1
|
Pereira TM, Minari M, Carvajalino-Fernández JM, Moreira DC, Hermes-Lima M. Redox Metabolism During Aerial Exposure of the Sea Urchin Echinometra lucunter: An Ecophysiological Perspective. Animals (Basel) 2025; 15:1251. [PMID: 40362066 PMCID: PMC12070949 DOI: 10.3390/ani15091251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/24/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
Intertidal organisms experience daily environmental fluctuations, including changes in temperature, UV radiation, and aerial exposure during low tide, requiring physiological strategies for survival. One adaptation is the "preparation for oxidative stress" (POS), where antioxidants are upregulated preemptively to mitigate oxidative damage. While POS has been documented in over 120 species, in the case of intertidal species, most studies focus on single stressors under controlled-laboratory conditions. This study investigated POS in the sea urchin Echinometra lucunter under natural multi-stress conditions. Sampling occurred over a single day (from 5 a.m. to noon), analyzing three conditions: submerged (S), aerially exposed for 2 h (AE), and reimmersed for 2 h (R). There was a ~4 °C temperature increase in the AE group compared to the S group, with a peak of solar radiation during reoxygenation. Antioxidant enzyme activity-catalase, glutathione transferase (GST), and superoxide dismutase (SOD)-and lipid peroxidation (TBARS) were assessed in gonad and intestine tissues. GST activity increased by fourfold in the intestines of AE individuals, while TBARS was elevated in gonads, where no antioxidant upregulation happened. These results suggest that the POS-response (increase in GST) was triggered by the interaction of temperature and aerial exposure. This research emphasizes the critical importance of field studies in understanding complex, natural multi-stressor environments.
Collapse
Affiliation(s)
- Tatiana M. Pereira
- Departamento de Biologia Celular, Universidade de Brasília, Brasilia 70910-900, Brazil (M.M.)
| | - Marina Minari
- Departamento de Biologia Celular, Universidade de Brasília, Brasilia 70910-900, Brazil (M.M.)
| | | | - Daniel C. Moreira
- Faculdade de Medicina, Universidade de Brasília, Brasilia 70910-900, Brazil
| | - Marcelo Hermes-Lima
- Departamento de Biologia Celular, Universidade de Brasília, Brasilia 70910-900, Brazil (M.M.)
| |
Collapse
|
2
|
Meza-Buendia AK, Aparicio-Trejo OE, Díaz F, Pedraza-Chaverri J, Álvarez-Delgado C, Rosas C. Climate change consequences on the systemic heart of female Octopus maya: oxidative phosphorylation assessment and the antioxidant system. Biol Open 2024; 13:bio060103. [PMID: 38752595 PMCID: PMC11155352 DOI: 10.1242/bio.060103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/05/2024] [Indexed: 06/09/2024] Open
Abstract
There is evidence that indicates that temperature modulates the reproduction of the tropical species Octopus maya, through the over- or under-expression of many genes in the brain. If the oxygen supply to the brain depends on the circulatory system, how temperature affects different tissues will begin in the heart, responsible for pumping the oxygen to tissues. The present study examines the impact of heat stress on the mitochondrial function of the systemic heart of adult O. maya. The mitochondrial metabolism and antioxidant defense system were measured in the systemic heart tissue of female organisms acclimated to different temperatures (24, 26, and 30°C). The results show that acclimation temperature affects respiratory State 3 and State 4o (oligomycin-induced) with higher values observed in females acclimated at 26°C. The antioxidant defense system is also affected by acclimation temperature with significant differences observed in superoxide dismutase, glutathione S-transferase activities, and glutathione levels. The results suggest that high temperatures (30°C) could exert physical limitations on the circulatory system through the heart pumping, affecting nutrient and oxygen transport to other tissues, including the brain, which exerts control over the reproductive system. The role of the cardiovascular system in supporting aerobic metabolism in octopus females is discussed.
Collapse
Affiliation(s)
- Ana Karen Meza-Buendia
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, 22860Ensenada, Baja California, México
| | - Omar Emiliano Aparicio-Trejo
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología “Ignacio Chávez”, 14080 Ciudad de México, México
| | - Fernando Díaz
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, 22860Ensenada, Baja California, México
| | - José Pedraza-Chaverri
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Carolina Álvarez-Delgado
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, 22860 Ensenada, Baja California, México
| | - Carlos Rosas
- Laboratorio de Ecofisiología Aplicada, Unidad Multidisciplinaria de Docencia e Investigación, de Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, 97356 Puerto de Abrigo, Sisal, Yucatán, México
| |
Collapse
|
3
|
da Silva DO, Ratko J, Côrrea APN, da Silva NG, Pereira DMC, Schleger IC, Neundorf AKA, de Souza MRDP, Herrerias T, Donatti L. Assessing physiological responses and oxidative stress effects in Rhamdia voulezi exposed to high temperatures. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:617-633. [PMID: 38175338 DOI: 10.1007/s10695-023-01294-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Exposure to high temperatures induces changes in fish respiration, resulting in an increased production of reactive oxygen species. This, in turn, affects the enzymatic and non-enzymatic components of antioxidant defenses, which are essential for mitigating cellular stress. Rhamdia voulezi, an economically important fish species endemic to Brazil's Iguaçu River, served as the subject of our study. Our goal was to assess enzymatic antioxidant biomarkers (superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, glutathione reductase, glucose-6-phosphate dehydrogenase), non-protein thiol levels (reduced glutathione), and markers of oxidative damage (lipoperoxidation and carbonylation) in the liver, gills, and kidneys of R. voulezi after acute exposure to high temperatures (31°C) for 2, 6, 12, 24, and 96 h. Control groups were maintained at 21°C. Our findings revealed that the liver exhibited increased superoxide dismutase levels up to 12 h and elevated glutathione S-transferase levels at 12 and 96 h at 31°C. In the gills, superoxide dismutase levels increased up to 24 h, along with increased lipoperoxidation at 2, 6, 12, and 96 h of exposure to high temperatures. The kidneys responded to heat stress at 12 h, with an increase in superoxide dismutase and catalase activity, and lipid peroxidation was observed at 2 and 6 h at 31°C. The three tissues evaluated responded differently to heat stress, with the liver demonstrating greater physiological adjustment to high temperatures. The intricate interplay of various antioxidant defense biomarkers and oxidative damage suggests the presence of oxidative stress in R. voulezi when exposed to high temperatures.
Collapse
Affiliation(s)
- Diego Ortiz da Silva
- Adaptive Biology Laboratory, Federal University of Paraná, Av. Cel.Francisco H. dos Santos, s/n, Jardim das Américas, 19031, Curitiba, Paraná, CEP: 81531-970, Brazil
| | - Jonathan Ratko
- Adaptive Biology Laboratory, Federal University of Paraná, Av. Cel.Francisco H. dos Santos, s/n, Jardim das Américas, 19031, Curitiba, Paraná, CEP: 81531-970, Brazil
| | - Ana Paula Nascimento Côrrea
- Adaptive Biology Laboratory, Federal University of Paraná, Av. Cel.Francisco H. dos Santos, s/n, Jardim das Américas, 19031, Curitiba, Paraná, CEP: 81531-970, Brazil
| | - Niumaique Gonçalves da Silva
- Adaptive Biology Laboratory, Federal University of Paraná, Av. Cel.Francisco H. dos Santos, s/n, Jardim das Américas, 19031, Curitiba, Paraná, CEP: 81531-970, Brazil
| | - Diego Mauro Carneiro Pereira
- Adaptive Biology Laboratory, Federal University of Paraná, Av. Cel.Francisco H. dos Santos, s/n, Jardim das Américas, 19031, Curitiba, Paraná, CEP: 81531-970, Brazil
| | - Ieda Cristina Schleger
- Adaptive Biology Laboratory, Federal University of Paraná, Av. Cel.Francisco H. dos Santos, s/n, Jardim das Américas, 19031, Curitiba, Paraná, CEP: 81531-970, Brazil
| | - Ananda Karla Alvez Neundorf
- Adaptive Biology Laboratory, Federal University of Paraná, Av. Cel.Francisco H. dos Santos, s/n, Jardim das Américas, 19031, Curitiba, Paraná, CEP: 81531-970, Brazil
| | - Maria Rosa Dmengeon Pedreiro de Souza
- Adaptive Biology Laboratory, Federal University of Paraná, Av. Cel.Francisco H. dos Santos, s/n, Jardim das Américas, 19031, Curitiba, Paraná, CEP: 81531-970, Brazil
| | - Tatiana Herrerias
- Department of Clinical Analysis, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Lucélia Donatti
- Adaptive Biology Laboratory, Federal University of Paraná, Av. Cel.Francisco H. dos Santos, s/n, Jardim das Américas, 19031, Curitiba, Paraná, CEP: 81531-970, Brazil.
