1
|
Wang Z, Ye H, Liu P, Lin S, Wang Y, Zhou Q, Jiang H, Shao J. Surviving the heat: The homeostatic regulation mechanism of endangered Brachymystax tsinlingensis. J Therm Biol 2025; 127:104023. [PMID: 39675121 DOI: 10.1016/j.jtherbio.2024.104023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 12/17/2024]
Abstract
Conservation and utilization of Brachymystax tsinlingensis Li, 1966 (B. tsinlingensis), an endangered cold-water fish, is severely hampered by heat stress. In this study, heat stress and recovery experiments were firstly performed and implied that the intestine of B. tsinlingensis remained capable of self-regulation under heat stress. Therefore, transcriptome analysis was used to investigate the homeostatic mechanisms of B. tsinlingensis during temperature fluctuations. The results showed that a total of 5775 differentially expressed genes (DEGs) (1725 up- and 4050 down-regulated) were identified in the heat stress group, and 4312 DEGs (2024 up- and 2228 down-regulated) were identified in the recovery group when compared to their expression levels in the control group. Through Gene Set Enrichment Analysis (GSEA), citrate cycle (TCA cycle), oxidative phosphorylation, apoptosis, ferroptosis, focal adhesion, and tight junction pathways were found to be significantly up-regulated during heat stress, and declined during the recovery process. The results illustrated that heat stress caused ferroptosis and apoptosis in B. tsinlingensis. However, the organism was able to maintain homeostasis during temperature fluctuations modulating its energy metabolism, as well as the barrier and immune functions of the intestine. These findings help to enhance our understanding of the acclimation mechanisms of cold-water fish in present-day climate change.
Collapse
Affiliation(s)
- Zhenlu Wang
- Laboratory of Fishery Resources and Environmental Protection, College of Animal Science, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Guizhou University, Guiyang, 550025, China
| | - Huan Ye
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Peng Liu
- Laboratory of Fishery Resources and Environmental Protection, College of Animal Science, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Guizhou University, Guiyang, 550025, China
| | - Shaoqing Lin
- Tibet Animal Husbandry Service Center, Lhasa, 850000, China
| | - Yizhou Wang
- Laboratory of Fishery Resources and Environmental Protection, College of Animal Science, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Guizhou University, Guiyang, 550025, China
| | - Qiong Zhou
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Haibo Jiang
- Laboratory of Fishery Resources and Environmental Protection, College of Animal Science, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Guizhou University, Guiyang, 550025, China
| | - Jian Shao
- Laboratory of Fishery Resources and Environmental Protection, College of Animal Science, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Yu Z, Yong Y, Liu X, Ma X, Abd El-Aty AM, Li L, Zhong Z, Ye X, Ju X. Insights and implications for transcriptomic analysis of heat stress-induced intestinal inflammation in pigs. BMC Genomics 2024; 25:1110. [PMID: 39563245 PMCID: PMC11577645 DOI: 10.1186/s12864-024-10928-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Heat stress (HS) can affect the physiology and metabolism of animals. HS-induced intestinal inflammation in pigs is a common disease, causing severe diarrhea, that can result in substantial economic losses to the pig industry, but the molecular mechanisms and pathogenicity of this disease are not fully understood. The objective of this study was to identify the differentially expressed genes (DEGs) and long noncoding RNAs (DELs) related to inflammation in the colon tissues of pigs under constant (1, 7, and 14 days) HS. RESULTS LncRNA and targeted gene interaction networks were constructed. GO annotation and KEGG pathway analyses were subsequently performed to determine the functions of the DEGs and DELs. The results revealed 57, 212, and 54 DEGs and 87, 79, and 55 DELs in the CON/H01, CON/H07, and CON/H14 groups, respectively. KRT85, CLDN1, S100A12, TM7SF2, CCN1, NR4A1, and several lncRNAs may be involved in regulating the development of intestinal inflammation. GO analysis indicated that the DEGs and DELs were enriched in a series of biological processes involved in the innate immune response, RAGE receptor binding, and positive regulation of the ERK1 and ERK2 cascades. KEGG pathways related to inflammation, such as the tight junction (TJ) and MAPK signaling pathways, were enriched in DEGs and DELs. CONCLUSIONS This study have expanded the knowledge about colon inflammation-related genes and lncRNA biology in pigs under HS; analyzed the the lncRNA‒mRNA interaction for HS-induced intestinal inflammation. These results may provide some references for our understanding of the molecular mechanism of the intestinal response to HS in pig.
