1
|
Manee N, Deharveng L, D’Haese CA, Nilsai A, Shimano S, Jantarit S. The Thermal Tolerance of Springtails in a Tropical Cave, with the Description of a New Coecobrya Species (Collembola: Entomobryidae) from Thailand. INSECTS 2025; 16:80. [PMID: 39859661 PMCID: PMC11765618 DOI: 10.3390/insects16010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
A new species of Collembola in the genus Coecobrya, C. microphthalmasp. nov., is described from a cave environment in Saraburi province, central Thailand. The new species is the second described species of the boneti-group found in the country. It is most similar to C. chompon Nilsai, Lima & Jantarit, 2022, which is also described from a Thai cave. However, the new species is morphologically different from C. chompon in having orange dot pigmentation on its body and a combination of other morphological characteristics such as the number of sublobal hairs on the maxillary outer lobe and the number of medio-sublateral mac on Th. II, Abd. I, Abd. III and Abd. IV and the anterior face of the ventral tube. The morphological comparison of all known boneti species and a key to the world species of Coecobrya of the boneti-group are given. Coecobrya microphthalmasp. nov. was successfully cultured in the laboratory. The thermal tolerance of the new species was studied and tested with seven different temperature experiments (27 °C as a control, 30, 32, 33, 34, 35 and 36 °C). The results showed that C. microphthalmasp. nov. cannot survive at a temperature higher than 32 °C after exposure to the experimental heat for 7 and 14 consecutive days. At 27, 30 and 32 °C, C. microphthalmasp. nov. remained alive and produced eggs, but the duration of egg production and number of egg-laying days significantly declined when the temperature increased (p < 0.001). An interesting aspect of their reproduction concerns temperature. At 32 °C (5 °C above the control temperature), the F1 generation survived, was active and was able to molt to the adult stage. However, specimens were unable to produce the next generation of offspring. For postembryonic development, C. microphthalmasp. nov. required six molts to reach the adult stage. The development rate (from egg to adult) varied and differed significantly between the tested temperatures (p < 0.001). An increase in temperature from the control temperature significantly accelerated the developmental rate from egg to juvenile instars to adult with a statistical significance (p < 0.01). This study is the first attempt that provide information on the impact of increasing temperature on the population dynamics, reproductive capacity and life history of a subterranean tropical Collembola.
Collapse
Affiliation(s)
- Nongnapat Manee
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
| | - Louis Deharveng
- Institut de Systématique, Evolution, Biodiversité (ISYEB)—UMR 7205 CNRS, Muséum National d’Histoire Naturelle, Sorbonne Université, 45 rue Buffon, 75005 Paris, France;
| | - Cyrille A. D’Haese
- Mécanisme Adaptatifs & Evolution (MECADEV)—UMR 7179 CNRS, Muséum National d’Histoire Naturelle, Sorbonne Université, 45 rue Buffon, 75005 Paris, France;
- Excellence Center for Biodiversity of Peninsular Thailand, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Areeruk Nilsai
- Faculty of Science and Digital Innovation, Thaksin University, 222, Papayom District, Phatthalung 93210, Thailand;
| | - Satoshi Shimano
- Science Research Center, Hosei University, Fujimi, Chiyoda-ku, Tokyo 102-8160, Japan;
| | - Sopark Jantarit
- Excellence Center for Biodiversity of Peninsular Thailand, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
2
|
Pallarés S, Garoffolo D, Rodríguez B, Sánchez-Fernández D. Role of climatic variability in shaping intraspecific variation of thermal tolerance in Mediterranean water beetles. INSECT SCIENCE 2024; 31:285-298. [PMID: 37370260 DOI: 10.1111/1744-7917.13241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023]
Abstract
The climatic variability hypothesis (CVH) predicts that organisms in more thermally variable environments have wider thermal breadths and higher thermal plasticity than those from more stable environments. However, due to evolutionary trade-offs, taxa with greater absolute thermal limits may have little plasticity of such limits (trade-off hypothesis). The CVH assumes that climatic variability is the ultimate driver of thermal tolerance variation across latitudinal and altitudinal gradients, but average temperature also varies along such gradients. We explored intraspecific variation of thermal tolerance in three typical Mediterranean saline water beetles (families Hydrophilidae and Dytiscidae). For each species, we compared two populations where the species coexist, with similar annual mean temperature but contrasting thermal variability (continental vs. coastal population). We estimated thermal limits of adults from each population, previously acclimated at 17, 20, or 25 °C. We found species-specific patterns but overall, our results agree with the CVH regarding thermal ranges, which were wider in the continental (more variable) population. In the two hydrophilid species, this came at the cost of losing plasticity of the upper thermal limit in this population, supporting the trade-off hypothesis, but not in the dytiscid one. Our results support the role of local adaptation to thermal variability and trade-offs between basal tolerance and physiological plasticity in shaping thermal tolerance in aquatic ectotherms, but also suggest that intraspecific variation of thermal tolerance does not fit a general pattern among aquatic insects. Overlooking such intraspecific variation could lead to inaccurate predictions of the vulnerability of aquatic insects to global warming.