| |
Collapse
|
4
|
Ju Z, Liao G, Zhang Y, Li N, Li X, Zou Y, Yang W, Xiong D. Oxidative stress responses in the respiratory tree and the body wall of sea cucumber Apostichopus japonicus (Selenka) to high temperature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21288-21298. [PMID: 36269487 DOI: 10.1007/s11356-022-23308-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Sea cucumber Apostichopus japonicas (Selenka) is one of the important aquaculture species distributed in northern China. In recent years, global warming caused frequent high temperature weather in summer in northern China, resulting in dramatic losses of the sea cucumber aquaculture industry. In the present study, we focused on the effect of oxidative stress in Apostichopus japonicus (Selenka) subjected to high temperature stress. Sea cumbers were exposed to the control (16 °C), and high temperature treatments (20 °C, 24 °C, and 28 °C) for 7 days. Then, reactive oxygen species (ROS) level, superoxide dismutase (SOD) activity, catalase (CAT) activity, peroxidase (POD) activity, reduced glutathione (GSH) content, malondialdehyde (MDA) content and 8-hydroxy-2'-deoxyguanosine (8-OHdG) level in the respiratory tree and body wall were detected, respectively. Results showed that 24 °C and 28 °C acute exposure induced the elevation of ROS level, SOD, CAT, POD activities, GSH content, MDA content and 8-OHdG level in the respiratory tree of sea cucumber. In contrast, no significant changes were observed for ROS and 8-OHdG levels in the body wall of sea cucumber, while the antioxidants including SOD, CAT, POD, and GSH decreased to some extent. Moreover, MDA content exhibited a noticeable increase in the body wall, similarly to that in the respiratory tree, indicating that high temperature could induce severe lipid peroxidation in two tissues. Considering the differences in various biomarkers measured in two tissues, respiratory tree might be more susceptible to the high temperature changes compared to the body wall. Our findings may help understand the oxidative stress response to high temperature in the respiratory tree and the body wall in A. japonicus.
Collapse
Affiliation(s)
- Zhonglei Ju
- School of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
- National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Guoxiang Liao
- National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Yulu Zhang
- School of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Nan Li
- School of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xishan Li
- School of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
- National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Yuhang Zou
- School of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
- National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Wei Yang
- School of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Deqi Xiong
- School of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| |
Collapse
|
5
|
Missionário M, Travesso M, Calado R, Madeira D. Cellular stress response and acclimation capacity of the ditch shrimp Palaemon varians to extreme weather events - How plastic can a plastic species be? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158732. [PMID: 36122726 DOI: 10.1016/j.scitotenv.2022.158732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/03/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Species from shallow marine environments are particularly vulnerable to extreme weather events (heatwaves and extreme rainfall) that can promote abrupt environmental shifts, namely in temperature and salinity (respectively). To assess how these shifts impact species' cellular stress responses (CSR), ditch shrimps Palaemon varians were exposed to a chronic (28 days) thermohaline stress experiment. Three levels of temperature (20, 23 and 26 °C) and two levels of salinity (20 and 40) were tested in a full factorial experiment, and shrimps sampled at the 7th, 14th, 21st and 28th day of exposure. Survival, wet weight (as proxy for growth), and cellular stress biomarkers associated with oxidative stress (LPO - Lipid Peroxidation, GST - Glutathione-S-Transferase, SOD - Superoxide Dismutase, TAC - Total Antioxidant Capacity and CAT - Catalase) and protein denaturation (UBI - Ubiquitin and HSP-70 - Heat Shock Protein 70 kDa) were analysed in shrimps' muscle at each sampling day. Temperature and time of exposure significantly affected biomarker levels, with shrimps exposed to 20 and 26 °C revealing more pronounced differences. No interactions were detected between temperature and salinity, suggesting that these factors display additive effects on shrimps' CSR. Antioxidant agents (CAT and TAC) increased under elevated temperature, while protein denaturation markers (UBI and HSP-70) were mostly affected by time of exposure, decreasing at 28 days. Total protein reserves increased throughout time and no effects on wet weight were observed. A negative correlation between wet weight and HSP-70 was detected, suggesting that HSP-70 levels are dependent on organism size. Peak survival (~73 %) was found under 20 °C and salinity 40 and lower survival (~30-40 %) was associated with higher temperatures (23 and 26 °C) and lower salinity (20). We conclude that P. varians displays some level of acclimation capacity but differences in survival may indicate effects on osmoregulation processes and the need for longer timeframes to fully acclimate to heat and hyposaline stress.
Collapse
Affiliation(s)
- Madalena Missionário
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Margarida Travesso
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Ricardo Calado
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Diana Madeira
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal.
| |
Collapse
|
6
|
Moreira DC, Aurélio da Costa Tavares Sabino M, Minari M, Torres Brasil Kuzniewski F, Angelini R, Hermes-Lima M. The role of solar radiation and tidal emersion on oxidative stress and glutathione synthesis in mussels exposed to air. PeerJ 2023; 11:e15345. [PMID: 37193036 PMCID: PMC10183164 DOI: 10.7717/peerj.15345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/12/2023] [Indexed: 05/18/2023] Open
Abstract
Preparation for oxidative stress (POS) is a widespread adaptive response to harsh environmental conditions, whose hallmark is the upregulation of antioxidants. In contrast to controlled laboratory settings, animals are exposed to multiple abiotic stressors under natural field conditions. Still, the interplay between different environmental factors in modulating redox metabolism in natural settings remains largely unexplored. Here, we aim to shed light on this topic by assessing changes in redox metabolism in the mussel Brachidontes solisianus naturally exposed to a tidal cycle. We compared the redox biochemical response of mussels under six different natural conditions in the field along two consecutive days. These conditions differ in terms of chronology, immersion/emersion, and solar radiation, but not in terms of temperature. Animals were collected after being exposed to air early morning (7:30), immersed during late morning and afternoon (8:45-15:30), and then exposed to air again late afternoon towards evening (17:45-21:25), in two days. Whole body homogenates were used to measure the activity of antioxidant (catalase, glutathione transferase and glutathione reductase) and metabolic (glucose 6-phosphate dehydrogenase, malate dehydrogenase, isocitrate dehydrogenase and pyruvate kinase) enzymes, reduced (GSH) and disulfide (GSSG) glutathione levels, and oxidative stress markers (protein carbonyl and thiobarbituric acid reactive substances). Air and water temperature remained stable between 22.5 °C and 26 °C during both days. Global solar radiation (GSR) greatly differed between days, with a cumulative GSR of 15,381 kJ/m2 for day 1 and 5,489 kJ/m2 for day 2, whose peaks were 2,240 kJ/m2/h at 14:00 on day 1 and 952 kJ/m2/h at 12:00 on day 2. Compared with animals underwater, emersion during early morning did not elicit any alteration in redox biomarkers in both days. Air exposure for 4 h in the late afternoon towards evening caused oxidative damage to proteins and lipids and elicited GSH synthesis in animals that had been previously exposed to high GSR during the day. In the following day, when GSR was much lower, exposure to air under the same conditions (duration, time, and temperature) had no effect on any redox biomarker. These findings suggest that air exposure under low-intensity solar radiation is not sufficient to trigger POS in B. solisianus in its natural habitat. Thus, natural UV radiation is possibly a key environmental factor that combined to air exposure induces the POS-response to the stressful event of tidal variation in this coastal species.
