1
|
Benoit JB, Weaving H, McLellan C, Terblanche JS, Attardo GM, English S. Viviparity and obligate blood feeding: tsetse flies as a unique research system to study climate change. CURRENT OPINION IN INSECT SCIENCE 2025; 69:101369. [PMID: 40122517 DOI: 10.1016/j.cois.2025.101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Tsetse flies (Glossina species) are unique organisms that combine several remarkable traits: they are obligate blood feeders, serve as critical vectors for African trypanosomes, and reproduce through adenotrophic viviparity - a process in which offspring are nourished with milk-like secretions before being born live. Here, we explore how climate change will impact the physiological processes associated with live birth in tsetse. This includes considerations of how blood feeding, host-pathogen interactions, and host-symbiont dynamics are likely to be impacted by thermal shifts. The highly specialized biology of tsetse flies suggests that this system is likely to have a distinctive response to climate change. Thus, detailed empirical research into these unique features is paramount for predicting tsetse population dynamics under climate change, with caution required when generalizing from other well-studied vectors with contrasting ecology and life histories such as mosquitoes and ticks. At the same time, the reproductive biology of tsetse, as well as microbiome and feeding dynamics, allow for a powerful model to investigate climate change through the lens of pregnancy and associated physiological adaptations in an extensively researched invertebrate.
Collapse
Affiliation(s)
- Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Hester Weaving
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom; Department of Pathology, Microbiology & Immunology, University of California Davis, Davis, CA, United States
| | - Callum McLellan
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - John S Terblanche
- Centre for Invasion Biology, Department of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Geoffrey M Attardo
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA, United States
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
2
|
Shen X, Jin J, Zhang G, Yan B, Yu X, Wu H, Yang M, Zhang F. The chromosome-level genome assembly of Aphidoletes aphidimyza Rondani (Diptera: Cecidomyiidae). Sci Data 2024; 11:785. [PMID: 39019956 PMCID: PMC11255235 DOI: 10.1038/s41597-024-03614-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/05/2024] [Indexed: 07/19/2024] Open
Abstract
Aphidoletes aphidimyza is widely recognized as an effective predator of aphids in agricultural systems. However, there is limited understanding of its predation mechanisms. In this study, we generated a high-quality chromosome level of the A. aphidimyza genome by combining PacBio, Illumina, and Hi-C data. The genome has a size of 192.08 Mb, with a scaffold N50 size of 46.85 Mb, and 99.08% (190.35 Mb) of the assembly is located on four chromosomes. The BUSCO analysis of our assembly indicates a completeness of 97.8% (n = 1,367), including 1,307 (95.6%) single-copy BUSCOs and 30 (2.2%) duplicated BUSCOs. Additionally, we annotated a total of 13,073 protein-coding genes, 18.43% (35.40 Mb) repetitive elements, and 376 non-coding RNAs. Our study is the first time to report the chromosome-scale genome for the species of A. aphidimyza. It provides a valuable genomic resource for the molecular study of A. aphidimyza.
Collapse
Affiliation(s)
- Xiuxian Shen
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, College of Agriculture, Guizhou University, Guiyang, 550025, China
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianfeng Jin
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guoqiang Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bin Yan
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Xiaofei Yu
- College of Tobacco Science, Guizhou University, Guiyang, 550025, China
| | - Huizi Wu
- Zunyi Branch of Guizhou Tobacco Company, Zunyi, 564200, China
| | - Maofa Yang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, College of Agriculture, Guizhou University, Guiyang, 550025, China.
- College of Tobacco Science, Guizhou University, Guiyang, 550025, China.
