1
|
Onukwufor JO, Kamunde C. Interactive effects of temperature, cadmium, and hypoxia on rainbow trout (Oncorhynchus mykiss) liver mitochondrial bioenergetics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117450. [PMID: 39632330 PMCID: PMC11783143 DOI: 10.1016/j.ecoenv.2024.117450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Fish in their natural environments possess elaborate mechanisms that regulate physiological function to mitigate the adverse effects of multiple environmental stressors such as temperature, metals, and hypoxia. We investigated how warm acclimation affects mitochondrial responses to Cd, hypoxia, and acute temperature shifts (heat shock and cold snap) in rainbow trout. We observed that state 3 respiration driven by complex I (CI) was resistant to the stressors while warm acclimation and Cd reduced complex I +II (CI + II) driven state 3 respiration. In contrast, state 4 (leak) respirations for both CI and CI + II were consistently stimulated by warm acclimation resulting in reduced mitochondrial coupling efficiency (respiratory control ratio [RCR]). Warm acclimation and Cd exacerbated their individual effect on leak respiration to further reduce the RCR. Moreover, the effect of warm acclimation on mitochondrial bioenergetics aligned with its inhibitory effect on activities of citrate synthase and both CI and CII. Unlike the Cd and warm acclimation combined exposure, hypoxia alone and in combination with warm acclimation and/or Cd abolished the stimulation of CI and CI + II powered leak respirations resulting in partial recovery of RCR. The response to acute temperature shifts indicated that while state 3 respiration returned to pre-acclimation level, the leak respiration did not. Overall, our findings suggest a complex in vivo interaction of multiple stressors on mitochondrial function that are not adequately predicted by their individual effects.
Collapse
Affiliation(s)
- John O Onukwufor
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
2
|
Schwieterman GD, Hardison EA, Cox GK, Van Wert JC, Birnie-Gauvin K, Eliason EJ. Mechanisms of cardiac collapse at high temperature in a marine teleost (Girella nigrians). Comp Biochem Physiol A Mol Integr Physiol 2023; 286:111512. [PMID: 37726058 DOI: 10.1016/j.cbpa.2023.111512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
Heat-induced mortality in ectotherms may be attributed to impaired cardiac performance, specifically a collapse in maximum heart rate (fHmax), although the physiological mechanisms driving this phenomenon are still unknown. Here, we tested two proposed factors which may restrict cardiac upper thermal limits: noxious venous blood conditions and oxygen limitation. We hypothesized elevated blood [K+] (hyperkalemia) and low oxygen (hypoxia) would reduce cardiac upper thermal limits in a marine teleost (Girella nigricans), while high oxygen (hyperoxia) would increase thermal limits. We also hypothesized higher acclimation temperatures would exacerbate the harmful effects of an oxygen limitation. Using the Arrhenius breakpoint temperature test, we measured fHmax in acutely warmed fish under control (saline injected) and hyperkalemic conditions (elevated plasma [K+]) while exposed to hyperoxia (200% air saturation), normoxia (100% air saturation), or hypoxia (20% air saturation). We also measured ventricle lactate content and venous blood oxygen partial pressure (PO2) to determine if there were universal thresholds in either metric driving cardiac collapse. Elevated [K+] was not significantly correlated with any cardiac thermal tolerance metric. Hypoxia significantly reduced cardiac upper thermal limits (Arrhenius breakpoint temperature [TAB], peak fHmax, temperature of peak heart rate [TPeak], and temperature at arrhythmia [TARR]). Hyperoxia did not alter cardiac thermal limits compared to normoxia. There was no evidence of a species-wide threshold in ventricular [lactate] or venous PO2. Here, we demonstrate that oxygen limits cardiac thermal tolerance only in instances of hypoxia, but that other physiological processes are responsible for causing temperature-induced heart failure when oxygen is not limited.
Collapse
Affiliation(s)
- Gail D Schwieterman
- Department of Ecology Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA; School of Marine Sciences, University of Maine, Orono, ME, USA; Maine Agricultural and Forest Experiment Station, Orono, ME, USA.
| | - Emily A Hardison
- Department of Ecology Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA. https://twitter.com/eahardison
| | | | - Jacey C Van Wert
- Department of Ecology Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA. https://twitter.com/jacey_van_wert
| | - Kim Birnie-Gauvin
- Department of Ecology Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA; Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark. https://twitter.com/kbg_conserv
| | - Erika J Eliason
- Department of Ecology Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
3
|
Anttila K, Mauduit F, Kanerva M, Götting M, Nikinmaa M, Claireaux G. Cardiovascular oxygen transport and peripheral oxygen extraction capacity contribute to acute heat tolerance in European seabass. Comp Biochem Physiol A Mol Integr Physiol 2023; 275:111340. [PMID: 36347467 DOI: 10.1016/j.cbpa.2022.111340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022]
Abstract
This study evaluated whether different parameters describing cardiovascular function, energy metabolism, oxygen transport and oxidative stress were related to the critical thermal maximum (CTMAX) of European seabass (Dicentrarchus labrax) and if there were differential changes in these parameters during and after heat shock in animals with different CTMAX in order to characterize which physiological features make seabass vulnerable to heat waves. Seabass (n = 621) were tested for CTMAX and the physiological parameters were measured in individuals with good or poor temperature tolerance before and after a heat shock (change in temperature from 15 °C to 28 °C in 1.5 h). Fish with good thermal tolerance had larger ventricles with higher maximal heart rate during the heat shock than individuals with poor tolerance. Furthermore, they initially had a high ventricular Ca2+-ATPase activity, which was reduced to a similar level as in fish with poor tolerance following heat shock. The activity of heart lactate dehydrogenase increased in fish with high tolerance, when they were exposed to heat shock, while the aerobic enzyme activity did not differ between groups. The tolerant individuals had smaller red muscle fibers with higher myoglobin content than the poorly tolerant ones. The poorly tolerant individuals had higher hematocrit, which increased with heat shock in both groups. The poorly tolerant individuals had also higher activity of enzymes related to oxidative stress especially after heat shock. In general, CTMAX was not depending on merely one physiological factor but several organ and cellular parameters were related to the CTMAX of seabass and when working in combination they might protect the highly tolerant seabass from future heat waves.