Collapse
Affiliation(s)
- Susana Pallarés
- Department of Zoology, University of Seville, Seville, Spain
| | - David Garoffolo
- Faculty of Biology, Department of Ecology and Hydrology, University of Murcia, Campus Espinardo, Murcia, Spain
| | - Belén Rodríguez
- Faculty of Biology, Department of Ecology and Hydrology, University of Murcia, Campus Espinardo, Murcia, Spain
| | - David Sánchez-Fernández
- Faculty of Biology, Department of Ecology and Hydrology, University of Murcia, Campus Espinardo, Murcia, Spain
| |
Collapse
|
3
|
Anderson RO, Tingley R, Hoskin CJ, White CR, Chapple DG. Linking physiology and climate to infer species distributions in Australian skinks. J Anim Ecol 2023; 92:2094-2108. [PMID: 37661659 DOI: 10.1111/1365-2656.14000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 08/15/2023] [Indexed: 09/05/2023]
Abstract
Climate has a key impact on animal physiology, which in turn can have a profound influence on geographic distributions. Yet, the mechanisms linking climate, physiology and distribution are not fully resolved. Using an integrative framework, we tested the predictions of the climatic variability hypothesis (CVH), which states that species with broader distributions have broader physiological tolerance than range-restricted species, in a group of Lampropholis skinks (8 species, 196 individuals) along a latitudinal gradient in eastern Australia. We investigated several physiological aspects including metabolism, water balance, thermal physiology, thermoregulatory behaviour and ecological performance. Additionally, to test whether organismal information (e.g. behaviour and physiology) can enhance distribution models, hence providing evidence that physiology and climate interact to shape range sizes, we tested whether species distribution models incorporating physiology better predict the range sizes than models using solely climatic layers. In agreement with the CVH, our results confirm that widespread species can tolerate and perform better at broader temperature ranges than range-restricted species. We also found differences in field body temperatures, but not thermal preference, between widespread and range-restricted species. However, metabolism and water balance did not correlate with range size. Biophysical modelling revealed that the incorporation of physiological and behavioural data improves predictions of Lampropholis distributions compared with models based solely on macroclimatic inputs, but mainly for range-restricted species. By integrating several aspects of the physiology and niche modelling of a group of ectothermic animals, our study provides evidence that physiology correlates with species distributions. Physiological responses to climate are central in establishing geographic ranges of skinks, and the incorporation of processes occurring at local scales (e.g. behaviour) can improve species distribution models.
Collapse
Affiliation(s)
- Rodolfo O Anderson
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Reid Tingley
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Conrad J Hoskin
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Craig R White
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - David G Chapple
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
4
|
Differential transcriptomic responses to heat stress in surface and subterranean diving beetles. Sci Rep 2022; 12:16194. [PMID: 36171221 PMCID: PMC9519976 DOI: 10.1038/s41598-022-20229-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Subterranean habitats are generally very stable environments, and as such evolutionary transitions of organisms from surface to subterranean lifestyles may cause considerable shifts in physiology, particularly with respect to thermal tolerance. In this study we compared responses to heat shock at the molecular level in a geographically widespread, surface-dwelling water beetle to a congeneric subterranean species restricted to a single aquifer (Dytiscidae: Hydroporinae). The obligate subterranean beetle Paroster macrosturtensis is known to have a lower thermal tolerance compared to surface lineages (CTmax 38 °C cf. 42–46 °C), but the genetic basis of this physiological difference has not been characterized. We experimentally manipulated the thermal environment of 24 individuals to demonstrate that both species can mount a heat shock response at high temperatures (35 °C), as determined by comparative transcriptomics. However, genes involved in these responses differ between species and a far greater number were differentially expressed in the surface taxon, suggesting it can mount a more robust heat shock response; these data may underpin its higher thermal tolerance compared to subterranean relatives. In contrast, the subterranean species examined not only differentially expressed fewer genes in response to increasing temperatures, but also in the presence of the experimental setup employed here alone. Our results suggest P. macrosturtensis may be comparatively poorly equipped to respond to both thermally induced stress and environmental disturbances more broadly. The molecular findings presented here have conservation implications for P. macrosturtensis and contribute to a growing narrative concerning weakened thermal tolerances in obligate subterranean organisms at the molecular level.