Collapse
Affiliation(s)
- Zhichao Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yanhong Yong
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xiaoxi Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xingbin Ma
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25240, Turkey
| | - Leling Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ziyuan Zhong
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xingyi Ye
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xianghong Ju
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
3
|
Li Y, Chen Y, Liao Z, Liu Y, Liu C, Yang W, Bai J, Huang X, Hao Y, Liu S, Liu Y. WenTongGanPi decoction alleviates diarrhea-predominant irritable bowel syndrome by improving intestinal barrier. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118544. [PMID: 39013542 DOI: 10.1016/j.jep.2024.118544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE WenTongGanPi Decoction (WTGPD) is a representative medical practice of the Fuyang School of Traditional Chinese Medicine (TCM), which originated from the classical Lu's Guizhi method. WTGPD places emphasis on the balance and functionality of yang qi, and is effective in treating TCM symptoms related to liver qi stagnation and spleen yang deficiency. In TCM, diarrhea-predominant irritable bowel syndrome (IBS-D) is often diagnosed as liver depression and spleen deficiency, and the use of WTGPD has shown significant therapeutic effect. However, the underlying mechanism of WTGPD treating IBS-D remains unclear. AIM OF THE STUDY To explore the effect and mechanism of WTGPD in the treatment of IBS-D. MATERIALS AND METHODS An IBS-D model with liver depression and spleen deficiency was constructed by chronic immobilization stress stimulation and sennae folium aqueous gavage. The impact of WTGPD on IBS-D rats was evaluated through measurements of body weight, fecal water content, and abdominal withdrawal reflex (AWR). Intestinal permeability was assessed using hematoxylin-eosin (HE), alcian blue-periodic acid schiff (AB-PAS), immunofluorescence (IF) staining, and quantitative real-time PCR (qRT-PCR). The components of WTGPD were analyzed using UPLC-Q-TOF-MS. The underlying mechanisms were investigated through network pharmacology, transcriptomics sequencing, western blot (WB), molecular docking, and 16S rRNA sequencing. RESULTS WTGPD treatment effectively alleviated diarrhea and abnormal pain in IBS-D rats (P < 0.05). It enhanced the intestinal barrier function by improving colonic structure and increasing the expression of tight junction proteins (P < 0.05). A total of 155 components were identified in WTGPD. Both network pharmacology and transcriptomics sequencing analysis highlighted MAPK as the key signaling pathway in WTGPD's anti-IBS-D effect. The WB results showed a significant decrease in p-p38, p-ERK and p-JNK expression after WTGPD treatment (P < 0.0001). Guanosine, adenosine and hesperetin in WTGPD may be involved in regulating the phosphorylation of p38, ERK and JNK. Additionally, WTGPD significantly enhanced microbial diversity and increased the production of colonic valeric acid in IBS-D rats (P < 0.01). CONCLUSION In conclusion, our findings suggest that WTGPD can effectively alleviate IBS-D and improve intestinal barrier likely via inhibiting MAPK signal pathway and improving micobial dysbiosis.
Collapse
Affiliation(s)
- Yaoguang Li
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China
| | - Yangyang Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China
| | - Zhengyue Liao
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China
| | - Yixin Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China
| | - Chenhao Liu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China
| | - Wenjing Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China
| | - Jing Bai
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China
| | - Xinggui Huang
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China
| | - Yule Hao
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China
| | - Sijing Liu
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China.
| | - Yi Liu
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China.
| |
Collapse
|
4
|
Sun M, Li Q, Zou Z, Liu J, Gu Z, Li L. The mechanisms behind heatstroke-induced intestinal damage. Cell Death Discov 2024; 10:455. [PMID: 39468029 PMCID: PMC11519599 DOI: 10.1038/s41420-024-02210-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
With the frequent occurrence of heatwaves, heatstroke (HS) is expected to become one of the main causes of global death. Being a multi-organized disease, HS can result in circulatory disturbance and systemic inflammatory response, with the gastrointestinal tract being one of the primary organs affected. Intestinal damage plays an initiating and promoting role in HS. Multiple pathways result in damage to the integrity of the intestinal epithelial barrier due to heat stress and hypoxia brought on by blood distribution. This usually leads to intestinal leakage as well as the infiltration and metastasis of toxins and pathogenic bacteria in the intestinal cavity, which will eventually cause inflammation in the whole body. A large number of studies have shown that intestinal damage after HS involves the body's stress response, disruption of oxidative balance, disorder of tight junction proteins, massive cell death, and microbial imbalance. Based on these damage mechanisms, protecting the intestinal barrier and regulating the body's inflammatory and immune responses are effective treatment strategies. To better understand the pathophysiology of this complex process, this review aims to outline the potential processes and possible therapeutic strategies for intestinal damage after HS in recent years.