Collapse
Affiliation(s)
- Katja Anttila
- Department of Biology, University of Turku, FI-20014 Turku, Finland.
| | - Florian Mauduit
- Université de Bretagne Occidentale, LEMAR (UMR 6539), Unité PFOM-ARN, Centre Ifremer de Bretagne, Plouzané 29280, France
| | - Mirella Kanerva
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Miriam Götting
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Mikko Nikinmaa
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Guy Claireaux
- Université de Bretagne Occidentale, LEMAR (UMR 6539), Unité PFOM-ARN, Centre Ifremer de Bretagne, Plouzané 29280, France
| |
Collapse
|
4
|
Digital RNA-seq analysis of the cardiac transcriptome response to thermal stress in turbot Scophthalmus maximus. J Therm Biol 2021; 104:103141. [DOI: 10.1016/j.jtherbio.2021.103141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/03/2021] [Accepted: 11/26/2021] [Indexed: 11/19/2022]
|
5
|
Gamperl AK, Syme DA. Temperature effects on the contractile performance and efficiency of oxidative muscle from a eurythermal versus a stenothermal salmonid. J Exp Biol 2021; 224:jeb242487. [PMID: 34350949 PMCID: PMC8353165 DOI: 10.1242/jeb.242487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/24/2021] [Indexed: 01/18/2023]
Abstract
We compared the thermal sensitivity of oxidative muscle function between the eurythermal Atlantic salmon (Salmo salar) and the more stenothermal Arctic char (Salvelinus alpinus; which prefers cooler waters). Power output was measured in red skeletal muscle strips and myocardial trabeculae, and efficiency (net work/energy consumed) was measured for trabeculae, from cold (6°C) and warm (15°C) acclimated fish at temperatures from 2 to 26°C. The mass-specific net power produced by char red muscle was greater than in salmon, by 2-to 5-fold depending on test temperature. Net power first increased, then decreased, when the red muscle of 6°C-acclimated char was exposed to increasing temperature. Acclimation to 15°C significantly impaired mass-specific power in char (by ∼40-50%) from 2 to 15°C, but lessened its relative decrease between 15 and 26°C. In contrast, maximal net power increased, and then plateaued, with increasing temperature in salmon from both acclimation groups. Increasing test temperature resulted in a ∼3- to 5-fold increase in maximal net power produced by ventricular trabeculae in all groups, and this effect was not influenced by acclimation temperature. Nonetheless, lengthening power was higher in trabeculae from warm-acclimated char, and char trabeculae could not contract as fast as those from salmon. Finally, the efficiency of myocardial net work was approximately 2-fold greater in 15°C-acclimated salmon than char (∼15 versus 7%), and highest at 20°C in salmon. This study provides several mechanistic explanations as to their inter-specific difference in upper thermal tolerance, and potentially why southern char populations are being negatively impacted by climate change.
Collapse
Affiliation(s)
- A. Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland, St John's, NL, CanadaA1C 5S7
| | - Douglas A. Syme
- Department of Biological Sciences, University of Calgary, Calgary, AB, CanadaT2N 1N4
| |
Collapse
|
6
|
Beemelmanns A, Zanuzzo FS, Sandrelli RM, Rise ML, Gamperl AK. The Atlantic salmon's stress- and immune-related transcriptional responses to moderate hypoxia, an incremental temperature increase, and these challenges combined. G3 (BETHESDA, MD.) 2021; 11:jkab102. [PMID: 34015123 PMCID: PMC8613830 DOI: 10.1093/g3journal/jkab102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
The marine environment is predicted to become warmer, and more hypoxic, and these conditions may negatively impact the health and survival of coastal fish species, including wild and farmed Atlantic salmon (Salmo salar). Thus, we examined how: (1) moderate hypoxia (∼70% air saturation) at 12°C for 3 weeks; (2) an incremental temperature increase from 12°C to 20°C (at 1°C week-1) followed by 4 weeks at 20°C; and (3) treatment "2" combined with moderate hypoxia affected transcript expression in the liver of post-smolts as compared to control conditions (normoxia, 12°C). Specifically, we assessed the expression of 45 genes related to the heat shock response, oxidative stress, apoptosis, metabolism and immunity using a high-throughput qPCR approach (Fluidigm Biomark™ HD). The expression profiles of 27 "stress"-related genes indicated that: (i) moderate hypoxia affected the expression of several stress genes at 12°C; (ii) their expression was impacted by 16°C under normoxic conditions, and this effect increased until 20°C; (iii) the effects of moderate hypoxia were not additive to those at temperatures above 16°C; and (iv) long-term (4 weeks) exposure to 20°C, with or without hypoxia, resulted in a limited acclimatory response. In contrast, the expression of 15 immune-related genes was not greatly affected until temperatures reached 20°C, and this effect was particularly evident in fish exposed to the added challenge of hypoxia. These results provide valuable information on how these two important environmental factors affect the "stress" physiology and immunology of Atlantic salmon, and we identify genes that may be useful as hypoxia and/or temperature biomarkers in salmonids and other fishes.