| | - Feng Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
3
|
Abstract
Ambient temperature (Ta) is a critical abiotic factor for insects that cannot maintain a constant body temperature (Tb). Interestingly, Ta varies during the day, between seasons and habitats; insects must constantly cope with these variations to avoid reaching the deleterious effects of thermal stress. To minimize these risks, insects have evolved a set of physiological and behavioral thermoregulatory processes as well as molecular responses that allow them to survive and perform under various thermal conditions. These strategies range from actively seeking an adequate environment, to cooling down through the evaporation of body fluids and synthesizing heat shock proteins to prevent damage at the cellular level after heat exposure. In contrast, endothermy may allow an insect to fight parasitic infections, fly within a large range of Ta and facilitate nest defense. Since May (1979), Casey (1988) and Heinrich (1993) reviewed the literature on insect thermoregulation, hundreds of scientific articles have been published on the subject and new insights in several insect groups have emerged. In particular, technical advancements have provided a better understanding of the mechanisms underlying thermoregulatory processes. This present Review aims to provide an overview of these findings with a focus on various insect groups, including blood-feeding arthropods, as well as to explore the impact of thermoregulation and heat exposure on insect immunity and pathogen development. Finally, it provides insights into current knowledge gaps in the field and discusses insect thermoregulation in the context of climate change.
Collapse
Affiliation(s)
- Chloé Lahondère
- Department of Biochemistry, The Fralin Life Science Institute, The Global Change Center, Department of Entomology, Center of Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
4
|
Benoit JB, Lahondère C, Attardo GM, Michalkova V, Oyen K, Xiao Y, Aksoy S. Warm Blood Meal Increases Digestion Rate and Milk Protein Production to Maximize Reproductive Output for the Tsetse Fly, Glossina morsitans. INSECTS 2022; 13:997. [PMID: 36354821 PMCID: PMC9695897 DOI: 10.3390/insects13110997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
The ingestion of blood represents a significant burden that immediately increases water, oxidative, and thermal stress, but provides a significant nutrient source to generate resources necessary for the development of progeny. Thermal stress has been assumed to solely be a negative byproduct that has to be alleviated to prevent stress. Here, we examined if the short thermal bouts incurred during a warm blood meal are beneficial to reproduction. To do so, we examined the duration of pregnancy and milk gland protein expression in the tsetse fly, Glossina morsitans, that consumed a warm or cool blood meal. We noted that an optimal temperature for blood ingestion yielded a reduction in the duration of pregnancy. This decline in the duration of pregnancy is due to increased rate of blood digestion when consuming warm blood. This increased digestion likely provided more energy that leads to increased expression of transcript for milk-associated proteins. The shorter duration of pregnancy is predicted to yield an increase in population growth compared to those that consume cool or above host temperatures. These studies provide evidence that consumption of a warm blood meal is likely beneficial for specific aspects of vector biology.
Collapse
Affiliation(s)
- Joshua B. Benoit
- Division of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College St., New Haven, CT 06510, USA
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Chloé Lahondère
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- The Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Center of Emerging, Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- The Global Change Center, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Department of Entomology at Virginia Polytechnic Institute and State Univerity, Blacksburg, VA 24061, USA
| | - Geoffrey M. Attardo
- Division of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College St., New Haven, CT 06510, USA
- Department of Entomology and Nematology, Division of Agriculture and Natural Resources, University of California Davis, Davis, CA 95616, USA
| | - Veronika Michalkova
- Division of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College St., New Haven, CT 06510, USA
- Section of Molecular and Applied Zoology, Institute of Zoology, Slovak Academy of Sciences, 814 38 Bratislava, Slovakia
| | - Kennan Oyen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Yanyu Xiao
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Serap Aksoy
- Division of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College St., New Haven, CT 06510, USA
| |
Collapse
|
5
|
Rosche KL, Sidak-Loftis LC, Hurtado J, Fisk EA, Shaw DK. Arthropods Under Pressure: Stress Responses and Immunity at the Pathogen-Vector Interface. Front Immunol 2021; 11:629777. [PMID: 33659000 PMCID: PMC7917218 DOI: 10.3389/fimmu.2020.629777] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Understanding what influences the ability of some arthropods to harbor and transmit pathogens may be key for controlling the spread of vector-borne diseases. Arthropod immunity has a central role in dictating vector competence for pathogen acquisition and transmission. Microbial infection elicits immune responses and imparts stress on the host by causing physical damage and nutrient deprivation, which triggers evolutionarily conserved stress response pathways aimed at restoring cellular homeostasis. Recent studies increasingly recognize that eukaryotic stress responses and innate immunity are closely intertwined. Herein, we describe two well-characterized and evolutionarily conserved mechanisms, the Unfolded Protein Response (UPR) and the Integrated Stress Response (ISR), and examine evidence that these stress responses impact immune signaling. We then describe how multiple pathogens, including vector-borne microbes, interface with stress responses in mammals. Owing to the well-conserved nature of the UPR and ISR, we speculate that similar mechanisms may be occurring in arthropod vectors and ultimately impacting vector competence. We conclude this Perspective by positing that novel insights into vector competence will emerge when considering that stress-signaling pathways may be influencing the arthropod immune network.