Collapse
Affiliation(s)
- Minshu Sun
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qin Li
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhimin Zou
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Liu
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengtao Gu
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Li Li
- Department of Intensive Care Unit, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Choi Y, Park H, Kim J, Lee H, Kim M. Heat Stress Induces Alterations in Gene Expression of Actin Cytoskeleton and Filament of Cellular Components Causing Gut Disruption in Growing-Finishing Pigs. Animals (Basel) 2024; 14:2476. [PMID: 39272260 PMCID: PMC11394201 DOI: 10.3390/ani14172476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
We aimed to investigate the impact of heat stress (HS) on the expression of tight junction (TJ) proteins and the interaction between genes affecting intestinal barrier function using transcriptomics in the porcine jejunum. Twenty-four barrows (crossbred Yorkshire × Landrace × Duroc; average initial body weight, 56.71 ± 1.74 kg) were placed in different temperatures (normal temperature [NT]; HS) and reared for 56 days. At the end of the experiment, jejunal samples were collected from three pigs per treatment for transcriptome and reverse-transcription quantitative polymerase chain reaction (RT-qPCR) analyses. We identified 43 differentially expressed genes, involving five Kyoto Encyclopedia of Genes and Genomes pathways, eight molecular functions, seven cellular components (CCs), and nine biological processes, using gene ontology enrichment analysis. Genes associated with the actin cytoskeleton, filament-binding pathways, and TJ proteins were selected and analyzed by RT-qPCR. Significant differences in relative mRNA expression showed that downregulated genes in the HS group included ZO1, CLDN1, OCLN, PCK1, and PCK2, whereas ACTG2, DES, MYL9, MYLK, TPM1, TPM2, CNN1, PDLIM3, and PCP4 were upregulated by HS (p < 0.05). These findings indicate that HS in growing-finishing pigs induces depression in gut integrity, which may be related to genes involved in the actin cytoskeleton and filaments of CC.
Collapse
Affiliation(s)
- Yohan Choi
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea
| | - Hyunju Park
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea
| | - Joeun Kim
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea
| | - Hyunseo Lee
- School of Animal Life Convergence Science, Hankyong National University, Anseong 17579, Republic of Korea
| | - Minju Kim
- School of Animal Life Convergence Science, Hankyong National University, Anseong 17579, Republic of Korea
- Institute of Applied Humanimal Science, Hankyong National University, Anseong 17579, Republic of Korea
| |
Collapse
|
6
|
Nie Y, Lin T, Yang Y, Liu W, Hu Q, Chen G, Huang L, Wu H, Kong C, Lei Z, Guo J. The downregulation of tight junction proteins and pIgR in the colonic epithelium causes the susceptibility of EpCAM +/- mice to colitis and gut microbiota dysbiosis. Front Mol Biosci 2024; 11:1442611. [PMID: 39188786 PMCID: PMC11345229 DOI: 10.3389/fmolb.2024.1442611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Background The genetic factors play important roles on the pathogenesis of inflammatory bowel disease (IBD). EpCAM is highly expressed in the intestinal epithelium. It is still unclear if the decrease or somatic mutation of EpCAM could cause IBD. Methods The WT and EpCAM+/- mice were administrated with DSS intermittently for nearly 8 weeks. The colon, liver and feces were harvested to check the morphological and histological changes, the expression of inflammatory genes and the gut microbiota via H&E staining, immunofluorescence, qPCR, western blot and 16S rDNA sequence assays. Results The DSS administration induced more serious inflammation in the colon of EpCAM+/- mice than WT mice. Compared to DSS-induced WT mice, the transcriptional levels of IL-6, F4/80, Ly6g, Ly6d and Igha were significantly higher in the colon of DSS-induced EpCAM+/- mice. The protein levels of MMP7 and MMP8 and the activation of JNK, ERK1/2 and p38 were significantly increased in the colon of DSS-induced EpCAM+/- mice. The protein levels of CLDN1, CLDN2, CLDN3, CLDN7, OCLD, ZO-1 and pIgR were significantly decreased in the colon of DSS-induced EpCAM+/- mice. The serum concentration of LPS was significantly higher in the DSS-induced EpCAM+/- mice which caused the acute inflammation in the liver of them. The expression of Pigr was significantly reduced in the liver of DSS-induced EpCAM+/- mice. The ratio of Firmicutes/Bacteroidetes at the phylum level was higher in the gut microbiota of EpCAM+/- mice than WT mice. Conclusion In conclusion, the heterozygous mutation of EpCAM increased the susceptibility to colitis, gut microbiota dysbiosis and liver injury.