Collapse
Affiliation(s)
- Anne Beemelmanns
- Department of Ocean Sciences, Memorial University,
St. John’s, NL A1C 5S7, Canada
| | - Fábio S Zanuzzo
- Department of Ocean Sciences, Memorial University,
St. John’s, NL A1C 5S7, Canada
| | - Rebeccah M Sandrelli
- Department of Ocean Sciences, Memorial University,
St. John’s, NL A1C 5S7, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University,
St. John’s, NL A1C 5S7, Canada
| | - A Kurt Gamperl
- Department of Ocean Sciences, Memorial University,
St. John’s, NL A1C 5S7, Canada
| |
Collapse
|
7
|
Castori M. Deconstructing and reconstructing joint hypermobility on an evo-devo perspective. Rheumatology (Oxford) 2021; 60:2537-2544. [PMID: 33668066 DOI: 10.1093/rheumatology/keab196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/15/2021] [Accepted: 02/17/2021] [Indexed: 11/14/2022] Open
Abstract
Joint hypermobility is a common characteristic in humans. Its non-casual association with various musculoskeletal complaints is known and currently defined "the spectrum". It includes hypermobile Ehlers-Danlos syndrome (hEDS) and hypermobility spectrum disorders (HSD). hEDS is recognized by a set of descriptive criteria, while HSD is the background diagnosis for individuals not fulfilling these criteria. Little is known about the aetiopathogenesis of the spectrum. It may be interpreted as a complex trait according to the integration model. Particularly, the spectrum is common in the general population, affects morphology, presents extreme clinical variability and is characterized by marked sex bias without a clear Mendelian or hormonal explanation. Joint hypermobility and the other hEDS systemic criteria are intended as qualitative derivatives of continuous traits of normal morphological variability. The need for a minimum set of criteria for hEDS diagnosis implies a tendency to co-vary of these underlying continuous traits. In evolutionary biology, such a co-variation (i.e. integration) is driven by multiple forces, including genetic, developmental, functional and environmental/acquired interactors. The aetiopathogenesis of the spectrum may be resolved by a deeper understanding of phenotypic variability, which superimposes on normal morphological variability.
Collapse
Affiliation(s)
- Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| |
Collapse
|
8
|
Iverson ENK, Nix R, Abebe A, Havird JC. Thermal Responses Differ across Levels of Biological Organization. Integr Comp Biol 2021; 60:361-374. [PMID: 32483618 DOI: 10.1093/icb/icaa052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Temperature is one of the most important environmental factors driving the genome-to-phenome relationship. Metabolic rates and related biological processes are predicted to increase with temperature due to the biophysical laws of chemical reactions. However, selection can also act on these processes across scales of biological organization, from individual enzymes to whole organisms. Although some studies have examined thermal responses across multiple scales, there is no general consensus on how these responses vary depending on the level of organization, or whether rates actually follow predicted theoretical patterns such as Arrhenius-like exponential responses or thermal performance curves (TPCs) that show peak responses. Here, we performed a meta-analysis on studies of ectotherms where biological rates were measured across the same set of temperatures, but at multiple levels of biological organization: enzyme activities, mitochondrial respiration, and/or whole-animal metabolic rates. Our final dataset consisted of 235 pairwise comparisons between levels of organization from 13 publications. Thermal responses differed drastically across levels of biological organization, sometimes showing completely opposite patterns. We developed a new effect size metric, "organizational disagreement" (OD) to quantify the difference in responses among levels of biological organization. Overall, rates at higher levels of biological organization (e.g., whole animal metabolic rates) increased more quickly with temperature than rates at lower levels, contrary to our predictions. Responses may differ across levels due to differing consequences of biochemical laws with increasing organization or due to selection for different responses. However, taxa and tissues examined generally did not affect OD. Theoretical TPCs, where rates increase to a peak value and then drop, were only rarely observed (12%), possibly because a broad range of test temperatures was rarely investigated. Exponential increases following Arrhenius predictions were more common (29%). This result suggests a classic assumption about thermal responses in biological rates is rarely observed in empirical datasets, although our results should be interpreted cautiously due to the lack of complete thermal profiles. We advocate for authors to explicitly address OD in their interpretations and to measure thermal responses across a wider, more incremental range of temperatures. These results further emphasize the complexity of connecting the genome to the phenome when environmental plasticity is incorporated: the impact of the environment on the phenotype can depend on the scale of organization considered.