Collapse
Affiliation(s)
- Kristin L Rosche
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Lindsay C Sidak-Loftis
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Joanna Hurtado
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Elizabeth A Fisk
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Dana K Shaw
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| |
Collapse
|
6
|
Reinhold JM, Shaw R, Lahondère C. Beat the heat: Culex quinquefasciatus regulates its body temperature during blood feeding. J Therm Biol 2021; 96:102826. [PMID: 33627266 DOI: 10.1016/j.jtherbio.2020.102826] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/09/2020] [Accepted: 12/28/2020] [Indexed: 11/19/2022]
Abstract
Mosquitoes are regarded as one of the most dangerous animals on earth. Because they are responsible for the spread of a wide range of both human and animal pathogens, research of the underlying mechanisms of their feeding behavior and physiology is critical. Among disease vector mosquitoes, Culex quinquefasciatus, a known carrier of West Nile virus and Western Equine Encephalitis, remains relatively understudied. As blood-sucking insects, adaptations (either at the molecular or physiological level) while feeding on warm blood are crucial to their survival, as overheating can result in death due to heat stress. Our research aims to determine how Cx. quinquefasciatus copes with the heat associated with warm blood meal ingestion and possibly uncover the adaptations this species uses to avoid thermal stress. Through the use of thermographic imaging, we analyzed the body temperature of Cx. quinquefasciatus while blood feeding. Infrared thermography has allowed us to identify a cooling strategy, evaporative cooling via the production of fluid droplets, and an overall low body temperature in comparison to the blood temperature during feeding. Understanding Cx. quinquefasciatus' adaptations and the strategies they employ to reduce their body temperature while blood feeding constitutes the first step towards discovering potential targets that could be used for their control.
Collapse
Affiliation(s)
- Joanna M Reinhold
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Ryan Shaw
- Departement of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Chloé Lahondère
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; The Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; The Global Change Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
7
|
Sloan MA, Sadlova J, Lestinova T, Sanders MJ, Cotton JA, Volf P, Ligoxygakis P. The Phlebotomus papatasi systemic transcriptional response to trypanosomatid-contaminated blood does not differ from the non-infected blood meal. Parasit Vectors 2021; 14:15. [PMID: 33407867 PMCID: PMC7789365 DOI: 10.1186/s13071-020-04498-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/23/2020] [Indexed: 02/13/2023] Open
Abstract
Background Leishmaniasis, caused by parasites of the genus Leishmania, is a disease that affects up to 8 million people worldwide. Parasites are transmitted to human and animal hosts through the bite of an infected sand fly. Novel strategies for disease control require a better understanding of the key step for transmission, namely the establishment of infection inside the fly. Methods The aim of this work was to identify sand fly systemic transcriptomic signatures associated with Leishmania infection. We used next generation sequencing to describe the transcriptome of whole Phlebotomus papatasi sand flies when fed with blood alone (control) or with blood containing one of three trypanosomatids: Leishmania major, L. donovani and Herpetomonas muscarum, the latter being a parasite not transmitted to humans. Results Of the trypanosomatids studied, only L. major was able to successfully establish an infection in the host P. papatasi. However, the transcriptional signatures observed after each parasite-contaminated blood meal were not specific to success or failure of a specific infection and they did not differ from each other. The transcriptional signatures were also indistinguishable after a non-contaminated blood meal. Conclusions The results imply that sand flies perceive Leishmania as just one feature of their microbiome landscape and that any strategy to tackle transmission should focus on the response towards the blood meal rather than parasite establishment. Alternatively, Leishmania could suppress host responses. These results will generate new thinking around the concept of stopping transmission by controlling the parasite inside the insect.![]()
Collapse
Affiliation(s)
- Megan A Sloan
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
| | - Jovana Sadlova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tereza Lestinova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Mandy J Sanders
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, Cambridgeshire, UK
| | - James A Cotton
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, Cambridgeshire, UK
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petros Ligoxygakis
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK.