Collapse
Affiliation(s)
- Ya Nie
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Ting Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanhong Yang
- The First Affiliated Hospital, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wanwan Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing Hu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guibin Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Huang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Huijuan Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Cunjie Kong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Zili Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
7
|
Gan G, Lin S, Luo Y, Zeng Y, Lu B, Zhang R, Chen S, Lei H, Cai Z, Huang X. Unveiling the oral-gut connection: chronic apical periodontitis accelerates atherosclerosis via gut microbiota dysbiosis and altered metabolites in apoE -/- Mice on a high-fat diet. Int J Oral Sci 2024; 16:39. [PMID: 38740741 PMCID: PMC11091127 DOI: 10.1038/s41368-024-00301-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/27/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
The aim of this study was to explore the impact of chronic apical periodontitis (CAP) on atherosclerosis in apoE-/- mice fed high-fat diet (HFD). This investigation focused on the gut microbiota, metabolites, and intestinal barrier function to uncover potential links between oral health and cardiovascular disease (CVD). In this study, CAP was shown to exacerbate atherosclerosis in HFD-fed apoE-/- mice, as evidenced by the increase in plaque size and volume in the aortic walls observed via Oil Red O staining. 16S rRNA sequencing revealed significant alterations in the gut microbiota, with harmful bacterial species thriving while beneficial species declining. Metabolomic profiling indicated disruptions in lipid metabolism and primary bile acid synthesis, leading to elevated levels of taurochenodeoxycholic acid (TCDCA), taurocholic acid (TCA), and tauroursodeoxycholic acid (TDCA). These metabolic shifts may contribute to atherosclerosis development. Furthermore, impaired intestinal barrier function, characterized by reduced mucin expression and disrupted tight junction proteins, was observed. The increased intestinal permeability observed was positively correlated with the severity of atherosclerotic lesions, highlighting the importance of the intestinal barrier in cardiovascular health. In conclusion, this research underscores the intricate interplay among oral health, gut microbiota composition, metabolite profiles, and CVD incidence. These findings emphasize the importance of maintaining good oral hygiene as a potential preventive measure against cardiovascular issues, as well as the need for further investigations into the intricate mechanisms linking oral health, gut microbiota, and metabolic pathways in CVD development.
Collapse
Affiliation(s)
- Guowu Gan
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shihan Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yufang Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yu Zeng
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Beibei Lu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Ren Zhang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shuai Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Huaxiang Lei
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Zhiyu Cai
- Department of Stomatology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
8
|
Wu Q, Luo Y, Lu H, Xie T, Hu Z, Chu Z, Luo F. The Potential Role of Vitamin E and the Mechanism in the Prevention and Treatment of Inflammatory Bowel Disease. Foods 2024; 13:898. [PMID: 38540888 PMCID: PMC10970063 DOI: 10.3390/foods13060898] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 01/06/2025] Open
Abstract
Inflammatory bowel disease (IBD) includes ulcerative colitis and Crohn's disease, and it is a multifactorial disease of the intestinal mucosa. Oxidative stress damage and inflammation are major risk factors for IBD. Vitamin E has powerful antioxidant and anti-inflammatory effects. Our previous work and other investigations have shown that vitamin E has a positive effect on the prevention and treatment of IBD. In this paper, the source and structure of vitamin E and the potential mechanism of vitamin E's role in IBD were summarized, and we also analyzed the status of vitamin E deficiency in patients with IBD and the effect of vitamin E supplementation on IBD. The potential mechanisms by which vitamin E plays a role in the prevention and treatment of IBD include improvement of oxidative damage, enhancement of immunity, maintenance of intestinal barrier integrity, and suppression of inflammatory cytokines, modulating the gut microbiota and other relevant factors. The review will improve our understanding of the complex mechanism by which vitamin E inhibits IBD, and it also provides references for doctors in clinical practice and researchers in this field.
Collapse
Affiliation(s)
- Qi Wu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, China; (Q.W.); (H.L.); (T.X.); (Z.H.); (Z.C.)
| | - Yi Luo
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Han Lu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, China; (Q.W.); (H.L.); (T.X.); (Z.H.); (Z.C.)
| | - Tiantian Xie
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, China; (Q.W.); (H.L.); (T.X.); (Z.H.); (Z.C.)
| | - Zuomin Hu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, China; (Q.W.); (H.L.); (T.X.); (Z.H.); (Z.C.)
| | - Zhongxing Chu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, China; (Q.W.); (H.L.); (T.X.); (Z.H.); (Z.C.)
| | - Feijun Luo
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, China; (Q.W.); (H.L.); (T.X.); (Z.H.); (Z.C.)