Collapse
Affiliation(s)
- Erik N K Iverson
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Rachel Nix
- Hankamer School of Business, Baylor University, Waco, TX 76798, USA
| | - Ash Abebe
- Department of Mathematics & Statistics, Auburn University, Auburn, AL 36849, USA
| | - Justin C Havird
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
9
|
Gerber L, Clow KA, Gamperl AK. Acclimation to warm temperatures has important implications for mitochondrial function in Atlantic salmon ( Salmo salar). J Exp Biol 2021; 224:jeb236257. [PMID: 33288533 DOI: 10.1242/jeb.236257] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022]
Abstract
In fish, the capacity of thermal acclimation to preserve cardiac mitochondrial function under future warming scenarios is important to understand given the central roles that cardiac energy metabolism and performance play in this taxa's thermal tolerance. We acclimated Atlantic salmon to 12 and 20°C (for >2 months), and investigated the effects of acute and chronic warming on cardiac mitochondrial respiration and reactive oxygen species (ROS) production (release rate) using high-resolution fluorespirometry. Further, we compared the sensitivity of mitochondrial respiration to nitric oxide (i.e. the NO IC50), and assessed the mitochondrial response to anoxia-reoxygenation (AR). Acute exposure to 20°C increased maximal mitochondrial respiration by ∼55%; however, the mitochondria's complex I respiratory control ratio was 17% lower and ROS production was increased by ≥60%. Acclimation to 20°C: (1) preserved mitochondrial coupling and aerobic capacity; (2) decreased the mitochondria's ROS production by ∼30%; (3) increased the mitochondria's NO IC50 by ∼23%; and (4) improved mitochondrial membrane integrity at 20°C. AR did not affect mitochondrial function at 12°C, but acute exposure to 20°C and AR depressed maximal mitochondrial respiration (by ∼9%) and coupling (by ∼16%) without impacting ROS production. Finally, warm acclimation did not improve the capacity of mitochondria to recover from AR, indicating that there was no 'cross-tolerance' between these challenges. Our findings provide compelling evidence that thermal plasticity of cardiac mitochondrial function contributes to the Atlantic salmon's capability to survive at ≥20°C for prolonged periods, but call into question whether this plasticity may allow them to withstand high temperatures when combined with other stressors.
Collapse
Affiliation(s)
- Lucie Gerber
- Department of Ocean Sciences, Memorial University, St. John's, NL A1C 5S7, Canada
| | - Kathy A Clow
- Department of Ocean Sciences, Memorial University, St. John's, NL A1C 5S7, Canada
| | - Anthony K Gamperl
- Department of Ocean Sciences, Memorial University, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
10
|
The effects of elevated potassium, acidosis, reduced oxygen levels, and temperature on the functional properties of isolated myocardium from three elasmobranch fishes: clearnose skate (Rostroraja eglanteria), smooth dogfish (Mustelus canis), and sandbar shark (Carcharhinus plumbeus). J Comp Physiol B 2021; 191:127-141. [PMID: 33394123 DOI: 10.1007/s00360-020-01328-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/27/2020] [Accepted: 11/15/2020] [Indexed: 10/22/2022]
Abstract
Elevated plasma potassium levels (hyperkalemia), reduced plasma pH (acidosis), reduced blood oxygen content, and elevated temperatures are associated with species-specific rates of at-vessel and post-release mortality in elasmobranch fishes. The mechanism linking these physiological disturbances to mortality remains undetermined however, and we hypothesize that the proximate cause is reduced myocardial function. We measured changes in the functional properties of isolated ventricular myocardial strips from clearnose skate (Rostroraja eglanteria), smooth dogfish (Mustelus canis), and sandbar shark (Carcharhinus plumbeus) when subjected to the following stressors (both in isolation and in combination): hyperkalemia (7.4 mM K+), acidosis (from 7.9 to 7.1), and reduced oxygen (to 31% O2 saturation) applied at temperatures 5 °C above and below holding temperatures. We selected these species based on phylogenetic distance, diverse routine activity levels, and their tolerance to capture and transport. Stressors had a few significant species-specific detrimental impacts on myocardial function (e.g., a 33-45% decrease in net force under acidosis + low O2). Net force production of myocardial strips from clearnose skate and smooth dogfish approximately doubled following exposure to isoproterenol, demonstrating that these species possess beta-adrenergic receptors and that their stimulation could provide a mechanism for preservation of cardiac function during stress. Our results suggest that disruption of physiological homeostasis associated with capture may fatally impair cardiac function in some elasmobranch species, although research with more severe stressors is needed.
Collapse
|
11
|
Gerber L, Clow KA, Mark FC, Gamperl AK. Improved mitochondrial function in salmon (Salmo salar) following high temperature acclimation suggests that there are cracks in the proverbial 'ceiling'. Sci Rep 2020; 10:21636. [PMID: 33303856 PMCID: PMC7729908 DOI: 10.1038/s41598-020-78519-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/22/2020] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial function can provide key insights into how fish will respond to climate change, due to its important role in heart performance, energy metabolism and oxidative stress. However, whether warm acclimation can maintain or improve the energetic status of the fish heart when exposed to short-term heat stress is not well understood. We acclimated Atlantic salmon, a highly aerobic eurythermal species, to 12 and 20 °C, then measured cardiac mitochondrial functionality and integrity at 20 °C and at 24, 26 and 28 °C (this species' critical thermal maximum ± 2 °C). Acclimation to 20 °C vs. 12 °C enhanced many aspects of mitochondrial respiratory capacity and efficiency up to 24 °C, and preserved outer mitochondrial membrane integrity up to 26 °C. Further, reactive oxygen species (ROS) production was dramatically decreased at all temperatures. These data suggest that salmon acclimated to 'normal' maximum summer temperatures are capable of surviving all but the most extreme ocean heat waves, and that there is no 'tradeoff' in heart mitochondrial function when Atlantic salmon are acclimated to high temperatures (i.e., increased oxidative phosphorylation does not result in heightened ROS production). This study suggests that fish species may show quite different acclimatory responses when exposed to prolonged high temperatures, and thus, susceptibility to climate warming.