| |
Collapse
|
8
|
Roma JS, D’Souza S, Somers PJ, Cabo LF, Farsin R, Aksoy S, Runyen-Janecky LJ, Weiss BL. Thermal stress responses of Sodalis glossinidius, an indigenous bacterial symbiont of hematophagous tsetse flies. PLoS Negl Trop Dis 2019; 13:e0007464. [PMID: 31738754 PMCID: PMC6887450 DOI: 10.1371/journal.pntd.0007464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 12/02/2019] [Accepted: 10/24/2019] [Indexed: 11/22/2022] Open
Abstract
Tsetse flies (Diptera: Glossinidae) house a taxonomically diverse microbiota that includes environmentally acquired bacteria, maternally transmitted symbiotic bacteria, and pathogenic African trypanosomes. Sodalis glossinidius, which is a facultative symbiont that resides intra and extracellularly within multiple tsetse tissues, has been implicated as a mediator of trypanosome infection establishment in the fly’s gut. Tsetse’s gut-associated population of Sodalis are subjected to marked temperature fluctuations each time their ectothermic fly host imbibes vertebrate blood. The molecular mechanisms that Sodalis employs to deal with this heat stress are unknown. In this study, we examined the thermal tolerance and heat shock response of Sodalis. When grown on BHI agar plates, the bacterium exhibited the most prolific growth at 25oC, and did not grow at temperatures above 30oC. Growth on BHI agar plates at 31°C was dependent on either the addition of blood to the agar or reduction in oxygen levels. Sodalis was viable in liquid cultures for 24 hours at 30oC, but began to die upon further exposure. The rate of death increased with increased temperature. Similarly, Sodalis was able to survive for 48 hours within tsetse flies housed at 30oC, while a higher temperature (37oC) was lethal. Sodalis’ genome contains homologues of the heat shock chaperone protein-encoding genes dnaK, dnaJ, and grpE, and their expression was up-regulated in thermally stressed Sodalis, both in vitro and in vivo within tsetse fly midguts. Arrested growth of E. coli dnaK, dnaJ, or grpE mutants under thermal stress was reversed when the cells were transformed with a low copy plasmid that encoded the Sodalis homologues of these genes. The information contained in this study provides insight into how arthropod vector enteric commensals, many of which mediate their host’s ability to transmit pathogens, mitigate heat shock associated with the ingestion of a blood meal. Microorganisms associated with insects must cope with fluctuating temperatures. Because symbiotic bacteria influence the biology of their host, how they respond to temperature changes will have an impact on the host and other microorganisms in the host. The tsetse fly and its symbionts represent an important model system for studying thermal tolerance because the fly feeds exclusively on vertebrate blood and is thus exposed to dramatic temperature shifts. Tsetse flies house a microbial community that can consist of symbiotic and environmentally acquired bacteria, viruses, and parasitic African trypanosomes. This work, which makes use of tsetse’s commensal endosymbiont, Sodalis glossinidius, is significance because it represents the only examination of thermal tolerance mechanisms in a bacterium that resides indigenously within an arthropod disease vector. A better understanding of the biology of thermal tolerance in Sodalis provides insight into thermal stress survival in other insect symbionts and may yield information to help control vector-borne disease.