Collapse
|
5
|
Colado R, Pallarés S, Fresneda J, Mammola S, Rizzo V, Sánchez-Fernández D. Climatic stability, not average habitat temperature, determines thermal tolerance of subterranean beetles. Ecology 2022; 103:e3629. [PMID: 35018629 DOI: 10.1002/ecy.3629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 10/08/2021] [Accepted: 10/21/2021] [Indexed: 11/06/2022]
Abstract
The climatic variability hypothesis predicts the evolution of species with wide thermal tolerance ranges in environments with variable temperatures, and the evolution of thermal specialists in thermally stable environments. In caves, the extent of spatial and temporal thermal variability experienced by taxa decreases with their degree of specialization to deep subterranean habitats. We use Phylogenetic Generalized Least Squares to model the relationship between thermal tolerance (upper lethal limits), subterranean specialization (estimated using ecomorphological traits) and habitat temperature in sixteen beetle species of the tribe Leptodirini (Leiodidae). We found a significant, negative relationship between thermal tolerance and the degree of subterranean specialization. Conversely, habitat temperature had only a marginal effect on lethal limits. In agreement with the climatic variability hypothesis and under a climate change context, we show that the specialization process to live in deep subterranean habitats involves a reduction of upper lethal limits, but not an adjustment to habitat temperature. Thermal variability seems to exert a higher evolutionary pressure than mean habitat temperature to configure the thermal niche of subterranean species. Our results provide novel insights on thermal physiology of species with poor dispersal capabilities and on the evolutionary process of adaptation to subterranean environments. We further emphasize that the pathways determining vulnerability of subterranean species to climate change greatly depend on the degree of specialization to deep subterranean environments.
Collapse
Affiliation(s)
- Raquel Colado
- Departamento de Ecología e Hidrología, Facultad de Biología, Universidad de Murcia, Campus Espinardo, Murcia, Spain
| | - Susana Pallarés
- Departamento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales, CSIC, Calle José Gutierrez Abascal 2, 28006, Madrid, Spain
| | - Javier Fresneda
- Ca de Massa, 25526 Llesp- El Pont de Suert, Lleida, Spain; Museu de Ciències Naturals (Zoología), Barcelona, Spain
| | - Stefano Mammola
- LIBRe-Laboratory for Integrative Biodiversity Research, Finnish Museum of Natural History, University of Helsinki, Pohjoinen Rautatiekatu 13, Helsinki, Finland.,DarkMEG-Molecular Ecology Group, Water Research Institute (IRSA), National Research Council of Italy (CNR), Largo Tonolli 50, 28922, Verbania Pallanza, Italy
| | | | - David Sánchez-Fernández
- Departamento de Ecología e Hidrología, Facultad de Biología, Universidad de Murcia, Campus Espinardo, Murcia, Spain
| |
Collapse
|
6
|
Isaia M, Arnedo MA, Mammola S. A multi-layered approach uncovers overlooked taxonomic and physiological diversity in Alpine subterranean spiders (Araneae: Linyphiidae: Troglohyphantes). INVERTEBR SYST 2022. [DOI: 10.1071/is21054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Fiera C, Arbea JI, Vargovitsh RS, Barjadze S. A synthesis on troglobitic springtails in Europe. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cristina Fiera
- Institute of Biology Bucharest Romanian Academy Bucharest Romania
| | | | - Robert S. Vargovitsh
- Schmalhausen Institute of Zoology National Academy of Sciences of Ukraine Kyiv Ukraine
| | | |
Collapse
|
8
|
Jones KK, Humphreys WF, Saccò M, Bertozzi T, Austin AD, Cooper SJ. The critical thermal maximum of diving beetles (Coleoptera: Dytiscidae): a comparison of subterranean and surface-dwelling species. CURRENT RESEARCH IN INSECT SCIENCE 2021; 1:100019. [PMID: 36003597 PMCID: PMC9387432 DOI: 10.1016/j.cris.2021.100019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 06/14/2023]
Abstract
Thermal tolerance limits in animals are often thought to be related to temperature and thermal variation in their environment. Recently, there has been a focus on studying upper thermal limits due to the likelihood for climate change to expose more animals to higher temperatures and potentially extinction. Organisms living in underground environments experience reduced temperatures and thermal variation in comparison to species living in surface habitats, but how these impact their thermal tolerance limits are unclear. In this study, we compare the thermal critical maximum (CTmax) of two subterranean diving beetles (Dytiscidae) to that of three related surface-dwelling species. Our results show that subterranean species have a lower CTmax (38.3-39.0°C) than surface species (42.0-44.5°C). The CTmax of subterranean species is ∼10°C higher than the highest temperature recorded within the aquifer. Groundwater temperature varied between 18.4°C and 28.8°C, and changes with time, depth and distance across the aquifer. Seasonal temperature fluctuations were 0.5°C at a single point, with the maximum heating rate being ∼1000x lower (0.008°C/hour) than that recorded in surface habitats (7.98°C/hour). For surface species, CTmax was 7-10°C higher than the maximum temperature in their habitats, with daily fluctuations from ∼1°C to 16°C and extremes of 6.9°C and 34.9°C. These findings suggest that subterranean dytiscid beetles are unlikely to reach their CTmax with a predicted warming of 1.3-5.1°C in the region by 2090. However, the impacts of long-term elevated temperatures on fitness, different life stages and other species in the beetle's trophic food web are unknown.