Collapse
Affiliation(s)
- Lucie Gerber
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada.
| | - Kathy A Clow
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| | - Felix C Mark
- Section Integrative Ecophysiology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Anthony K Gamperl
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| |
Collapse
|
12
|
Little AG, Loughland I, Seebacher F. What do warming waters mean for fish physiology and fisheries? JOURNAL OF FISH BIOLOGY 2020; 97:328-340. [PMID: 32441327 DOI: 10.1111/jfb.14402] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Environmental signals act primarily on physiological systems, which then influence higher-level functions such as movement patterns and population dynamics. Increases in average temperature and temperature variability associated with global climate change are likely to have strong effects on fish physiology and thereby on populations and fisheries. Here we review the principal mechanisms that transduce temperature signals and the physiological responses to those signals in fish. Temperature has a direct, thermodynamic effect on biochemical reaction rates. Nonetheless, plastic responses to longer-term thermal signals mean that fishes can modulate their acute thermal responses to compensate at least partially for thermodynamic effects. Energetics are particularly relevant for growth and movement, and therefore for fisheries, and temperature can have pronounced effects on energy metabolism. All energy (ATP) production is ultimately linked to mitochondria, and temperature has pronounced effects on mitochondrial efficiency and maximal capacities. Mitochondria are dependent on oxygen as the ultimate electron acceptor so that cardiovascular function and oxygen delivery link environmental inputs with energy metabolism. Growth efficiency, that is the conversion of food into tissue, changes with temperature, and there are indications that warmer water leads to decreased conversion efficiencies. Moreover, movement and migration of fish relies on muscle function, which is partially dependent on ATP production but also on intracellular calcium cycling within the myocyte. Neuroendocrine processes link environmental signals to regulated responses at the level of different tissues, including muscle. These physiological processes within individuals can scale up to population responses to climate change. A mechanistic understanding of thermal responses is essential to predict the vulnerability of species and populations to climate change.
Collapse
Affiliation(s)
| | - Isabella Loughland
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, Australia
| |
Collapse
|
13
|
O'Brien KM, Rix AS, Egginton S, Farrell AP, Crockett EL, Schlauch K, Woolsey R, Hoffman M, Merriman S. Cardiac mitochondrial metabolism may contribute to differences in thermal tolerance of red- and white-blooded Antarctic notothenioid fishes. J Exp Biol 2018; 221:jeb177816. [PMID: 29895681 PMCID: PMC6104818 DOI: 10.1242/jeb.177816] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/04/2018] [Indexed: 12/18/2022]
Abstract
Studies in temperate fishes provide evidence that cardiac mitochondrial function and the capacity to fuel cardiac work contribute to thermal tolerance. Here, we tested the hypothesis that decreased cardiac aerobic metabolic capacity contributes to the lower thermal tolerance of the haemoglobinless Antarctic icefish, Chaenocephalus aceratus, compared with that of the red-blooded Antarctic species, Notothenia coriiceps. Maximal activities of citrate synthase (CS) and lactate dehydrogenase (LDH), respiration rates of isolated mitochondria, adenylate levels and changes in mitochondrial protein expression were quantified from hearts of animals held at ambient temperature or exposed to their critical thermal maximum (CTmax). Compared with C. aceratus, activity of CS, ATP concentration and energy charge were higher in hearts of N. coriiceps at ambient temperature and CTmax While state 3 mitochondrial respiration rates were not impaired by exposure to CTmax in either species, state 4 rates, indicative of proton leakage, increased following exposure to CTmax in C. aceratus but not N. coriiceps The interactive effect of temperature and species resulted in an increase in antioxidants and aerobic metabolic enzymes in N. coriiceps but not in C. aceratus Together, our results support the hypothesis that the lower aerobic metabolic capacity of C. aceratus hearts contributes to its low thermal tolerance.