Collapse
Affiliation(s)
- Jose Santinni Roma
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| | - Shaina D’Souza
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| | - Patrick J. Somers
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| | - Leah F. Cabo
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| | - Ruhan Farsin
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| | - Serap Aksoy
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Laura J. Runyen-Janecky
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
- * E-mail: (LJR-J); (BLW)
| | - Brian L. Weiss
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
- * E-mail: (LJR-J); (BLW)
| |
Collapse
|
9
|
Zermoglio PF, Castelo MK, Lazzari CR. Endothermy in the temperate scarab Cyclocephala signaticollis. JOURNAL OF INSECT PHYSIOLOGY 2018; 108:10-16. [PMID: 29684392 DOI: 10.1016/j.jinsphys.2018.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 04/03/2018] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
The increase in body temperature over that of the environment has been frequently reported in insects, in particular in relation with flight activity. Scarab beetles of the genus Cyclocephala living in tropical areas are known to exploit the heat produced by thermogenic plants, also producing heat by endothermy. Here, we report the first case of endothermy in a species of this genus living in a temperate region, Cyclocephala signaticollis. We characterised the phenomenon in this beetle using infrared thermography and exposing them to different thermal conditions. We evaluated the frequency of endothermic bouts, the nature of their periodic occurrence and their association with the activity cycles of the beetles. We found that endothermy occurs in both males and females in a cyclic fashion, at the beginning of the night, around 21:00 local time. The mean temperature increase was of 9 °C, and the mean duration of the bouts was 7 min. During endothermic bouts, the temperature of the thorax was on average 3.6 °C higher than that of the head and 4.8 °C above that of the abdomen. We found no differences between females and males in the maximum temperature attained and in the duration of the endothermy bouts. The activity period of the beetles extends throughout the whole night, with maximum activity between 22:00 and 23:00. By subjecting the beetles to different light regimes we were able to determine that the rhythm of endothermy is not controlled by the circadian system. Finally, we experimentally tested if by performing endothermy the scarabs try to reach a particular body temperature or if they invest a given amount of energy in heating up, instead. Our results indicate that at lower ambient temperature beetles show higher increase in body temperature, and that endothermy bouts last longer than at relatively higher ambient temperatures. We discuss our findings in relation to the ecology and behaviour of this beetle pest.
Collapse
Affiliation(s)
- Paula F Zermoglio
- Departamento de Ecología, Genética y Evolución, Instituto IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS, Université de Tours, France.
| | - Marcela K Castelo
- Departamento de Ecología, Genética y Evolución, Instituto IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Claudio R Lazzari
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS, Université de Tours, France
| |
Collapse
|
10
|
Lahondère C, Insausti TC, Paim RM, Luan X, Belev G, Pereira MH, Ianowski JP, Lazzari CR. Countercurrent heat exchange and thermoregulation during blood-feeding in kissing bugs. eLife 2017; 6:26107. [PMID: 29157359 PMCID: PMC5697934 DOI: 10.7554/elife.26107] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 10/22/2017] [Indexed: 11/26/2022] Open
Abstract
Blood-sucking insects experience thermal stress at each feeding event on endothermic vertebrates. We used thermography to examine how kissing-bugs Rhodnius prolixus actively protect themselves from overheating. During feeding, these bugs sequester and dissipate the excess heat in their heads while maintaining an abdominal temperature close to ambient. We employed a functional-morphological approach, combining histology, µCT and X-ray-synchrotron imaging to shed light on the way these insects manage the flow of heat across their bodies. The close alignment of the circulatory and ingestion systems, as well as other morphological characteristics, support the existence of a countercurrent heat exchanger in the head of R. prolixus, which decreases the temperature of the ingested blood before it reaches the abdomen. This kind of system has never been described before in the head of an insect. For the first time, we show that countercurrent heat exchange is associated to thermoregulation during blood-feeding. Many insect species have adopted the blood of birds and mammals as their main or even only food. Yet, blood is not freely available in nature, but it circulates inside vessels hidden under the skin of animals much bigger than the insect and capable of defending themselves from getting bitten. To succeed in getting a meal, blood-sucking insects must be able to feed quickly and take in as much blood as possible. Each time that they do this, a huge amount of warm fluid enters their body in just a few minutes. The blood temperature can be up to 20° or 25°C warmer than the insect itself. Moreover, an insect called a kissing bug may ingest up to 10 times its own weight in only fifteen minutes. The consequence is overheating and potentially harmful thermal stress. Kissing bugs do not seem to suffer any harmful consequence of taking massive meals from warm-blooded animals. But why? The answer was unexpected: they simply do not warm up when they take a blood meal. However, it was not known how they manage to cool down the ingested blood. By combining classical methods of studying anatomy with state of the art technologies, Lahondère et al. discovered that kissing bugs possess a sophisticated heat exchanger inside their heads. It works by transferring the heat associated with the ingested blood to the haemolymph (insect blood); these fluids circulate in opposite directions inside ducts that are close to each other in the head. The discovery of a new system used by insects to cope with thermal stress expands our knowledge of insect physiology and opens new lines of research. The kissing bug heat exchanger could also serve as inspiration for equivalent technological systems. Last but not least, kissing bugs spread the parasites that cause Chagas disease in the Americas. Finding ways to disrupt the heat exchanger could prevent kissing bugs from feeding on blood, and so help to control the spread of disease.