Collapse
Affiliation(s)
- Karl K. Jones
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia
- Evolutionary Genomics, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - William F. Humphreys
- Western Australian Museum, Locked Bag 40, Welshpool DC, WA 6986, Australia
- School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Mattia Saccò
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Terry Bertozzi
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia
- Evolutionary Genomics, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Andy D. Austin
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia
| | - Steven J.B. Cooper
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia
- Evolutionary Genomics, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| |
Collapse
|
9
|
Abstract
Hourly temperature was measured for approximately one year at 17 stations in three caves in Quintana Roo, Mexico. Thirteen of these stations were in the extensive twilight zones of all three caves. All seventeen stations showed seasonality in temperature with a 3°C drop during the Nortes season. Two of the caves, Muévelo Sabrosito and Muévelo Rico, showed greater variability during the winter months while in Río Secreto (Tuch) variability was greatest during the rainy season. Río Secreto is less open to the surface than the other two. All sites also showed a daily temperature cycle, although it was very faint in some Río Secreto (Tuch) sites. While temperature variability is diminished relative to surface variation, its temporal pattern is worthy of further study.
Collapse
|
10
|
Pallarés S, Colado R, Botella‐Cruz M, Montes A, Balart‐García P, Bilton DT, Millán A, Ribera I, Sánchez‐Fernández D. Loss of heat acclimation capacity could leave subterranean specialists highly sensitive to climate change. Anim Conserv 2020. [DOI: 10.1111/acv.12654] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- S. Pallarés
- Marine Biology and Ecology Research Centre School of Biological and Marine Sciences University of Plymouth Plymouth UK
- Instituto de Ciencias Ambientales Universidad de Castilla‐La Mancha Toledo Spain
| | - R. Colado
- Instituto de Ciencias Ambientales Universidad de Castilla‐La Mancha Toledo Spain
- Departamento de Ecología e Hidrología Universidad de Murcia Murcia Spain
| | - M. Botella‐Cruz
- Departamento de Ecología e Hidrología Universidad de Murcia Murcia Spain
| | - A. Montes
- Basque Society for Biology Conservation Guipúzcoa Spain
- Cuevas de Oñati‐Arrikrutz Guipúzcoa Spain
| | - P. Balart‐García
- Institut de Biologia Evolutiva (CSIC‐Universitat Pompeu Fabra) Barcelona Spain
| | - D. T. Bilton
- Marine Biology and Ecology Research Centre School of Biological and Marine Sciences University of Plymouth Plymouth UK
- Department of Zoology University of Johannesburg Johannesburg South Africa
| | - A. Millán
- Departamento de Ecología e Hidrología Universidad de Murcia Murcia Spain
| | - I. Ribera
- Institut de Biologia Evolutiva (CSIC‐Universitat Pompeu Fabra) Barcelona Spain
| | - D. Sánchez‐Fernández
- Instituto de Ciencias Ambientales Universidad de Castilla‐La Mancha Toledo Spain
- Departamento de Ecología e Hidrología Universidad de Murcia Murcia Spain
| |
Collapse
|
11
|
Castaño-Sánchez A, Hose GC, Reboleira ASPS. Ecotoxicological effects of anthropogenic stressors in subterranean organisms: A review. CHEMOSPHERE 2020; 244:125422. [PMID: 31805461 DOI: 10.1016/j.chemosphere.2019.125422] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