Collapse
Affiliation(s)
- Kristin M O'Brien
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Anna S Rix
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Stuart Egginton
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Anthony P Farrell
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | | | - Karen Schlauch
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Rebekah Woolsey
- Nevada Proteomics Center, University of Nevada, Reno, NV 89557, USA
| | - Megan Hoffman
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Sean Merriman
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| |
Collapse
|
14
|
Christen F, Desrosiers V, Dupont-Cyr BA, Vandenberg GW, Le François NR, Tardif JC, Dufresne F, Lamarre SG, Blier PU. Thermal tolerance and thermal sensitivity of heart mitochondria: Mitochondrial integrity and ROS production. Free Radic Biol Med 2018; 116:11-18. [PMID: 29294390 DOI: 10.1016/j.freeradbiomed.2017.12.037] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/17/2017] [Accepted: 12/29/2017] [Indexed: 12/21/2022]
Abstract
Cardiac mitochondrial metabolism provides 90% of the ATP necessary for the contractile exertion of the heart muscle. Mitochondria are therefore assumed to play a pivotal role in heart failure (HF), cardiovascular disease and ageing. Heat stress increases energy metabolism and oxygen demand in tissues throughout the body and imposes a major challenge on the heart, which is suspected of being the first organ to fail during heat stress. The underlying mechanisms inducing heart failure are still unclear. To pinpoint the processes implicated in HF during heat stress, we measured mitochondrial respiration rates and hydrogen peroxide production of isolated Arctic char (Salvelinus alpinus) heart mitochondria at 4 temperatures: 10°C (acclimation), 15°C, 20°C and 25°C (just over critical maximum). We found that at temperature ranges causing the loss of an organism's general homeostasis (between 20°C and 25°C) and with a substrate combination close to physiological conditions, the heat-induced increase in mitochondrial oxygen consumption levels off. More importantly, at the same state, hydrogen peroxide efflux increased by almost 50%. In addition, we found that individuals with low mitochondrial respiration rates produced more hydrogen peroxide at 10°C, 15°C and 20°C. This could indicate that individuals with cardiac mitochondria having a low respiratory capacity, have a more fragile heart and will be more prone to oxidative stress and HF, and less tolerant to temperature changes and other stressors. Our results show that, at temperatures close to the thermal limit, mitochondrial capacity is compromised and ROS production rates increase. This could potentially alter the performance of the cardiac muscle and lead to heat-induced HF underlining the important role that mitochondria play in setting thermal tolerance limits.
Collapse
Affiliation(s)
- Felix Christen
- Université du Québec à Rimouski, Département de biologie, Rimouski, Québec, Canada G5L3A1
| | - Véronique Desrosiers
- Université du Québec à Rimouski, Département de biologie, Rimouski, Québec, Canada G5L3A1
| | - Bernard A Dupont-Cyr
- Université du Québec à Rimouski, Département de biologie, Rimouski, Québec, Canada G5L3A1
| | - Grant W Vandenberg
- Université Laval, Département de sciences animales, Québec, Canada G1V 0A6
| | | | - Jean-Claude Tardif
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada H1T 1C8
| | - France Dufresne
- Université du Québec à Rimouski, Département de biologie, Rimouski, Québec, Canada G5L3A1
| | - Simon G Lamarre
- Université de Moncton, Département de biologie, Moncton, New-Brunswick, Canada E1A 3E9
| | - Pierre U Blier
- Université du Québec à Rimouski, Département de biologie, Rimouski, Québec, Canada G5L3A1.
| |
Collapse
|
15
|
Muñoz NJ, Farrell AP, Heath JW, Neff BD. Hematocrit Is Associated with Thermal Tolerance and Modulated by Developmental Temperature in Juvenile Chinook Salmon. Physiol Biochem Zool 2018; 91:757-762. [DOI: 10.1086/695556] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
16
|
Velando A, Costa MM, Kim SY. Sex-specific phenotypes and metabolism-related gene expression in juvenile sticklebacks. Behav Ecol 2017. [DOI: 10.1093/beheco/arx129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Alberto Velando
- Departamento de Ecoloxía e Bioloxía Animal, Campus As Lagoas, Universidade de Vigo, 36310 Vigo, Spain
| | - María M Costa
- Departamento de Ecoloxía e Bioloxía Animal, Campus As Lagoas, Universidade de Vigo, 36310 Vigo, Spain
| | - Sin-Yeon Kim
- Departamento de Ecoloxía e Bioloxía Animal, Campus As Lagoas, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
17
|
Leo E, Kunz KL, Schmidt M, Storch D, Pörtner HO, Mark FC. Mitochondrial acclimation potential to ocean acidification and warming of Polar cod ( Boreogadus saida) and Atlantic cod ( Gadus morhua). Front Zool 2017; 14:21. [PMID: 28416963 PMCID: PMC5391599 DOI: 10.1186/s12983-017-0205-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/30/2017] [Indexed: 12/20/2022] Open
Abstract
Background Ocean acidification and warming are happening fast in the Arctic but little is known about the effects of ocean acidification and warming on the physiological performance and survival of Arctic fish. Results In this study we investigated the metabolic background of performance through analyses of cardiac mitochondrial function in response to control and elevated water temperatures and PCO2 of two gadoid fish species, Polar cod (Boreogadus saida), an endemic Arctic species, and Atlantic cod (Gadus morhua), which is a temperate to cold eurytherm and currently expanding into Arctic waters in the wake of ocean warming. We studied their responses to the above-mentioned drivers and their acclimation potential through analysing the cardiac mitochondrial function in permeabilised cardiac muscle fibres after 4 months of incubation at different temperatures (Polar cod: 0, 3, 6, 8 °C and Atlantic cod: 3, 8, 12, 16 °C), combined with exposure to present (400μatm) and year 2100 (1170μatm) levels of CO2. OXPHOS, proton leak and ATP production efficiency in Polar cod were similar in the groups acclimated at 400μatm and 1170μatm of CO2, while incubation at 8 °C evoked increased proton leak resulting in decreased ATP production efficiency and decreased Complex IV capacity. In contrast, OXPHOS of Atlantic cod increased with temperature without compromising the ATP production efficiency, whereas the combination of high temperature and high PCO2 depressed OXPHOS and ATP production efficiency. Conclusions Polar cod mitochondrial efficiency decreased at 8 °C while Atlantic cod mitochondria were more resilient to elevated temperature; however, this resilience was constrained by high PCO2. In line with its lower habitat temperature and higher degree of stenothermy, Polar cod has a lower acclimation potential to warming than Atlantic cod.