Collapse
Affiliation(s)
- Daniel C. Moreira
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
- Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | | | - Marina Minari
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | | - Ronaldo Angelini
- Department of Civil and Environmental Engineering, Federal University of Rio Grande do Norte, Natal, Brazil
| | | |
Collapse
|
7
|
Madyarova E, Shirokova Y, Gurkov A, Drozdova P, Baduev B, Lubyaga Y, Shatilina Z, Vishnevskaya M, Timofeyev M. Metabolic Tolerance to Atmospheric Pressure of Two Freshwater Endemic Amphipods Mostly Inhabiting the Deep-Water Zone of the Ancient Lake Baikal. INSECTS 2022; 13:insects13070578. [PMID: 35886754 PMCID: PMC9325015 DOI: 10.3390/insects13070578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 12/03/2022]
Abstract
Simple Summary Deep-water habitats are the largest ecosystem on the planet: over half of the Earth’s surface is covered with a water layer deeper than 200 m and remains poorly explored. Lake Baikal is the only freshwater body inhabited by animals adapted to the deep-water zone independently from their marine counterparts. Comparing these convergently evolved freshwater and marine animals is invaluable for revealing the basic mechanisms of adaptation to high hydrostatic pressure. However, laboratory experiments on deep-water organisms still usually require lifting them to the water’s surface and exposing them to potentially hazardous decompression, while endemics from Lake Baikal are poorly studied in this regard. Here, we compared metabolic reactions to such pressure decreases in two Baikal deep-water amphipods (shrimp-like crustaceans) from the genus Ommatogammarus: one species is known to tolerate pressures close to atmospheric levels, while the second was only observed at the pressures from 5 atm and above. We expected that the energy metabolism of the shallower-dwelling species would function better under the atmospheric pressure but found no substantial differences. Thus, despite some difference in long-term survival at atmospheric pressure, both species are suitable for laboratory studies as freshwater model objects adapted to large pressure variations. Abstract Lake Baikal is the only freshwater reservoir inhabited by deep-water fauna, which originated mostly from shallow-water ancestors. Ommatogammarus flavus and O. albinus are endemic scavenger amphipods (Amphipoda, Crustacea) dwelling in wide depth ranges of the lake covering over 1300 m. O. flavus had been previously collected close to the surface, while O. albinus has never been found above the depth of 47 m. Since O. albinus is a promising model species for various research, here we tested whether O. albinus is less metabolically adapted to atmospheric pressure than O. flavus. We analyzed a number of energy-related traits (contents of glucose, glycogen and adenylates, as well as lactate dehydrogenase activity) and oxidative stress markers (activities of antioxidant enzymes and levels of lipid peroxidation products) after sampling from different depths and after both species’ acclimation to atmospheric pressure. The analyses were repeated in two independent sampling campaigns. We found no consistent signs of metabolic disturbances or oxidative stress in both species right after lifting. Despite O. flavus surviving slightly better in laboratory conditions, during long-term acclimation, both species showed comparable reactions without critical changes. Thus, the obtained data favor using O. albinus along with O. flavus for physiological research under laboratory conditions.
Collapse
Affiliation(s)
- Ekaterina Madyarova
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia; (E.M.); (Y.S.); (A.G.); (P.D.); (B.B.); (Y.L.); (Z.S.)
| | - Yulia Shirokova
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia; (E.M.); (Y.S.); (A.G.); (P.D.); (B.B.); (Y.L.); (Z.S.)
| | - Anton Gurkov
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia; (E.M.); (Y.S.); (A.G.); (P.D.); (B.B.); (Y.L.); (Z.S.)
- Baikal Research Centre, 664011 Irkutsk, Russia
| | - Polina Drozdova
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia; (E.M.); (Y.S.); (A.G.); (P.D.); (B.B.); (Y.L.); (Z.S.)
- Baikal Research Centre, 664011 Irkutsk, Russia
| | - Boris Baduev
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia; (E.M.); (Y.S.); (A.G.); (P.D.); (B.B.); (Y.L.); (Z.S.)
| | - Yulia Lubyaga
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia; (E.M.); (Y.S.); (A.G.); (P.D.); (B.B.); (Y.L.); (Z.S.)
| | - Zhanna Shatilina
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia; (E.M.); (Y.S.); (A.G.); (P.D.); (B.B.); (Y.L.); (Z.S.)
- Baikal Research Centre, 664011 Irkutsk, Russia
| | - Maria Vishnevskaya
- Research Resource Center “Chromas”, Saint-Petersburg State University, 198504 Saint Petersburg, Russia;
| | - Maxim Timofeyev
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia; (E.M.); (Y.S.); (A.G.); (P.D.); (B.B.); (Y.L.); (Z.S.)
- Correspondence:
| |
Collapse
|
8
|
Madeira D, Fernandes JF, Jerónimo D, Martins P, Ricardo F, Santos A, Domingues MR, Diniz MS, Calado R. Salinity shapes the stress responses and energy reserves of marine polychaetes exposed to warming: From molecular to functional phenotypes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148634. [PMID: 34246144 DOI: 10.1016/j.scitotenv.2021.148634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Estuarine systems are critical transition zones influenced by sea, land and freshwater. An array of human activities impacts these areas leading to multiple-stressor interactions. Temperature and salinity are among the most relevant drivers in estuaries, shaping species growth, reproduction and distribution. However, few studies provide an overview of cellular rewiring processes under multiple-stressor environments. Here, we tested how salinity could shape the response of ragworms Hediste diversicolor, an important bioindicator and commercial species, to elevated temperature. We exposed polychaetes to three temperatures for a month, simulating control, ocean warming and heatwave conditions (24, 27 and 30 °C, respectively) combined with two salinities (20 and 30). We quantified whole-organism performance (wet weight gain and survival), along with cellular stress response (CSR) and energy reserves of worms after 14 and 28 days of exposure. Significant three-way interactions between temperature, salinity and exposure time show the non-linearity of molecular responses. Worms at a salinity of 20 were more sensitive to warming than worms exposed to a salinity of 30. The combination of high temperature and low salinity can act synergistically to induce oxidative stress and macromolecular damage in worm tissues. This finding was supported by an induction of the CSR, with a concomitant decrease of energy reserves, pointing towards a metabolic compensation strategy. However, under a higher salinity (30), the need for a CSR upon thermal challenge was reduced and energy content increased with temperature, which suggests that environmental conditions were within the optimum range. Heatwaves striking low-salinity areas of estuaries can therefore negatively impact the cellular physiology of H. diversicolor, with greater metabolic costs. However, extreme stress levels were not reached as worms incremented wet weight and survival was high under all conditions tested. Our findings are important for the optimization of ragworm aquaculture and adaptive conservation strategies of estuarine systems.