How anthropogenic stressors affect biodiversity is a central question in a changing world. Subterranean ecosystems and their biodiversity are particularly vulnerable to change, yet, these species are frequently neglected in analyses of global biodiversity and assessments of ecological status and risk. Are these hidden species affected by anthropogenic stressors? Do they survive outside of the current thermal limits of their ecosystems? These and other important questions can be addressed with ecotoxicological testing, relating contaminants and temperature resistance of species with measured environmental concentrations and climatic data. Ecotoxicological knowledge specific to subterranean ecosystems is crucial for establishing thresholds for their protection, but such data are both scarce and scattered. Here, we review the existing ecotoxicological studies of these impacts to subterranean-adapted species. An effort that includes 167 measured endpoints and presents a database containing experimentally derived species' tolerance data for 28 contaminants and temperature, for 46 terrestrial and groundwater species, including fungi and animals. The lack of standard data among the studies is currently the major impediment to evaluate how stressors affect subterranean-adapted species and how differently they respond from their relatives at surface. Improving understanding of ecotoxicological effects on subterranean-adapted species will require extensive analysis of physiological responses to a wide range of untested stressors, standardization of testing protocols and evaluation of exposures under realistic scenarios.
Collapse
Affiliation(s)
- Andrea Castaño-Sánchez
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Grant C Hose
- Department of Biological Sciences, Macquarie University, NSW, 2109, Sydney, Australia
| | - Ana Sofia P S Reboleira
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
| |
Collapse
|
12
|
Käfer H, Kovac H, Simov N, Battisti A, Erregger B, Schmidt AKD, Stabentheiner A. Temperature Tolerance and Thermal Environment of European Seed Bugs. INSECTS 2020; 11:E197. [PMID: 32245048 PMCID: PMC7143385 DOI: 10.3390/insects11030197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 01/16/2023]
Abstract
Heteroptera, or true bugs populate many climate zones, coping with different environmental conditions. The aim of this study was the evaluation of their thermal limits and derived traits, as well as climatological parameters which might influence their distribution. We assessed the thermal limits (critical thermal maxima, CTmax, and minima, CTmin) of eight seed bug species (Lygaeidae, Pyrrhocoridae) distributed over four Köppen-Geiger climate classification types (KCC), approximately 6° of latitude, and four European countries (Austria, Italy, Croatia, Bulgaria). In test tubes, a temperature ramp was driven down to -5 °C for CTmin and up to 50 °C for CTmax (0.25 °C/min) until the bugs' voluntary, coordinated movement stopped. In contrast to CTmin, CTmax depended significantly on KCC, species, and body mass. CTmax showed high correlation with bioclimatic parameters such as annual mean temperature and mean maximum temperature of warmest month (BIO5), as well as three parameters representing temperature variability. CTmin correlated with mean annual temperature, mean minimum temperature of coldest month (BIO6), and two parameters representing variability. Although the derived trait cold tolerance (TC = BIO6 - CTmin) depended on several bioclimatic variables, heat tolerance (TH = CTmax - BIO5) showed no correlation. Seed bugs seem to have potential for further range shifts in the face of global warming.