Collapse
Affiliation(s)
- Elettra Leo
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Integrative Ecophysiology, Am Handelshafen 12, D-27570 Bremerhaven, Germany.,University of Bremen, Fachbereich 2, NW 2/Leobener Strasse, D-28359 Bremen, Germany
| | - Kristina L Kunz
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Integrative Ecophysiology, Am Handelshafen 12, D-27570 Bremerhaven, Germany.,University of Bremen, Fachbereich 2, NW 2/Leobener Strasse, D-28359 Bremen, Germany.,Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bentho-Pelagic Processes, Am Alten Hafen 26, D-27568 Bremerhaven, Germany
| | - Matthias Schmidt
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Integrative Ecophysiology, Am Handelshafen 12, D-27570 Bremerhaven, Germany.,University of Bremen, Fachbereich 2, NW 2/Leobener Strasse, D-28359 Bremen, Germany
| | - Daniela Storch
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Integrative Ecophysiology, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Hans-O Pörtner
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Integrative Ecophysiology, Am Handelshafen 12, D-27570 Bremerhaven, Germany.,University of Bremen, Fachbereich 2, NW 2/Leobener Strasse, D-28359 Bremen, Germany
| | - Felix C Mark
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Integrative Ecophysiology, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| |
Collapse
|
18
|
|
19
|
Onukwufor JO, Kibenge F, Stevens D, Kamunde C. Hypoxia-reoxygenation differentially alters the thermal sensitivity of complex I basal and maximal mitochondrial oxidative capacity. Comp Biochem Physiol A Mol Integr Physiol 2016; 201:87-94. [DOI: 10.1016/j.cbpa.2016.06.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/17/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
|
20
|
Lu Y, Wu Z, Song Z, Xiao P, Liu Y, Zhang P, You F. Insight into the heat resistance of fish via blood: Effects of heat stress on metabolism, oxidative stress and antioxidant response of olive flounder Paralichthys olivaceus and turbot Scophthalmus maximus. FISH & SHELLFISH IMMUNOLOGY 2016; 58:125-135. [PMID: 27633671 DOI: 10.1016/j.fsi.2016.09.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/02/2016] [Accepted: 09/10/2016] [Indexed: 06/06/2023]
Abstract
High temperature has direct confinement on fish survival and growth, especially under the background of global warming. Selection of fish line with heat resistance is an important means to address this problem. In the present study, we analyzed the difference in heat resistance between families of olive flounder Paralichthys olivaceus and turbot Scophthalmus maximus, two flatfish species occupying slightly different thermal niches. Then the chosen families were tested to determine their differential response to heat stress (ΔT = +8 °C and +12 °C) in blood, including anaerobic metabolism (lactate), oxidative stress (lipid peroxidation and protein carbonylation) and antioxidant enzymes. Results showed a difference in heat resistance between families of the two species. Among the chosen parameters, growth traits had a significant effect on contents of lactate and malondialdehyd (MDA), and activities of catalase (CAT) and glutathione S-transferase in flounder (P < 0.05), and on MDA content and CAT activity in turbot (P < 0.05). In comparison with heat-sensitive family of each species, levels of all studied parameters were lower and more stable in heat-resistant families after heat stress. What's more, heat resistance of fish significantly influenced contents of lactate and MDA and activity of CAT in flounder (P < 0.05), as well as contents of lactate, MDA and carbonyl and activity of superoxide dismutate (SOD) in turbot (P < 0.05). These results demonstrated that such physiological phenotypes as anaerobic metabolism, oxidative stress and antioxidant enzymes are good biomarkers of fish heat-resistance, being potentially valuable in fish breeding. However, these markers should be applied with more caution when there is a growth discrepancy between fish families.
Collapse
Affiliation(s)
- Yunliang Lu
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| | - Zhihao Wu
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| | - Zongcheng Song
- Shenghang Aquatic Science and Technology Co. Ltd., Weihai 264200, PR China
| | - Peng Xiao
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| | - Ying Liu
- School of Marine Science and Environment Engineering, Dalian Ocean University, Dalian 116023, PR China
| | - Peijun Zhang
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China.