Collapse
Affiliation(s)
- Diana Madeira
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; University of Quebec in Rimouski (UQAR), Department of Biology, Chemistry and Geography, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada.
| | - Joana Filipa Fernandes
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Daniel Jerónimo
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Patrícia Martins
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Fernando Ricardo
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Andreia Santos
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV REQUIMTE-Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Mário Sousa Diniz
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Ricardo Calado
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal.
| |
Collapse
|
9
|
Lopez-Anido RN, Harrington AM, Hamlin HJ. Coping with stress in a warming Gulf: the postlarval American lobster's cellular stress response under future warming scenarios. Cell Stress Chaperones 2021; 26:721-734. [PMID: 34115338 PMCID: PMC8275755 DOI: 10.1007/s12192-021-01217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022] Open
Abstract
The Gulf of the Maine (GoM) is one of the fastest warming bodies of water in the world, posing serious physiological challenges to its marine inhabitants. Marine organisms can cope with the cellular and molecular stresses created by climate change through changes in gene expression. We used transcriptomics to examine how exposure to current summer temperatures (16 °C) or temperature regimes reflective of projected moderate and severe warming conditions (18 °C and 22 °C, respectively) during larval development alters expression of transcripts affiliated with the cellular stress response (CSR) in postlarval American lobsters (Homarus americanus). We identified 26 significantly differentially expressed (DE) transcripts annotated to CSR proteins. Specifically, transcripts for proteins affiliated with heat shock, the ubiquitin family, DNA repair, and apoptosis were significantly over-expressed in lobsters reared at higher temperatures relative to current conditions. Substantial variation in the CSR expression between postlarvae reared at 18 °C and those reared at 22 °C suggests that postlarvae reared under severe warming may have a hindered ability to cope with the physiological and molecular challenges of ocean warming. These results highlight that postlarval American lobsters may experience significant heat stress as rapid warming in the GoM continues, potentially compromising their ability to prevent cellular damage and inhibiting the reallocation of cellular energy towards other physiological functions beyond activation of the CSR. Moreover, this study establishes additional American lobster stress markers and addresses various knowledge gaps in crustacean biology, where sufficient 'omics research is lacking.
Collapse
Affiliation(s)
| | - Amalia M Harrington
- Maine Sea Grant College Program, University of Maine, 5741 Libby Hall, Room 121, Orono, ME, 04469, USA.
- School of Marine Sciences, University of Maine, Orono, ME, 04469, USA.
| | - Heather J Hamlin
- School of Marine Sciences, University of Maine, Orono, ME, 04469, USA
- Aquaculture Research Institute, University of Maine, Orono, ME, 04469, USA
| |
Collapse
|
10
|
Butcherine P, Kelaher BP, Taylor MD, Lawson C, Benkendorff K. Acute toxicity, accumulation and sublethal effects of four neonicotinoids on juvenile Black Tiger Shrimp (Penaeus monodon). CHEMOSPHERE 2021; 275:129918. [PMID: 33639551 DOI: 10.1016/j.chemosphere.2021.129918] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/25/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Neonicotinoid pesticides have been detected in aquatic habitats, and exposure may impact the health of aquatic organisms such as commercially-important crustaceans. Black Tiger Shrimp (Penaeus monodon) is a broadly distributed and high-value shrimp species that rely on estuaries for early life stages. Differences in the acute toxicity and accumulation of different neonicotinoids in tissues of commercial crustaceans have not been widely investigated. This study compared acute toxicity, uptake, and depuration of four neonicotinoids; thiamethoxam, clothianidin, acetamiprid, and imidacloprid, on juvenile P. monodon and their effects on enzyme biomarkers. Acute toxicity (48-h LC50) was determined as 190 μg L-1 (clothianidin), 390 μg L-1 (thiamethoxam), 408 μg L-1 (imidacloprid), and >500 μg L-1(acetamiprid). To assess uptake and elimination, shrimp were exposed to a fixed 5 μg L-1 water concentration for eight days (uptake) or four days of exposure followed by four days of depuration (elimination). Neonicotinoid water and tissue concentrations were measured by liquid chromatography-mass spectrometry following solid-phase extraction and QuEChER extraction respectively. The lower toxicity associated with acetamiprid could be associated with lower accumulation in the tissue, with concentrations remaining below 0.01 μg g-1. The activity of acetylcholinesterase, catalase and glutathione S-transferase in abdominal tissues was determined by spectrophotometric assay, with significant sublethal effects detected for all four neonicotinoids. Depuration reduced the tissue concentration of the active ingredient and reduced the activity of oxidative stress enzymes. Given acetamiprid showed no acute toxicity and reduced impact on the enzymatic activity of P. monodon, it may be an appropriate alternative to other neonicotinoids in shrimp producing areas.
Collapse
Affiliation(s)
- Peter Butcherine
- Marine Ecology Research Centre, Southern Cross University, PO Box 157, Lismore, NSW, 2480, Australia; National Marine Science Centre, Southern Cross University, Coffs Harbour, NSW, 2450, Australia
| | - Brendan P Kelaher
- Marine Ecology Research Centre, Southern Cross University, PO Box 157, Lismore, NSW, 2480, Australia; National Marine Science Centre, Southern Cross University, Coffs Harbour, NSW, 2450, Australia
| | - Matthew D Taylor
- NSW Department of Primary Industries, Port Stephens Fisheries Institute, Locked Bag 1, Nelson Bay, NSW, 2315, Australia
| | - Corinne Lawson
- National Marine Science Centre, Southern Cross University, Coffs Harbour, NSW, 2450, Australia
| | - Kirsten Benkendorff
- Marine Ecology Research Centre, Southern Cross University, PO Box 157, Lismore, NSW, 2480, Australia; National Marine Science Centre, Southern Cross University, Coffs Harbour, NSW, 2450, Australia.
| |
Collapse
|
11
|
Cerezer C, Leitemperger JW, do Amaral AMB, Ferreira BC, Marins AT, Loro VL, Bartholomei-Santos ML, Santos S. Raising the water temperature: consequences in behavior and biochemical biomarkers of the freshwater crab Aegla longirostri (Crustacea, Anomura). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:45349-45357. [PMID: 32789627 DOI: 10.1007/s11356-020-10423-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Understanding how temperature alone affects biomarkers commonly used in ecotoxicology studies and biomonitoring programs is important to obtain a more real response in field studies, especially in freshwater. Thus, we analyzed the behavioral responses, the lethality, and the biochemical biomarkers in the freshwater crustacean Aegla longirostri at different water temperatures. Animals were exposed under laboratory conditions, to 18 °C, 21 °C, 24 °C, and 26 °C for 48 h. There were significant changes in biochemical parameters in different tissues (hepatopancreas, gills, and muscle) and in the behavioral tests in A. longirostri. Hepatopancreas was especially affected by the elevation of temperature, as showed by the high levels of carbonyl proteins. The activity of acetylcholinesterase increased in a temperature-dependent manner in muscle. Glutathione S-transferase activity decreased with the elevation of temperature in all tissues sampled. The results obtained in this study indicate that when assessing the health of polluted limnic ecosystems through the use of organisms in situ, the intrinsic effect of abiotic factors, such as temperature, on biomarkers must be considered.