Collapse
Affiliation(s)
- Helmut Käfer
- Institute of Biology, University of Graz, 8010 Graz, Austria
| | - Helmut Kovac
- Institute of Biology, University of Graz, 8010 Graz, Austria
| | - Nikolay Simov
- National Museum of Natural History, 1000 Sofia, Bulgaria;
| | - Andrea Battisti
- School of Agricultural Sciences and Veterinary Medicine, University of Padova, 35122 Padova, Italy;
| | - Bettina Erregger
- Institute of Biology, University of Graz, 8010 Graz, Austria
- Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology, University of Natural Resources and Life Sciences, 1180 Vienna, Austria;
| | - Arne K. D. Schmidt
- Institute of Biology, University of Graz, 8010 Graz, Austria
- AGES, The Austrian Agency for Health and Food Safety, 1220 Vienna, Austria;
| | | |
Collapse
|
13
|
Pallarés S, Colado R, Pérez‐Fernández T, Wesener T, Ribera I, Sánchez‐Fernández D. Heat tolerance and acclimation capacity in subterranean arthropods living under common and stable thermal conditions. Ecol Evol 2019; 9:13731-13739. [PMID: 31938477 PMCID: PMC6953556 DOI: 10.1002/ece3.5782] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 12/19/2022] Open
Abstract
Cave-dwelling ectotherms, which have evolved for millions of years under stable thermal conditions, could be expected to have adjusted their physiological limits to the narrow range of temperatures they experience and to be highly vulnerable to global warming. However, most of the few existing studies on thermal tolerance in subterranean invertebrates highlight that despite the fact that they show lower heat tolerance than most surface-dwelling species, their upper thermal limits are generally not adjusted to ambient temperature. The question remains to what extent this pattern is common across subterranean invertebrates. We studied basal heat tolerance and its plasticity in four species of distant arthropod groups (Coleoptera, Diplopoda, and Collembola) with different evolutionary histories but under similar selection pressures, as they have been exposed to the same constant environmental conditions for a long time. Adults were exposed at different temperatures for 1 week to determine upper lethal temperatures. Then, individuals from previous sublethal treatments were transferred to a higher temperature to determine acclimation capacity. Upper lethal temperatures of three of the studied species were similar to those reported for other subterranean species (between 20 and 25°C) and widely exceeded the cave temperature (13-14°C). The diplopod species showed the highest long-term heat tolerance detected so far for a troglobiont (i.e., obligate subterranean) species (median lethal temperature after 7 days exposure: 28°C) and a positive acclimation response. Our results agree with previous studies showing that heat tolerance in subterranean species is not determined by environmental conditions. Thus, subterranean species, even those living under similar climatic conditions, might be differently affected by global warming.
Collapse
Affiliation(s)
- Susana Pallarés
- Marine Biology and Ecology Research CentreSchool of Biological and Marine SciencesUniversity of PlymouthPlymouthUK
- Instituto de Ciencias AmbientalesUniversidad de Castilla‐La ManchaToledoSpain
| | - Raquel Colado
- Instituto de Ciencias AmbientalesUniversidad de Castilla‐La ManchaToledoSpain
- Departamento de Ecología e HidrologíaUniversidad de MurciaMurciaSpain
| | | | | | | | - David Sánchez‐Fernández
- Instituto de Ciencias AmbientalesUniversidad de Castilla‐La ManchaToledoSpain
- Departamento de Ecología e HidrologíaUniversidad de MurciaMurciaSpain
| |
Collapse
|
14
|
Mammola S, Piano E, Malard F, Vernon P, Isaia M. Extending Janzen’s hypothesis to temperate regions: A test using subterranean ecosystems. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13382] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stefano Mammola
- Department of Life Sciences and Systems Biology University of Turin Turin Italy
- LIBRe – Laboratory for Integrative Biodiversity Research, Finnish Museum of Natural History University of Helsinki Helsinki Finland
| | - Elena Piano
- Department of Life Sciences and Systems Biology University of Turin Turin Italy
| | - Florian Malard
- Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5023, ENTPE Villeurbanne France
| | - Philippe Vernon
- Univ Rennes, Université Rennes 1, CNRS UMR 6553, ECOBIO Station Biologique de Paimpont Paimpont France
| | - Marco Isaia
- Department of Life Sciences and Systems Biology University of Turin Turin Italy
| |
Collapse
|
15
|
Mammola S, Cardoso P, Culver DC, Deharveng L, Ferreira RL, Fišer C, Galassi DMP, Griebler C, Halse S, Humphreys WF, Isaia M, Malard F, Martinez A, Moldovan OT, Niemiller ML, Pavlek M, Reboleira ASPS, Souza-Silva M, Teeling EC, Wynne JJ, Zagmajster M. Scientists' Warning on the Conservation of Subterranean Ecosystems. Bioscience 2019. [DOI: 10.1093/biosci/biz064] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
In light of recent alarming trends in human population growth, climate change, and other environmental modifications, a “Warning to humanity” manifesto was published in BioScience in 2017. This call reiterated most of the ideas originally expressed by the Union of Concerned Scientists in 1992, including the fear that we are “pushing Earth's ecosystems beyond their capacities to support the web of life.” As subterranean biologists, we take this opportunity to emphasize the global importance and the conservation challenges associated with subterranean ecosystems. They likely represent the most widespread nonmarine environments on Earth, but specialized subterranean organisms remain among the least documented and studied. Largely overlooked in conservation policies, subterranean habitats play a critical role in the function of the web of life and provide important ecosystem services. We highlight the main threats to subterranean ecosystems and propose a set of effective actions to protect this globally important natural heritage.
Collapse
|