| |
Collapse
|
9
|
Wang X, Chen J, Chan Y, Li S, Li M, Lin F, Mehmood K, Idrees A, Lin R, Su Y, Wang C, Shi D. Effect of Echinacea purpurea (L.) Moench and its extracts on the immunization outcome of avian influenza vaccine in broilers. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117306. [PMID: 37839770 DOI: 10.1016/j.jep.2023.117306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Echinacea purpurea (L.) Moench (EP) is a perennial herbaceous flowering plant with immunomodulatory effects. However, the immunomodulatory effects of EP on broilers after vaccination are still unclear. AIM OF THE STUDY The aim is to study the effect of EP and Echinacea purpurea (L.) Moench extracts(EE) on avian influenza virus (AIV) immunity, and further explore the potential mechanism of immune regulation. MATERIALS AND METHODS Broilers were fed with feed additives containing 2% EP or 0.5% EE, and vaccinated against avian influenza. The samples were collected on the 7th, 21st, and 35th day after vaccination, and the feed conversion ratio (FCR) was calculated. Blood antibody titer, jejunal sIgA content, tight junction protein, gene and protein expression of TLR4-MAPK signaling pathway were also detected. RESULTS The results showed that vaccination could cause immune stress, weight loss, increase sIgA content, and up-regulate the expression of tight junction proteins, including zonula occludens-1 (ZO-1), Occludin, and Claudin-1, as well as the genes of Toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), receptor-associated factor 6 (TRAF6), activator protein 1 (AP-1) protein gene expression on TLR4-mitogen-activated protein kinase (MAPK) signaling pathway, and the protein expression of MyD88, extracellular regulated protein kinases (ERK), and c-Jun N-terminal kinase (JNK). EP and EE could increase the body weight of broilers, further improve antibody titers, decrease FCR, increase sIgA levels, up-regulate the expression of tight junction proteins, including ZO-1, Occludin, and Claudin-1, as well as the genes of TLR4, MyD88, TRAF6, and AP-1 and the protein expression of MyD88, ERK, and JNK in the TLR4-MAPK signaling pathway. CONCLUSION In conclusion, EP and EE can increase the broiler's production performance and improve vaccine immune effect through the TLR4-MAPK signaling pathway.
Collapse
Affiliation(s)
- Xinyue Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Jiaxin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Nanomedicine Center, The GBA National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China.
| | - Yanzi Chan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Sihan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Menglin Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Fei Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Science, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Asif Idrees
- KBCMA, College of Veterinary and Animal Sciences, Narowal, Pakistan.
| | - Renzhao Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Yalin Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Chunkai Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Dayou Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
10
|
Song YY, Zhang XZ, Wang BN, Cheng YK, Guo X, Zhang X, Long SR, Liu RD, Wang ZQ, Cui J. A novel Trichinella spiralis serine proteinase disrupted gut epithelial barrier and mediated larval invasion through binding to RACK1 and activating MAPK/ERK1/2 pathway. PLoS Negl Trop Dis 2024; 18:e0011872. [PMID: 38190388 PMCID: PMC10798628 DOI: 10.1371/journal.pntd.0011872] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/19/2024] [Accepted: 12/19/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Gut epithelium is the first natural barrier against Trichinella spiralis larval invasion, but the mechanism by which larval penetration of gut epithelium is not completely elucidated. Previous studies showed that proteases secreted by T. spiralis intestinal infective larvae (IIL) degraded tight junctions (TJs) proteins of gut epithelium and mediated larval invasion. A new T. spiralis serine proteinase (TsSPc) was identified in the IIL surface proteins and ES proteins, rTsSPc bound to the intestinal epithelial cell (IECs) and promoted larval invasion of IECs. The aim of this study was to characterize the interacted proteins of TsSPc and IECs, and to investigate the molecular mechanisms of TsSPc mediating larval invasion of gut mucosa. METHODOLOGY/PRINCIPAL FINDING IIFT results showed natural TsSPc was detected in infected murine intestine at 6, 12 hours post infection (hpi) and 3 dpi. The results of GST pull-down, mass spectrometry (MS) and Co-IP indicated that rTsSPc bound and interacted specifically with receptor for activated protein C kinase 1 (RACK1) in Caco-2 cells. rTsSPc did not directly hydrolyze the TJs proteins. qPCR and Western blot showed that rTsSPc up-regulated RACK1 expression, activated MAPK/ERK1/2 pathway, reduced the expression levels of gut TJs (occludin and claudin-1) and adherent protein E-cad, increased the paracellular permeability and damaged the integrity of intestinal epithelial barrier. Moreover, the RACK1 inhibitor HO and ERK1/2 pathway inhibitor PD98059 abolished the rTsSPc activating ERK1/2 pathway, they also inhibited and abrogated the rTsSPc down-regulating expression of occludin, claudin-1 and E-cad in Caco-2 monolayer and infected murine intestine, impeded larval invasion and improved intestinal epithelial integrity and barrier function, reduced intestinal worm burdens and alleviated intestinal inflammation. CONCLUSIONS rTsSPc bound to RACK1 receptor in gut epithelium, activated MAPK/ERK1/2 pathway, decreased the expression of gut epithelial TJs proteins and disrupted the epithelial integrity, consequently mediated T. spiralis larval invasion of gut epithelium. The results are valuable to understand T. spiralis invasion mechanism, and TsSPc might be regarded as a vaccine target against T. spiralis invasion and infection.