Collapse
Affiliation(s)
- Cristina Cerezer
- Programa de Pós-Graduação em Biodiversidade Animal, Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| | - Jossiele Wesz Leitemperger
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Aline Monique Blank do Amaral
- Programa de Pós-Graduação em Biodiversidade Animal, Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Bruna Ceretta Ferreira
- Curso em Ciências Biológicas, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Aline Teixeira Marins
- Programa de Pós-Graduação em Biodiversidade Animal, Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Vania Lucia Loro
- Programa de Pós-Graduação em Biodiversidade Animal, Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Marlise Ladvocat Bartholomei-Santos
- Programa de Pós-Graduação em Biodiversidade Animal, Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Sandro Santos
- Programa de Pós-Graduação em Biodiversidade Animal, Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| |
Collapse
|
12
|
Han J, Lee JS, Park JC, Hagiwara A, Lee KW, Lee JS. Effects of temperature changes on life parameters, oxidative stress, and antioxidant defense system in the monogonont marine rotifer Brachionus plicatilis. MARINE POLLUTION BULLETIN 2020; 155:111062. [PMID: 32469753 DOI: 10.1016/j.marpolbul.2020.111062] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Global warming is a big concern for all organisms and many efforts have been made to reveal the potential effects of temperature elevation on aquatic organisms. However, limited studies on molecular mechanistic approaches on physiological effects due to temperature changes are available. Here, we investigated the effects of temperature changes on life parameters (e.g., population growth [total number of rotifers], and lifespan), oxidative stress levels and antioxidant activities (e.g., glutathione S-transferase [GST], catalase [CAT], superoxide dismutase [SOD]) with expression levels in the monogonont marine rotifer Brachionus plicatilis. The changes in temperatures led to significant reduction (P < 0.05) in lifespan, possibly due to significant decrease (P < 0.05) in antioxidant activities, reducing the potential to cope with significant elevation in the temperature-induced oxidative stress in B. plicatilis. To further assess the actual induction and clearance of reactive oxygen species (ROS), N-acetyl-L-cysteine was used to examine whether the temperature-induced oxidative stress could be successfully scavenged. Furthermore, expression patterns of the antioxidant-related genes (GSTs, SODs, and CATs) were down- or upregulated (P < 0.05) in response to different temperatures in B. plicatilis. Overall, these findings indicate that ROS-mediated oxidative stress led to cellular damage and antioxidant defense system, resulting in deleterious effects on life parameters in rotifer.
Collapse
Affiliation(s)
- Jeonghoon Han
- Department of Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, South Korea; Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jin-Sol Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Atsushi Hagiwara
- Institute of Integrated Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan; Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Kyun-Woo Lee
- Department of Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, South Korea.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
13
|
Madeira D, Araújo JE, Madeira C, Mendonça V, Vitorino R, Vinagre C, Diniz MS. Seasonal proteome variation in intertidal shrimps under a natural setting: Connecting molecular networks with environmental fluctuations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134957. [PMID: 31767328 DOI: 10.1016/j.scitotenv.2019.134957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
The ability of intertidal organisms to maintain their performance via molecular and physiological adjustments under low tide, seasonal fluctuations and extreme events ultimately determines population viability. Analyzing this capacity in the wild is extremely relevant since intertidal communities are under increased climate variability owing to global changes. We addressed the seasonal proteome signatures of a key intertidal species, the shrimp Palaemon elegans, in a natural setting. Shrimps were collected during spring and summer seasons at low tides and were euthanized in situ. Environmental variability was also assessed using hand-held devices and data loggers. Muscle samples were taken for 2D gel electrophoresis and protein identification through mass spectrometry. Proteome data revealed that 55 proteins (10.6% of the proteome) significantly changed between spring and summer collected shrimps, 24 of which were identified. These proteins were mostly involved in cytoskeleton remodelling, energy metabolism and transcription regulation. Overall, shrimps modulate gene expression leading to metabolic and structural adjustments related to seasonal differences in the wild (i.e. abiotic variation and possibly intrinsic cycles of reproduction and growth). This potentially promotes performance and fitness as suggested by the higher condition index in summer-collected shrimps. However, inter-individual variation (% coefficient of variation) in protein levels was quite low (min-max ranges were 0.6-8.3% in spring and 1.2-4.8% in summer), possibly suggesting reduced genetic diversity or physiological canalization. Protein plasticity is relevant to cope with present and upcoming environmental variation related to anthropogenic forcing (e.g. global change, pollution) but low inter-individual variation may limit evolutionary potential of shrimp populations.
Collapse
Affiliation(s)
- D Madeira
- Research Unit on Applied Molecular Biosciences (UCIBIO-REQUIMTE), Department of Chemistry, Faculty of Sciences and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; Centre for Environmental and Marine Studies (CESAM), ECOMARE & Department of Biology, University of Aveiro, Estrada do Porto de Pesca, 3830-565 Gafanha da Nazaré, Portugal.
| | - J E Araújo
- Research Unit on Applied Molecular Biosciences (UCIBIO-REQUIMTE), Department of Chemistry, Faculty of Sciences and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - C Madeira
- Research Unit on Applied Molecular Biosciences (UCIBIO-REQUIMTE), Department of Chemistry, Faculty of Sciences and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; Marine and Environmental Sciences Centre (MARE), Department of Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - V Mendonça
- Marine and Environmental Sciences Centre (MARE), Department of Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - R Vitorino
- Institute for Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Cardiovascular Research Centre (UnIC), Department of Cardiothoracic Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - C Vinagre
- Marine and Environmental Sciences Centre (MARE), Department of Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - M S Diniz
- Research Unit on Applied Molecular Biosciences (UCIBIO-REQUIMTE), Department of Chemistry, Faculty of Sciences and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| |
Collapse
|
14
|
Present and future invasion perspectives of an alien shrimp in South Atlantic coastal waters: an experimental assessment of functional biomarkers and thermal tolerance. Biol Invasions 2019. [DOI: 10.1007/s10530-019-01921-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Pinsky ML, Eikeset AM, McCauley DJ, Payne JL, Sunday JM. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 2019; 569:108-111. [DOI: 10.1038/s41586-019-1132-4] [Citation(s) in RCA: 280] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/28/2019] [Indexed: 12/24/2022]
|
16
|
Olivares A, Rodríguez-Fuentes G, Mascaró M, Sanchez Arteaga A, Ortega K, Caamal Monsreal C, Tremblay N, Rosas C. Maturation trade-offs in octopus females and their progeny: energy, digestion and defence indicators. PeerJ 2019; 7:e6618. [PMID: 30993033 PMCID: PMC6461028 DOI: 10.7717/peerj.6618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 02/14/2019] [Indexed: 12/21/2022] Open
Abstract
Sexual maturation and reproduction influence the status of a number of physiological processes and consequently the ecology and behaviour of cephalopods. Using Octopus mimus as a study model, the present work was focused in the changes in biochemical compound and activity that take place during gonadal maturation of females and its consequences in embryo and hatchlings characteristics. To do that, a total of 31 adult females of O. mimus were sampled to follow metabolites (ovaries and digestive gland) and digestive enzyme activities (alkaline and acidic proteases) during physiological and functional maturation. Levels of protein (Prot), triacylglyceride (TG), cholesterol (Chol), glucose (Glu), and glycogen (Gly) were evaluated. Groups of eggs coming from mature females were also sampled along development and after hatching (paralarvae of 1 and 3 days old) to track metabolites (Prot, TG, Glu, Gly, TG, Chol), digestive enzymes activity (Lipase, alkaline proteases, and acidic proteases), and antioxidant/detoxification defence indicators with embryos development. Based on the data obtained, we hypothesized that immature females store Chol in their ovaries, probably from the food they ingested, but switch to TG reserves at the beginning of the maturation processes. At the same time, results suggest that these processes were energetically supported by Glu, obtained probably from Gly breakdown by gluconeogenic pathways. Also, was observed that embryos metabolites and enzyme activities (digestive and antioxidant/detoxification enzymes) where maintained without significant changes and in a low activity during the whole organogenesis, meaning that organogenesis is relatively not energetically costly. In contrast, after organogenesis, a mobilization of nutrients and activation of the metabolic and digestive enzymes was observed, together with increments in consumption of yolk and Gly, and reduction in lipid peroxidation. Derived from our results, we also have the hypothesis that reactive oxygen species (ROS) were produced during the metabolic processes that occurs in ovarian maturation. Those ROS may be in part transferred to the egg provoking a ROS charge to the embryos. The elimination of ROS in embryos started when the activity of the heart and the absorption of the yolk around stages XIV and XV were evident. Altogether, these processes allowed the paralarvae to hatch with buffered levels of ROS and with the antioxidant defence mechanisms ready to support further ROS production derived from paralarvae higher life stage requirements (feeding and metabolic demands).