Collapse
Affiliation(s)
- Chloé Lahondère
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université François Rabelais, Tours, France
| | - Teresita C Insausti
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université François Rabelais, Tours, France
| | - Rafaela Mm Paim
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Xiaojie Luan
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | - Marcos H Pereira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juan P Ianowski
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Claudio R Lazzari
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université François Rabelais, Tours, France
| |
Collapse
|
11
|
Abstract
A heat exchange mechanism in the head of kissing bugs helps to prevent stress and regulate their temperature while they feed on warm blood.
Collapse
Affiliation(s)
- Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, United States
| | - David L Denlinger
- Department of Entomology, Ohio State University, Columbus, United States.,Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, United States
| |
Collapse
|
12
|
Caljon G, Van Reet N, De Trez C, Vermeersch M, Pérez-Morga D, Van Den Abbeele J. The Dermis as a Delivery Site of Trypanosoma brucei for Tsetse Flies. PLoS Pathog 2016; 12:e1005744. [PMID: 27441553 PMCID: PMC4956260 DOI: 10.1371/journal.ppat.1005744] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/15/2016] [Indexed: 12/13/2022] Open
Abstract
Tsetse flies are the sole vectors of Trypanosoma brucei parasites that cause sleeping sickness. Our knowledge on the early interface between the infective metacyclic forms and the mammalian host skin is currently highly limited. Glossina morsitans flies infected with fluorescently tagged T. brucei parasites were used in this study to initiate natural infections in mice. Metacyclic trypanosomes were found to be highly infectious through the intradermal route in sharp contrast with blood stream form trypanosomes. Parasite emigration from the dermal inoculation site resulted in detectable parasite levels in the draining lymph nodes within 18 hours and in the peripheral blood within 42 h. A subset of parasites remained and actively proliferated in the dermis. By initiating mixed infections with differentially labeled parasites, dermal parasites were unequivocally shown to arise from the initial inoculum and not from a re-invasion from the blood circulation. Scanning electron microscopy demonstrated intricate interactions of these skin-residing parasites with adipocytes in the connective tissue, entanglement by reticular fibers of the periadipocytic baskets and embedment between collagen bundles. Experimental transmission experiments combined with molecular parasite detection in blood fed flies provided evidence that dermal trypanosomes can be acquired from the inoculation site immediately after the initial transmission. High resolution thermographic imaging also revealed that intradermal parasite expansion induces elevated skin surface temperatures. Collectively, the dermis represents a delivery site of the highly infective metacyclic trypanosomes from which the host is systemically colonized and where a proliferative subpopulation remains that is physically constrained by intricate interactions with adipocytes and collagen fibrous structures. Sleeping sickness is caused by trypanosomes that are transmitted by the blood feeding tsetse flies. The present study has established an experimental transmission model with fluorescently labeled parasites in mice that allows us to study their fate following natural transmission by a tsetse fly bite. Parasites that arise in the tsetse salivary glands were found to be highly infective following inoculation in the mammalian skin in contrast with previous observations made for trypanosomes purified from the blood stream. This study unveiled that a proportion of parasites is retained in the skin and actively proliferates close to the initial inoculation site resulting in significantly elevated skin temperatures. This retention was linked to interaction with fat cells and collagen fibrous structures. Experimental transmission experiments were able to demonstrate that parasites can be acquired from the inoculation site immediately after the initial transmission.
Collapse
Affiliation(s)
- Guy Caljon
- Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
- Laboratory of Myeloid Cell Immunology, VIB Inflammation Research Center, Ghent, Belgium
- * E-mail: (GC); (JVDA)
| | - Nick Van Reet
- Unit of Parasite Diagnostics, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium
| | - Carl De Trez
- Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Structural Biology Research Center (SBRC), VIB, Brussels, Belgium
| | - Marjorie Vermeersch
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - David Pérez-Morga
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Laboratory of Molecular Parasitology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Jan Van Den Abbeele
- Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium
- * E-mail: (GC); (JVDA)
| |
Collapse
|