| |
Collapse
|
21
|
Sappal R, Fast M, Stevens D, Kibenge F, Siah A, Kamunde C. Effects of copper, hypoxia and acute temperature shifts on mitochondrial oxidation in rainbow trout (Oncorhynchus mykiss) acclimated to warm temperature. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 169:46-57. [PMID: 26513222 DOI: 10.1016/j.aquatox.2015.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 10/08/2015] [Accepted: 10/10/2015] [Indexed: 06/05/2023]
Abstract
Temperature fluctuations, hypoxia and metals pollution frequently occur simultaneously or sequentially in aquatic systems and their interactions may confound interpretation of their biological impacts. With a focus on energy homeostasis, the present study examined how warm acclimation influences the responses and interactions of acute temperature shift, hypoxia and copper (Cu) exposure in fish. Rainbow trout (Oncorhynchus mykiss) were acclimated to cold (11°C; control) and warm (20°C) temperature for 3 weeks followed by exposure to environmentally realistic levels of Cu and hypoxia for 24h. Subsequently, mitochondrial electron transport system (ETS) respiratory activity supported by complexes I-IV (CI-IV), plasma metabolites and condition indices were measured. Warm acclimation reduced fish condition, induced aerobic metabolism and altered the responses of fish to acute temperature shift, hypoxia and Cu. Whereas warm acclimation decelerated the ETS and increased the sensitivity of maximal oxidation rates of the proximal (CI and II) complexes to acute temperature shift, it reduced the thermal sensitivity of state 4 (proton leak). Effects of Cu with and without hypoxia were variable depending on the acclimation status and functional index. Notably, Cu stimulated respiratory activity in the proximal ETS segments, while hypoxia was mostly inhibitory and minimized the stimulatory effect of Cu. The effects of Cu and hypoxia were modified by temperature and showed reciprocal antagonistic interaction on the ETS and plasma metabolites, with modest additive actions limited to CII and IV state 4. Overall, our results indicate that warm acclimation came at a cost of reduced ETS efficiency and increased sensitivity to added stressors.
Collapse
Affiliation(s)
- Ravinder Sappal
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3, Canada; Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3, Canada
| | - Mark Fast
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3, Canada
| | - Don Stevens
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3, Canada
| | - Fred Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3, Canada
| | - Ahmed Siah
- British Columbia Centre for Aquatic Health Sciences, 871A Island Highway, Campbell River, British Columbia V9W 2C2, Canada
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3, Canada.
| |
Collapse
|
22
|
Sappal R, MacDougald M, Fast M, Stevens D, Kibenge F, Siah A, Kamunde C. Alterations in mitochondrial electron transport system activity in response to warm acclimation, hypoxia-reoxygenation and copper in rainbow trout, Oncorhynchus mykiss. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 165:51-63. [PMID: 26022556 DOI: 10.1016/j.aquatox.2015.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/20/2015] [Accepted: 05/16/2015] [Indexed: 06/04/2023]
Abstract
Fish expend significant amounts of energy to handle the numerous potentially stressful biotic and abiotic factors that they commonly encounter in aquatic environments. This universal requirement for energy singularizes mitochondria, the primary cellular energy transformers, as fundamental drivers of responses to environmental change. Our study probed the interacting effects of thermal stress, hypoxia-reoxygenation (HRO) and copper (Cu) exposure in rainbow trout to test the prediction that they act jointly to impair mitochondrial function. Rainbow trout were acclimated to 11 (controls) or 20°C for 2 months. Liver mitochondria were then isolated and their responses in vitro to Cu (0-20μM) without and with HRO were assessed. Sequential inhibition and activation of mitochondrial electron transport system (ETS) enzyme complexes permitted the measurement of respiratory activities supported by complex I-IV (CI-IV) in one run. The results showed that warm acclimation reduced fish and liver weights but increased mitochondrial protein indicating impairment of energy metabolism, increased synthesis of defense proteins and/or reduced liver water content. Whereas acute rise (11→20°C) in temperature increased mitochondrial oxidation rates supported by CI-IV, warm acclimation reduced the maximal (state 3) and increased the basal (state 4) respiration leading to global uncoupling of oxidative phosphorylation (OXPHOS). HRO profoundly inhibited both maximal and basal respiration rates supported by CI-IV, reduced RCR for all except CII and lowered CI:CII respiration ratio, an indication of decreased OXPHOS efficiency. The effects of Cu were less pronounced but more variable and included inhibition of CII-IV maximal respiration rates and stimulation of both CI and CIII basal respiration rates. Surprisingly, only CII and CIII indices exhibited significant 3-way interactions whereas 2-way interactions of acclimation either with Cu or HRO were portrayed mostly by CIV, and those of HRO and Cu were most common in CI and II respiratory indices. Our study suggests that warm acclimation blunts sensitivity of the ETS to temperature rise and that HRO and warm acclimation impose mitochondrial changes that sensitize the ETS to Cu. Overall, our study highlights the significance of the ETS in mitochondrial bioenergetic dysfunction caused by thermal stress, HRO and Cu exposure.
Collapse
Affiliation(s)
- Ravinder Sappal
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada; Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Michelle MacDougald
- Faculty of Medicine, Memorial University of Newfoundland, Health Sciences Centre, Prince Philip Drive, St. John's, NL, A1B 3V6, Canada
| | - Mark Fast
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Don Stevens
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Fred Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Ahmed Siah
- British Columbia Centre for Aquatic Health Sciences, 871A Island Highway, Campbell River, BC, V9W 2C2, Canada
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada.
| |
Collapse
|
23
|
Iftikar F, Morash A, Cook D, Herbert N, Hickey A. Temperature acclimation of mitochondria function from the hearts of a temperate wrasse (Notolabrus celidotus). Comp Biochem Physiol A Mol Integr Physiol 2015; 184:46-55. [DOI: 10.1016/j.cbpa.2015.01.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 01/18/2015] [Accepted: 01/23/2015] [Indexed: 11/16/2022]
|