Collapse
Affiliation(s)
- Alberto Olivares
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Gabriela Rodríguez-Fuentes
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico.,Laboratorio Nacional de Resiliencia Costera (LANRESC), UNAM-CONACYT, Sisal, Yucatán, Mexico
| | - Maite Mascaró
- Laboratorio Nacional de Resiliencia Costera (LANRESC), UNAM-CONACYT, Sisal, Yucatán, Mexico.,Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico
| | - Ariadna Sanchez Arteaga
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico
| | - Karen Ortega
- Posgrado en Ciencias del Mar y Limnología, Facultad de Ciencias, Universidad Nacional Autónoma de México, México, Ciudad de México, Mexico
| | - Claudia Caamal Monsreal
- Laboratorio Nacional de Resiliencia Costera (LANRESC), UNAM-CONACYT, Sisal, Yucatán, Mexico.,Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico
| | - Nelly Tremblay
- Biologische Anstalt Helgoland, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Helgolang, Germany
| | - Carlos Rosas
- Laboratorio Nacional de Resiliencia Costera (LANRESC), UNAM-CONACYT, Sisal, Yucatán, Mexico.,Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico
| |
Collapse
|
17
|
González Durán E, Cuaya MP, Gutiérrez MV, León JA. Effects of Temperature and pH on the Oxidative Stress of Benthic Marine Invertebrates. BIOL BULL+ 2019. [DOI: 10.1134/s1062359018660019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Madeira C, Leal MC, Diniz MS, Cabral HN, Vinagre C. Thermal stress and energy metabolism in two circumtropical decapod crustaceans: Responses to acute temperature events. MARINE ENVIRONMENTAL RESEARCH 2018; 141:148-158. [PMID: 30180992 DOI: 10.1016/j.marenvres.2018.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/22/2018] [Accepted: 08/25/2018] [Indexed: 06/08/2023]
Abstract
Extreme events associated with global warming, such as ocean heat waves, can have contrasting fitness consequences for different species, thereby modifying the structure and composition of marine communities. Here, we examined the effects of a laboratory simulated heat wave on the physiology and performance of two Indo-Pacific crustacean species: the shrimp Rhynchocinetes durbanensis and the hermit crab Calcinus laevimanus. We exposed the crustaceans to a control temperature or to a +5 °C temperature (25 °C vs 30 °C) for two consecutive weeks, and weekly analyzed protective proteins, antioxidant activity, and lipid peroxides in muscle and visceral mass. Fulton's K, total protein, %C, and C:N molar ratio of muscle tissue were also analyzed at the end of the experiment. Results showed that 1) the most responsive tissues were the muscle in the shrimp species and the visceral mass in the hermit crab species; 2) biomarker responses in both species occurred mostly after 7 days of exposure; 3) temperature stress led to an increase in biomarker levels; 4) highest biomarker fold-changes were detected in protective chaperones and antioxidants superoxide dismutase and glutathione-S-transferase; 4) integrated biomarker indices suggested poorer health status in individuals subjected to the heat wave; 5) performance changes at the organism level were only detected in R. durbanensis; and 6) mortality rates of both species remained unchanged with the heat wave. Finally, we concluded that these species are capable of physiological adjustments in response to rapid environmental changes, which ultimately confers them with enough thermal tolerance to withstand this simulated heat wave without major consequences for fitness.
Collapse
Affiliation(s)
- Carolina Madeira
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| | - Miguel C Leal
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Department of Fish Ecology & Evolution, Centre for Ecology, Evolution and Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Seestrasse 79, Kastanienbaum, 6047, Switzerland
| | - Mário S Diniz
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Henrique N Cabral
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Catarina Vinagre
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
19
|
Tuzuki BLL, Delunardo FAC, Ribeiro LN, Melo CPD, Gomes LC, Chippari-Gomes AR. Effects of manganese on fat snook Centropomus parallelus (Carangaria: Centropomidae) exposed to different temperatures. NEOTROPICAL ICHTHYOLOGY 2017. [DOI: 10.1590/1982-0224-20170054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT This study evaluates the effects of exposure to manganese (Mn2+) for 96 hours at two different temperatures (24 and 27°C) on juveniles of Centropomus parallelus through the activities of glutathione S-transferase (GST) and catalase (CAT), micronuclei test (MN) and comet assay. The GST activity did not show any significant difference between the groups exposed to Mn2+ and the respective control groups; in contrast, a major increase in the CAT activity was observed at 27°C in the group exposed to Mn2+ compared to the control group. The genotoxic analyses showed that in all animals exposed to Mn2+, the number of red cells with micronuclei increased significantly compared to the respective control groups. There was also a significant increase in the incidence of DNA damage in the groups exposed to Mn2+. At a temperature of 24ºC, animals exposed to Mn2+ had more DNA damage than those at 27°C. It is likely that the increase in temperature can also induce oxidative stress. Thus, we conclude that manganese is toxic to the fat snook juveniles, causing genotoxic damage, and when associated with an increase in temperature, manganese can also provoke an increase in oxidative stress.
Collapse
|
20
|
Huang W, Ren C, Li H, Huo D, Wang Y, Jiang X, Tian Y, Luo P, Chen T, Hu C. Transcriptomic analyses on muscle tissues of Litopenaeus vannamei provide the first profile insight into the response to low temperature stress. PLoS One 2017; 12:e0178604. [PMID: 28575089 PMCID: PMC5456072 DOI: 10.1371/journal.pone.0178604] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/16/2017] [Indexed: 01/31/2023] Open
Abstract
The Pacific white shrimp (Litopenaeus vannamei) is an important cultured crustacean species worldwide. However, little is known about the molecular mechanism of this species involved in the response to cold stress. In this study, four separate RNA-Seq libraries of L. vannamei were generated from 13°C stress and control temperature. Total 29,662 of Unigenes and overall of 19,619 annotated genes were obtained. Three comparisons were carried out among the four libraries, in which 72 of the top 20% of differentially-expressed genes were obtained, 15 GO and 5 KEGG temperature-sensitive pathways were fished out. Catalytic activity (GO: 0003824) and Metabolic pathways (ko01100) were the most annotated GO and KEGG pathways in response to cold stress, respectively. In addition, Calcium, MAPK cascade, Transcription factor and Serine/threonine-protein kinase signal pathway were picked out and clustered. Serine/threonine-protein kinase signal pathway might play more important roles in cold adaptation, while other three signal pathway were not widely transcribed. Our results had summarized the differentially-expressed genes and suggested the major important signaling pathways and related genes. These findings provide the first profile insight into the molecular basis of L. vannamei response to cold stress.