Collapse
Affiliation(s)
- Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Xin Zhuo Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Bo Ning Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Yong Kang Cheng
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Xin Guo
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Harasawa A, Ishiyama S, Mochizuki K. Fructo-oligosaccharide-mediated alteration in claudin expression in small intestinal absorptive Caco-2 cells is positively associated with the induction of inflammatory genes and the glucan receptor gene CLEC7A. Nutrition 2023; 115:112140. [PMID: 37481839 DOI: 10.1016/j.nut.2023.112140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/02/2023] [Accepted: 06/18/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVES Indigestible carbohydrates may strengthen tight junctions (TJs) independently of intestinal bacteria. This study investigated whether indigestible carbohydrates (i.e., fructo-oligosaccharides [FOS]) promote TJs directly to intestinal absorptive Caco-2 cells and examined the association between the expression of genes constructing TJs and other genes using mRNA microarray analysis. METHODS Caco-2 cells at 1.0 × 105/mL were seeded in a type I collagen plate and cultured in high-glucose Dulbecco's modified Eagle medium (DMEM) supplemented with 10% fetal calf serum (FCS); the cells reached confluence at 7 d after seeding. Ten days after the cells reached confluency, they were cultured for 24 h in 10% FCS-containing DMEM medium supplemented with 0%, 5%, or 10% FOS. We performed mRNA microarray to identify the genes whose expression was altered by FOS. Subsequently, quantitative reverse transcription polymerase chain reaction was performed for these altered genes, including CLEC7A encoding the glucan receptor, and for the claudin (CLDN) family genes. The expression of CLDN2, CLDN4, and CLEC7A proteins was assessed using western blot analysis. RESULTS FOS decreased the mRNA and protein expression of CLDN2, which weakens TJs, and increased those of CLDN4, which strengthens TJs, in Caco-2 cells. FOS treatment (10%) reduced the mRNA expression of antioxidative genes and induced the expression of immune response-related genes, including CLEC7A, CCL2, and ITGA2. Furthermore, the expression of CLEC7A protein was enhanced by FOS. CONCLUSIONS Induction of TJ-strengthening CLDN4 and reduction of TJ-weakening CLDN2 by FOS treatment in small intestinal absorptive Caco-2 cells is positively associated with the induction of inflammatory genes, including CLEC7A.
Collapse
Affiliation(s)
- Aya Harasawa
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Kofu, Japan
| | - Shiori Ishiyama
- Laboratory of Food and Nutritional Sciences, Department of Local Produce and Food Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Japan
| | - Kazuki Mochizuki
- Laboratory of Food and Nutritional Sciences, Department of Local Produce and Food Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Japan.
| |
Collapse
|
12
|
Chen T, Tao YN, Wu Y, Ren X, Li YF, Wang YH. HSP70 attenuates neuronal necroptosis through the HSP90α-RIPK3 pathway following neuronal trauma. Mol Biol Rep 2023; 50:7237-7244. [PMID: 37418085 DOI: 10.1007/s11033-023-08619-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/21/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Necroptosis, a newly defined regulatable necrosis with membrane disruption, has been demonstrated to participate in trauma brain injury (TBI) related neuronal cell death. Heat shock protein 70 (HSP70) is a stress protein with neuroprotective activity, but the potential protective mechanisms are not fully understood. METHODS AND RESULTS Here, we investigated the effects of HSP70 regulators in a cellular TBI model induced by traumatic neuronal injury (TNI) and glutamate treatment. We found that necroptosis occurred in cortical neurons after TNI and glutamate treatment. Neuronal trauma markedly upregulated HSP70 protein expression within 24 h. The results of immunostaining and lactate dehydrogenase release assay showed that necroptosis following neuronal trauma was inhibited by HSP70 activator TRC051384 (TRC), but promoted by the HSP70 inhibitor 2-phenylethyenesulfonamide (PES). In congruent, the expression and phosphorylation of receptor interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL) were differently regulated by HSP70. Furthermore, the expression of HSP90α induced by neuronal trauma was further promoted by PES but decreased by TRC. The data obtained from western blot showed that the phosphorylation of RIPK3 and MLKL induced by HSP70 inhibition were reduced by RIPK3 inhibitor GSK-872 and HSP90α inhibitor geldanamycin (GA). Similarly, inhibition of HSP90α with GA could partially prevented the increased necroptosis induced by PES. CONCLUSIONS Taken together, HSP70 activation exerted protective effects against neuronal trauma via inhibition of necroptosis. Mechanistically, the HSP90α-mediated activation of RIPK3 and MLKL is involved in these effects.
