlight the fundamental role that mosses will play in influencing the terrestrialization of a warming Antarctica.
Collapse
Affiliation(s)
- Erin E Shortlidge
- Department of Biology, Portland State University, Portland, OR 97201, USA
| | - Sarah M Eppley
- Department of Biology and the Center for Life in Extreme Environments, Portland State University, Portland, OR 97207, USA
| | - Hans Kohler
- Department of Chemistry and Biology, University of Santiago, Alameda 3363 Santiago, Chile
| | - Todd N Rosenstiel
- Department of Biology and the Center for Life in Extreme Environments, Portland State University, Portland, OR 97207, USA
| | - Gustavo E Zúñiga
- Department of Chemistry and Biology, University of Santiago, Alameda 3363 Santiago, Chile
| | - Angélica Casanova-Katny
- Department of Chemistry and Biology, University of Santiago, Alameda 3363 Santiago, Chile
- Program in Environmental Studies (NEA), School of Environmental Science, Natural Resources Faculty, Catholic University of Temuco, Rudecindo Ortega 02950, Temuco, Chile
| |
Collapse
|
18
|
Everatt MJ, Convey P, Worland MR, Bale JS, Hayward SAL. Are the Antarctic dipteran, Eretmoptera murphyi, and Arctic collembolan, Megaphorura arctica, vulnerable to rising temperatures? BULLETIN OF ENTOMOLOGICAL RESEARCH 2014; 104:494-503. [PMID: 24816280 DOI: 10.1017/s0007485314000261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Polar terrestrial invertebrates are suggested as being vulnerable to temperature change relative to lower latitude species, and hence possibly also to climate warming. Previous studies have shown Antarctic and Arctic Collembola and Acari to possess good heat tolerance and survive temperature exposures above 30 °C. To test this feature further, the heat tolerance and physiological plasticity of heat stress were explored in the Arctic collembolan, Megaphorura arctica, from Svalbard and the Antarctic midge, Eretmoptera murphyi, from Signy Island. The data obtained demonstrate considerable heat tolerance in both species, with upper lethal temperatures ≥35 °C (1 h exposures), and tolerance of exposure to 10 and 15 °C exceeding 56 days. This tolerance is far beyond that required in their current environment. Average microhabitat temperatures in August 2011 ranged between 5.1 and 8.1 °C, and rarely rose above 10 °C, in Ny-Ålesund, Svalbard. Summer soil microhabitat temperatures on Signy Island have previously been shown to range between 0 and 10 °C. There was also evidence to suggest that E. murphyi can recover from high-temperature exposure and that M. arctica is capable of rapid heat hardening. M. arctica and E. murphyi therefore have the physiological capacity to tolerate current environmental conditions, as well as future warming. If the features they express are characteristically more general, such polar terrestrial invertebrates will likely fare well under climate warming scenarios.
Collapse
Affiliation(s)
- M J Everatt
- School of Biosciences,University of Birmingham,Edgbaston, Birmingham B15 2TT,UK
| | - P Convey
- British Antarctic Survey,Natural Environment Research Council,High Cross, Madingley Road, Cambridge CB3 0ET,UK
| | - M R Worland
- British Antarctic Survey,Natural Environment Research Council,High Cross, Madingley Road, Cambridge CB3 0ET,UK
| | - J S Bale
- School of Biosciences,University of Birmingham,Edgbaston, Birmingham B15 2TT,UK
| | - S A L Hayward
- School of Biosciences,University of Birmingham,Edgbaston, Birmingham B15 2TT,UK
| |
Collapse
|
19
|
Everatt MJ, Convey P, Bale JS, Worland MR, Hayward SAL. Responses of invertebrates to temperature and water stress: A polar perspective. J Therm Biol 2014; 54:118-32. [PMID: 26615734 DOI: 10.1016/j.jtherbio.2014.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/20/2014] [Accepted: 05/20/2014] [Indexed: 10/25/2022]
Abstract
As small bodied poikilothermic ectotherms, invertebrates, more so than any other animal group, are susceptible to extremes of temperature and low water availability. In few places is this more apparent than in the Arctic and Antarctic, where low temperatures predominate and water is unusable during winter and unavailable for parts of summer. Polar terrestrial invertebrates express a suite of physiological, biochemical and genomic features in response to these stressors. However, the situation is not as simple as responding to each stressor in isolation, as they are often faced in combination. We consider how polar terrestrial invertebrates manage this scenario in light of their physiology and ecology. Climate change is also leading to warmer summers in parts of the polar regions, concomitantly increasing the potential for drought. The interaction between high temperature and low water availability, and the invertebrates' response to them, are therefore also explored.
Collapse
Affiliation(s)
- Matthew J Everatt
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Pete Convey
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK; National Antarctic Research Center, IPS Building, University Malaya, 50603 Kuala Lumpur, Malaysia; Gateway Antarctica, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Jeffrey S Bale
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - M Roger Worland
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Scott A L Hayward
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
20
|
Everatt MJ, Bale JS, Convey P, Worland MR, Hayward SAL. The effect of acclimation temperature on thermal activity thresholds in polar terrestrial invertebrates. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:1057-1064. [PMID: 23973412 DOI: 10.1016/j.jinsphys.2013.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/31/2013] [Accepted: 08/05/2013] [Indexed: 06/02/2023]
Abstract
In the Maritime Antarctic and High Arctic, soil microhabitat temperatures throughout the year typically range between -10 and +5 °C. However, on occasion, they can exceed 20 °C, and these instances are likely to increase and intensify as a result of climate warming. Remaining active under both cool and warm conditions is therefore important for polar terrestrial invertebrates if they are to forage, reproduce and maximise their fitness. In the current study, lower and upper thermal activity thresholds were investigated in the polar Collembola, Megaphorura arctica and Cryptopygus antarcticus, and the mite, Alaskozetes antarcticus. Specifically, the effect of acclimation on these traits was explored. Sub-zero activity was exhibited in all three species, at temperatures as low as -4.6 °C in A. antarcticus. At high temperatures, all three species had capacity for activity above 30 °C and were most active at 25 °C. This indicates a comparable spread of temperatures across which activity can occur to that seen in temperate and tropical species, but with the activity window shifted towards lower temperatures. In all three species following one month acclimation at -2 °C, chill coma (=the temperature at which movement and activity cease) and the critical thermal minimum (=low temperature at which coordination is no longer shown) occurred at lower temperatures than for individuals maintained at +4 °C (except for the CTmin of M. arctica). Individuals acclimated at +9 °C conversely showed little change in their chill coma or CTmin. A similar trend was demonstrated for the heat coma and critical thermal maximum (CTmax) of all species. Following one month at -2 °C, the heat coma and CTmax were reduced as compared with +4 °C reared individuals, whereas the heat coma and CTmax of individuals acclimated at +9 °C showed little adjustment. The data obtained suggest these invertebrates are able to take maximum advantage of the short growing season and have some capacity, in spite of limited plasticity at high temperatures, to cope with climate change.
Collapse
Affiliation(s)
- M J Everatt
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | | | |
Collapse
|