Collapse
Affiliation(s)
- Wen Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, Guangdong, China
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, Guangdong, China
| | - Hongmei Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Da Huo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yanhong Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yushun Tian
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Peng Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, Guangdong, China
- * E-mail: (CH); (TC)
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, Guangdong, China
- * E-mail: (CH); (TC)
| |
Collapse
|
21
|
Foucreau N, Jehan C, Lawniczak M, Hervant F. Fluctuating versus constant temperatures: effects on metabolic rate and oxidative damages in freshwater crustacean embryos. CAN J ZOOL 2016. [DOI: 10.1139/cjz-2015-0114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rising temperatures will pose a major threat, notably for freshwater ecosystems, in the decades to come. Temperature, a major environmental factor, affects organisms’ physiology and metabolism. Most studies of temperature effect address constant thermal regime (CTR), whereas organisms are exposed to fluctuating thermal regime (FTR) in their natural environments. In addition, previous works have predominantly addressed issues of thermal tolerance in adults rather than in early life stages. Therefore, for the first time to our knowledge, we aimed to investigate the influence of thermal conditions, either FTR or CTR, on the physiology of the crustacean amphipod Gammarus roeseli Gervais, 1835 at different embryonic stages. We measured the metabolic rate and the TBARS (thiobarbituric acid reactive substances) body content (to assess the level of oxidative damage). Oxygen consumption rate strongly increased throughout embryo development, whereas oxidative damages did not clearly change. In addition, the embryos tended to consume oxygen equally but displayed less oxidative damage when developing under FTR compared with developing under CTR. Moreover, our results revealed that fluctuating temperatures (and especially the existence of a colder (nonstressful) period during the day) could allow cell-damage repairs, and therefore, allow G. roeseli embryos to ensure good development by implementing an efficient protection response against oxidative stress.
Collapse
Affiliation(s)
- Natacha Foucreau
- UMR CNRS 5023, Ecologie des Hydrosystèmes Naturels et Anthropisés, Université de Lyon, Université Lyon 1, ENTPE, 6, rue R. Dubois, 69622 Villeurbanne CEDEX, France
- UMR CNRS 5023, Ecologie des Hydrosystèmes Naturels et Anthropisés, Université de Lyon, Université Lyon 1, ENTPE, 6, rue R. Dubois, 69622 Villeurbanne CEDEX, France
| | - Charly Jehan
- UMR CNRS 5023, Ecologie des Hydrosystèmes Naturels et Anthropisés, Université de Lyon, Université Lyon 1, ENTPE, 6, rue R. Dubois, 69622 Villeurbanne CEDEX, France
- UMR CNRS 5023, Ecologie des Hydrosystèmes Naturels et Anthropisés, Université de Lyon, Université Lyon 1, ENTPE, 6, rue R. Dubois, 69622 Villeurbanne CEDEX, France
| | - Martin Lawniczak
- UMR CNRS 5023, Ecologie des Hydrosystèmes Naturels et Anthropisés, Université de Lyon, Université Lyon 1, ENTPE, 6, rue R. Dubois, 69622 Villeurbanne CEDEX, France
- UMR CNRS 5023, Ecologie des Hydrosystèmes Naturels et Anthropisés, Université de Lyon, Université Lyon 1, ENTPE, 6, rue R. Dubois, 69622 Villeurbanne CEDEX, France
| | - Frédéric Hervant
- UMR CNRS 5023, Ecologie des Hydrosystèmes Naturels et Anthropisés, Université de Lyon, Université Lyon 1, ENTPE, 6, rue R. Dubois, 69622 Villeurbanne CEDEX, France
- UMR CNRS 5023, Ecologie des Hydrosystèmes Naturels et Anthropisés, Université de Lyon, Université Lyon 1, ENTPE, 6, rue R. Dubois, 69622 Villeurbanne CEDEX, France
| |
Collapse
|
22
|
Auguste M, Mestre NC, Rocha TL, Cardoso C, Cueff-Gauchard V, Le Bloa S, Cambon-Bonavita MA, Shillito B, Zbinden M, Ravaux J, Bebianno MJ. Development of an ecotoxicological protocol for the deep-sea fauna using the hydrothermal vent shrimp Rimicaris exoculata. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:277-285. [PMID: 27101410 DOI: 10.1016/j.aquatox.2016.03.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/24/2016] [Accepted: 03/29/2016] [Indexed: 06/05/2023]
Abstract
In light of deep-sea mining industry development, particularly interested in massive-sulphide deposits enriched in metals with high commercial value, efforts are increasing to better understand potential environmental impacts to local fauna. The aim of this study was to assess the natural background levels of biomarkers in the hydrothermal vent shrimp Rimicaris exoculata and their responses to copper exposure at in situ pressure (30MPa) as well as the effects of depressurization and pressurization of the high-pressure aquarium IPOCAMP. R. exoculata were collected from the chimney walls of the hydrothermal vent site TAG (Mid Atlantic Ridge) at 3630m depth during the BICOSE cruise in 2014. Tissue metal accumulation was quantified in different tissues (gills, hepatopancreas and muscle) and a battery of biomarkers was measured: metal exposure (metallothioneins), oxidative stress (catalase, superoxide dismutase, glutathione-S-transferase and glutathione peroxidase) and oxidative damage (lipid peroxidation). Data show a higher concentration of Cu in the hepatopancreas and a slight increase in the gills after incubations (for both exposed groups). Significant induction of metallothioneins was observed in the gills of shrimps exposed to 4μM of Cu compared to the control group. Moreover, activities of enzymes were detected for the in situ group, showing a background protection against metal toxicity. Results suggest that the proposed method, including a physiologically critical step of pressurizing and depressurizing the test chamber to enable the seawater exchange during exposure to contaminants, is not affecting metal accumulation and biomarkers response and may prove a useful method to assess toxicity of contaminants in deep-sea species.
Collapse
Affiliation(s)
- M Auguste
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005 139 Faro, Portugal
| | - N C Mestre
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005 139 Faro, Portugal.