Collapse
Affiliation(s)
- Tao Chen
- Department of Neurosurgery, Wuxi Taihu Hospital, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China
| | - Yun-Na Tao
- Department of Neurosurgery, Wuxi Taihu Hospital, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China
| | - Yan Wu
- Department of Neurosurgery, Wuxi Taihu Hospital, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China
| | - Xu Ren
- Department of Neurosurgery, Wuxi Taihu Hospital, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China
| | - Yun-Fei Li
- Department of Neurosurgery, Wuxi Taihu Hospital, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China
| | - Yu-Hai Wang
- Department of Neurosurgery, Wuxi Taihu Hospital, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China.
| |
Collapse
|
13
|
Li H, Chen H, Zhang S, Wang S, Zhang L, Li J, Gao S, Qi Z. Taurine alleviates heat stress-induced mammary inflammation and impairment of mammary epithelial integrity via the ERK1/2-MLCK signaling pathway. J Therm Biol 2023; 116:103587. [PMID: 37478580 DOI: 10.1016/j.jtherbio.2023.103587] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 07/23/2023]
Abstract
Heat stress leads to milk production losses and mammary gland inflammation, which may be associated with mammary epithelium damage. Taurine is one of the most abundant free amino acids in mammals which has anti-inflammatory properties. This study aimed to explore the effect of taurine pretreatment on heat stress-induced mammary epithelial integrity disruption and inflammatory damage. In our first experiment on dairy cows our results showed that compared with animals under autumn thermoneutral condition (THI = 62.99 ± 0.71), summer heat stress (THI = 78.01 ± 0.39) significantly reduced milk yield and disrupted mammary epithelial integrity as revealed by increased concentrations of serotonin and lactose in plasma, and increased levels of SA and Na+/K+ in milk. In our second study, 36 lactating mice were randomly divided into three groups (n = 12) for a 9d experiment using a climate chamber to establish a heat stress model. Our findings suggest taurine pretreatment could attenuate heat stress-induced mammary histopathological impairment, inflammation response, and enhance mammary epithelium integrity, which was mainly achieved by promoting the secretion of ZO-1, Occludin, and Claudin-3 through inhibiting activation of the ERK1/2-MLCK signaling pathway in the mammary gland. Overall, our findings indicated that heat stress induced mammary epithelium dysfunction in dairy cows, and emphasized the protective effect of taurine on mammary health under heat stress conditions using a mouse model, which may be achieved by alleviating the mammary epithelium integrity damage and inflammation response.
Collapse
Affiliation(s)
- Han Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Shaobo Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shengqi Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liwen Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingdu Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Si Gao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhili Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
14
|
Comprehensive Profiling of ceRNA (circRNA-miRNA-mRNA) Networks in Hypothalamic-Pituitary-Mammary Gland Axis of Dairy Cows under Heat Stress. Int J Mol Sci 2023; 24:ijms24010888. [PMID: 36614329 PMCID: PMC9821774 DOI: 10.3390/ijms24010888] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/18/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Heat stress (HS) is directly correlated with mammary gland dysfunction and the hypothalamic-pituitary-mammary gland (HPM) axis is involved in regulating stress responses and lactation in dairy cows. Circular RNAs (circRNAs) play major roles in regulating transcription and post-transcription but their expression in the HPM axis of dairy cows under HS is still unclear. In the present study, we performed RNA sequencing to identify diferentially expressed (DE) circRNAs, DE microRNAs(miRNAs) and DEmRNAs, and performed bioinformatics analysis on those in HPM axis-related tissues of heat-stressed and normal cows. A total of 1680, 1112 and 521 DEcircRNAs, 120, 493 and 108 DEmiRNAs, 274, 6475 and 3134 DEmRNAs were identified in the hypothalamic, pituitary, and mammary gland tissues, respectively. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses indicated that the MAPK signaling pathway is potentially a key pathway. Competitive endogenous RNA (ceRNA) networks related to HS response and lactation regulation were established in three tissues. In conclusion, our results indicate that HS induces differential circRNA expression profiles in HPM axis-related tissues, and the predicted ceRNA network provides a molecular basis for regulating the stress response and lactation regulation in heat-stressed dairy cows.