| | - T L Rocha
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005 139 Faro, Portugal
| | - C Cardoso
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005 139 Faro, Portugal
| | - V Cueff-Gauchard
- Ifremer Centre Bretagne, REM/EEP/Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197, Ifremer, UBO, CNRS, ZI Pointe du Diable, CS10070, 29280 Plouzané, France; UBO, UMR 6197, UBO, Ifremer, CNRS, IUEM Rue Dumont d'Urville, 29280 Plouzané, France; CNRS, UMR 6197, CNRS, Ifremer, UBO, IUEM Rue Dumont d'Urville, 29280 Plouzané, France
| | - S Le Bloa
- Ifremer Centre Bretagne, REM/EEP/Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197, Ifremer, UBO, CNRS, ZI Pointe du Diable, CS10070, 29280 Plouzané, France; UBO, UMR 6197, UBO, Ifremer, CNRS, IUEM Rue Dumont d'Urville, 29280 Plouzané, France; CNRS, UMR 6197, CNRS, Ifremer, UBO, IUEM Rue Dumont d'Urville, 29280 Plouzané, France
| | - M A Cambon-Bonavita
- Ifremer Centre Bretagne, REM/EEP/Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197, Ifremer, UBO, CNRS, ZI Pointe du Diable, CS10070, 29280 Plouzané, France; UBO, UMR 6197, UBO, Ifremer, CNRS, IUEM Rue Dumont d'Urville, 29280 Plouzané, France; CNRS, UMR 6197, CNRS, Ifremer, UBO, IUEM Rue Dumont d'Urville, 29280 Plouzané, France
| | - B Shillito
- Sorbonne Universités, UPMC Univ. Paris 06, UMR CNRS 7208, MNHN/IRD-207/UCN/UA, Biologie des Organismes et Ecosystèmes Aquatiques, 7 Quai St. Bernard, 75252 Cedex 5 Paris, France
| | - M Zbinden
- Sorbonne Universités, UPMC Univ. Paris 06, UMR CNRS 7208, MNHN/IRD-207/UCN/UA, Biologie des Organismes et Ecosystèmes Aquatiques, 7 Quai St. Bernard, 75252 Cedex 5 Paris, France
| | - J Ravaux
- Sorbonne Universités, UPMC Univ. Paris 06, UMR CNRS 7208, MNHN/IRD-207/UCN/UA, Biologie des Organismes et Ecosystèmes Aquatiques, 7 Quai St. Bernard, 75252 Cedex 5 Paris, France
| | - M J Bebianno
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005 139 Faro, Portugal
| |
Collapse
|
23
|
Kim HJ, Suga K, Kim BM, Rhee JS, Lee JS, Hagiwara A. Light-dependent transcriptional events during resting egg hatching of the rotifer Brachionus manjavacas. Mar Genomics 2015; 20:25-31. [PMID: 25703093 DOI: 10.1016/j.margen.2015.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 01/30/2015] [Accepted: 02/06/2015] [Indexed: 11/26/2022]
Abstract
Rotifer resting eggs often have to endure harsh environmental conditions during the diapause phase. They are stimulated by light to hatch. In order to study the hatching mechanism, we observed resting eggs and measured their transcriptional expression under different light exposure periods (total darkness, and after 30 min, and 4h light). By using differential-display reverse transcription PCR (DDRT-PCR), we isolated 80 genes that displayed different expression patterns in response to the three light treatments: 20 genes were expressed in total darkness, 40 different genes were differentially expressed under 30 min light, and 20 further genes were expressed after 4h of light. The resting eggs showed no phenotypic differences in embryonic development during the 4h illumination period. In general, the expression patterns of the analyzed genes in resting eggs were differentially modulated by light exposure time. In total darkness, resting eggs mainly expressed genes encoding cell defense and homeostasis functions. In the 30 min illumination group, we found enriched expression of genes encoding fatty acid metabolism-related components, including Acyl-CoA dehydrogenase (ACAD). Genes encoding cellular and embryonic developmental functions were highly observed in the 30 min-illuminated group but were not observed in the 4h-illuminated group. Real-time RT-PCR revealed that several transcripts such as encoding V-type H(+)-translocating pyrophosphatase (V-PPase) and Meckelin had prolonged expression levels when exposed to light for 4h. In the 4h illuminated group, the RecQ protein-like 5 (RECQL5) gene was enriched. This RECQL5 gene may be expressed to protect the developing embryo from continuous light exposure. The data presented in this study indicate that DDRT-PCR-aided gene screening can be helpful to isolate candidate genes involved in the hatching process.
Collapse
Affiliation(s)
- Hee-Jin Kim
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan.
| | - Koushirou Suga
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| | - Bo-Mi Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 406-772, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Atsushi Hagiwara
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| |
Collapse
|
24
|
Madeira D, Mendonça V, Dias M, Roma J, Costa PM, Larguinho M, Vinagre C, Diniz MS. Physiological, cellular and biochemical thermal stress response of intertidal shrimps with different vertical distributions: Palaemon elegans and Palaemon serratus. Comp Biochem Physiol A Mol Integr Physiol 2015; 183:107-15. [PMID: 25582544 DOI: 10.1016/j.cbpa.2014.12.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 12/30/2014] [Accepted: 12/31/2014] [Indexed: 10/24/2022]
Abstract
The ability to cope with high temperature variations is a critical factor in intertidal communities. Two species of intertidal rocky shore shrimps (Palaemon sp.) with different vertical distributions were collected from the Portuguese coast in order to test if they were differentially sensitive to thermal stress. Three distinct levels of biological organization (organismal, biochemical, and cellular) were surveyed. The shrimp were exposed to a constant rate of temperature increase of 1°C x h(-1), starting at 20°C until reaching the CTMax (critical thermal maximum). During heat stress, two biomarkers of protein damage were quantified in the muscle via enzyme-linked immunosorbent assays: heat shock proteins HSP70 (hsp70/hsc70) and total ubiquitin. Muscle histopathological alterations caused by temperature were also evaluated. CTMax values were not significantly different between the congeners (P. elegans 33.4 ± 0.5 °C; P. serratus 33.0 ± 0.5 °C). Biomarker levels did not increase along the temperature trial, but P. elegans (higher intertidal) showed higher amounts of HSP70 and total ubiquitin than P. serratus (lower intertidal). HSP70 and total ubiquitin levels showed a positive significant correlation in both species, suggesting that their association is important in thermal tolerance. Histopathological observations of muscle tissue in P. serratus showed no gross alterations due to temperature but did show localized atrophy of muscle fibers at CTMax. In P. elegans, alterations occurred at a larger scale, showing multiple foci of atrophic muscular fascicles caused by necrotic or autolytic processes. In conclusion, Palaemon congeners displayed different responses to stress at a cellular level, with P. elegans having greater biomarker levels and histopathological alterations.
Collapse
Affiliation(s)
- Diana Madeira
- UCIBIO-REQUIMTE, Departamento de Química, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Vanessa Mendonça
- Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Marta Dias
- Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Joana Roma
- Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Pedro M Costa
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; IMAR-Instituto do Mar, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Miguel Larguinho
- UCIBIO-REQUIMTE, Departamento de Química, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Catarina Vinagre
- Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Mário S Diniz
- UCIBIO-REQUIMTE, Departamento de Química, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
25
|
Vinagre C, Leal I, Mendonça V, Flores AAV. Effect of warming rate on the critical thermal maxima of crabs, shrimp and fish. J Therm Biol 2014; 47:19-25. [PMID: 25526650 DOI: 10.1016/j.jtherbio.2014.10.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/30/2014] [Accepted: 10/31/2014] [Indexed: 10/24/2022]
Abstract
The threat of global warming has prompted numerous recent studies on the thermal tolerance of marine species. A widely used method to determine the upper thermal limit has been the Critical Thermal Maximum (CTMax), a dynamic method, meaning that temperature is increased gradually until a critical point is reached. This method presents several advantages over static methods, however, there is one main issue that hinders interpretation and comparison of CTMax results: the rate at which the temperature is increased. This rate varies widely among published protocols. The aim of the present work was to determine the effect of warming rate on CTMax values, using different animal groups. The influence of the thermal niche occupied by each species (intertidal vs subtidal) and habitat (intertidal vs subtidal) was also investigated. CTMax were estimated at three different rates: 1°Cmin(-1), 1°C30min(-1) and 1°Ch(-1), in two species of crab, Eurypanopeus abbreviatus and Menippe nodifrons, shrimp Palaemon northropi and Hippolyte obliquimanus and fish Bathygobius soporator and Parablennius marmoreus. While there were significant differences in the effect of warming rates for some species, for other species warming rate produced no significant differences (H. obliquimanus and B. soporator). While in some species slower warming rates lead to lower CTMax values (P. northropi and P. marmoreus) in other species the opposite occurred (E. abbreviatus and M. nodifrons). Biological group has a significant effect with crabs' CTMax increasing at slower warming rates, which did not happen for shrimp and fish. Subtidal species presented lower CTMax, at all warming rates tested. This study highlights the importance of estimating CTMax values at realistic rates that species encounter in their environment and thus have an ecological value.
Collapse
Affiliation(s)
- Catarina Vinagre
- Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande 1749-016 Lisboa, Portugal.
| | - Inês Leal
- Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande 1749-016 Lisboa, Portugal
| | - Vanessa Mendonça
- Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Augusto A V Flores
- Centro de Biologia Marinha, Universidade de São Paulo, Rodovia Manoel Hipólito do Rego, km 131.5, São Sebastião, SP, Brazil
| |
Collapse
|