Collapse
|
15
|
Hii HP, Lo WZ, Fu YH, Chen MH, Shih CC, Tsao CM, Ka SM, Chiu YL, Wu CC, Shih CC. Improvement in heat stress-induced multiple organ dysfunction and intestinal damage through protection of intestinal goblet cells from prostaglandin E1 analogue misoprostol. Life Sci 2022; 310:121039. [DOI: 10.1016/j.lfs.2022.121039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/23/2022] [Accepted: 10/01/2022] [Indexed: 11/09/2022]
|
16
|
Alagbe EO, Aderibigbe AS, Schulze H, Ajuwon KM, Adeola O. Gastrointestinal dynamics, immune response, and nutrient digestibility of weanling pigs fed diets supplemented with enzymatically treated yeast1. J Anim Sci 2022; 100:skac377. [PMID: 36373005 PMCID: PMC9762883 DOI: 10.1093/jas/skac377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2023] Open
Abstract
The objective of this trial was to investigate the effect of enzymatically treated yeast (ETY) on the growth performance, nutrient digestibility, immune response, and gut health of weanling pigs. A total of 192 weanling pigs (6.0 ± 1.04 kg) were allocated to 4 corn and soybean-based diets with increasing concentrations of ETY (0, 1, 2, or 4 g/kg) for a 43-d trial. There were 8 replicate pens (4 replicate pens per sex) and 6 pigs per replicate. The experiment was set up as a randomized complete block design with body weight used as a blocking factor. Pigs had ad libitum access to water and diets for the duration of the study. There was no effect of ETY supplementation on the growth performance indices of weanling pigs. At day 14, there was a quadratic decrease (P < 0.05) in the apparent total tract digestibility (ATTD) of acid detergent fiber (ADF). At day 28, there was a linear increase (P < 0.05) in the ATTD of neutral detergent fiber and a quadratic decrease (P < 0.05) in the ATTD of ADF. On day 14, there was a linear increase (P < 0.05) in serum catalase activity with ETY supplementation. There was a linear increase (P < 0.01) in the gene expression of glutathione peroxidase-4 in the ileal mucosa of pigs. Increasing dietary ETY supplementation linearly decreased (P < 0.05) the gene expression of ileal peptide transporter 1. There was a tendency for a quadratic effect (P = 0.07) in the ileal villus height to crypt depth ratio with ETY supplementation. In addition, there was a tendency for a linear increase (P = 0.06) in ileal digesta butyrate with ETY supplementation. In conclusion, the current study demonstrated that dietary ETY supplementation could partly ameliorate the deleterious effects of post-weaning stress by enhancing the antioxidative status of weanling pigs. However, prolonged supplementation of ETY may be needed to see its effect on growth performance.
Collapse
Affiliation(s)
- Emmanuel O Alagbe
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Ayodeji S Aderibigbe
- Division of Agriculture Science, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Hagen Schulze
- Livalta, AB Agri Ltd, 64 Innovation Way, Lynchwood, Peterborough, PE2 6FL, UK
| | - Kolapo M Ajuwon
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Olayiwola Adeola
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
17
|
Hadji H, Bouchemal K. Advances in the treatment of inflammatory bowel disease: Focus on polysaccharide nanoparticulate drug delivery systems. Adv Drug Deliv Rev 2022; 181:114101. [PMID: 34999122 DOI: 10.1016/j.addr.2021.114101] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
The complex pathogenesis of inflammatory bowel disease (IBD) explains the several hurdles for finding an efficient approach to cure it. Nowadays, therapeutic protocols aim to reduce inflammation during the hot phase or maintain remission during the cold phase. Nonetheless, these drugs suffer from severe side effects or poor efficacy due to low bioavailability in the inflamed region of the intestinal tract. New protocols based on antibodies that target proinflammatory cytokines are clinically relevant. However, besides being expensive, their use is associated with a primary nonresponse or a loss of response following a long administration period. Accordingly, many researchers exploited the physiological changes of the mucosal barrier for designing nanoparticulate drug delivery systems to target inflamed tissues. Others exploited biocompatibility and relative affordability of polysaccharides to test their intrinsic anti-inflammatory and healing properties in IBD models. This critical review updates state of the art on advances in IBD treatment. Data on using polysaccharide nanoparticulate drug delivery systems for IBD treatment are reviewed and discussed.
Collapse
Affiliation(s)
- Hicheme Hadji
- Institut Galien Paris Saclay, CNRS UMR 8612, Université Paris-Saclay, Faculté de Pharmacie, 5 rue J-B Clément, 92296 Châtenay-Malabry, France
| | - Kawthar Bouchemal
- Institut Galien Paris Saclay, CNRS UMR 8612, Université Paris-Saclay, Faculté de Pharmacie, 5 rue J-B Clément, 92296 Châtenay-Malabry, France.
| |
Collapse
|
18
|
Kozieł MJ, Ziaja M, Piastowska-Ciesielska AW. Intestinal Barrier, Claudins and Mycotoxins. Toxins (Basel) 2021; 13:758. [PMID: 34822542 PMCID: PMC8622050 DOI: 10.3390/toxins13110758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 02/08/2023] Open
Abstract
The intestinal barrier is the main barrier against all of the substances that enter the body. Proper functioning of this barrier guarantees maintained balance in the organism. Mycotoxins are toxic, secondary fungi metabolites, that have a negative impact both on human and animal health. It was postulated that various mycotoxins may affect homeostasis by disturbing the intestinal barrier. Claudins are proteins that are involved in creating tight junctions between epithelial cells. A growing body of evidence underlines their role in molecular response to mycotoxin-induced cytotoxicity. This review summarizes the information connected with claudins, their association with an intestinal barrier, physiological conditions in general, and with gastrointestinal cancers. Moreover, this review also includes information about the changes in claudin expression upon exposition to various mycotoxins.
Collapse
|