1
|
Liang H, Ma Y, Zhao Y, Qayyum N, He F, Tian J, Sun X, Li B, Wang Y, Wu M, Liu G. A Review on the Extraction, Structural Analysis, and Antitumor Mechanisms of Sanghuangporus Polysaccharides. Foods 2025; 14:707. [PMID: 40002150 PMCID: PMC11854207 DOI: 10.3390/foods14040707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
In recent years, the bioactive compounds extracted from Sanghuangporus, especially polysaccharides, phenols, and triterpenoids, have attracted great interest from people due to their extensive biological activity. Among them, polysaccharides are mainly extracted from the seed bodies, mycelium, and fermentation broth of Sanghuangyuan, exhibiting notable effects including immunomodulation, antitumor properties, and hypoglycemic effects. This article provides a comprehensive review of the extraction process, structural characteristics, and antitumor mechanism of Sanghuangyuan polysaccharides. First, the different extraction methods, such as hot water extraction, enzyme-assisted extraction, and ultrasonic-assisted extraction, are summarized. Then, the structure of the Sanghuangporus polysaccharide is studied in detail. Moreover, the antitumor mechanisms demonstrate significant inhibitory impacts on various malignant tumors, spanning gastric, hepatic, colorectal, breast, and prostate cancers. This groundbreaking revelation is of great significance for both the food and pharmaceutical sectors, presenting innovative pathways for Sanghuangyuan utilization and potentially inducing advancements in product development, treatment modalities, and therapeutic interventions.
Collapse
Affiliation(s)
- Huaiyin Liang
- College of Food, Shenyang Agricultural University, Shenyang 110866, China; (H.L.); (X.S.); (B.L.)
| | - Yanrui Ma
- Jinan Fruit Research Institute, China Federation of Supply and Marketing Co-Operatives, Jinan 250200, China; (Y.M.); (Y.Z.); (F.H.); (J.T.); (M.W.)
| | - Yan Zhao
- Jinan Fruit Research Institute, China Federation of Supply and Marketing Co-Operatives, Jinan 250200, China; (Y.M.); (Y.Z.); (F.H.); (J.T.); (M.W.)
| | - Nageena Qayyum
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China;
| | - Fatao He
- Jinan Fruit Research Institute, China Federation of Supply and Marketing Co-Operatives, Jinan 250200, China; (Y.M.); (Y.Z.); (F.H.); (J.T.); (M.W.)
| | - Jiewei Tian
- Jinan Fruit Research Institute, China Federation of Supply and Marketing Co-Operatives, Jinan 250200, China; (Y.M.); (Y.Z.); (F.H.); (J.T.); (M.W.)
| | - Xiyun Sun
- College of Food, Shenyang Agricultural University, Shenyang 110866, China; (H.L.); (X.S.); (B.L.)
| | - Bin Li
- College of Food, Shenyang Agricultural University, Shenyang 110866, China; (H.L.); (X.S.); (B.L.)
| | - Yuehua Wang
- College of Food, Shenyang Agricultural University, Shenyang 110866, China; (H.L.); (X.S.); (B.L.)
| | - Maoyu Wu
- Jinan Fruit Research Institute, China Federation of Supply and Marketing Co-Operatives, Jinan 250200, China; (Y.M.); (Y.Z.); (F.H.); (J.T.); (M.W.)
| | - Guangpeng Liu
- Jinan Fruit Research Institute, China Federation of Supply and Marketing Co-Operatives, Jinan 250200, China; (Y.M.); (Y.Z.); (F.H.); (J.T.); (M.W.)
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China;
| |
Collapse
|
2
|
Chang Y, Zheng F, Chen M, Liu C, Zheng L. Chlorella pyrenoidosa polysaccharides supplementation increases Drosophila melanogaster longevity at high temperature. Int J Biol Macromol 2024; 276:133844. [PMID: 39004249 DOI: 10.1016/j.ijbiomac.2024.133844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/11/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Chlorella pyrenoidos polysaccharides (CPPs) are the main active components of Chlorella pyrenoidos. They possess beneficial health properties, such as antioxidant, anti-inflammatory, and immune-enhancing. This study aims to investigate the protective function and mechanism of CPPs against high-temperature stress injury. Results showed that supplementation with 20 mg/mL CPPs significantly extended the lifespan of Drosophila melanogaster under high-temperature stress, improved its motility, and enhanced its resistance to starvation and oxidative stress. These effects were mainly attributed to the activation of Nrf2 signaling and enhanced antioxidant capacity. Additionally, it has been discovered that CPPs supplementation enhanced Drosophila resilience by preventing the disruption of the intestinal barrier and accumulation of reactive oxygen species caused by heat stress. Overall, these studies suggest that CPPs could be a useful natural therapy for preventing heat stress-induced injury.
Collapse
Affiliation(s)
- Yuanyuan Chang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Feng Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Miao Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Changhong Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
3
|
Tee PYE, Krishnan T, Cheong XT, Maniam SAP, Looi CY, Ooi YY, Chua CLL, Fung SY, Chia AYY. A review on the cultivation, bioactive compounds, health-promoting factors and clinical trials of medicinal mushrooms Taiwanofungus camphoratus, Inonotus obliquus and Tropicoporus linteus. Fungal Biol Biotechnol 2024; 11:7. [PMID: 38987829 PMCID: PMC11238383 DOI: 10.1186/s40694-024-00176-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/09/2024] [Indexed: 07/12/2024] Open
Abstract
Medicinal mushrooms, such as Taiwanofungus camphoratus, Inonotus obliquus, and Tropicoporus linteus, have been used in traditional medicine for therapeutic purposes and promotion of overall health in China and many East Asian countries for centuries. Modern pharmacological studies have demonstrated the large amounts of bioactive constituents (such as polysaccharides, triterpenoids, and phenolic compounds) available in these medicinal mushrooms and their potential therapeutic properties. Due to the rising demand for the health-promoting medicinal mushrooms, various cultivation methods have been explored to combat over-harvesting of the fungi. Evidence of the robust pharmacological properties, including their anticancer, hypoglycemic, hypolipidemic, antioxidant, and antiviral activities, have been provided in various studies, where the health-benefiting properties of the medicinal fungi have been further proven through numerous clinical trials. In this review, the cultivation methods, available bioactive constituents, therapeutic properties, and potential uses of T. camphoratus, I. obliquus and T. linteus are explored.
Collapse
Affiliation(s)
- Phoebe Yon Ern Tee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Thiiben Krishnan
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Xin Tian Cheong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Snechaa A P Maniam
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Yin Yin Ooi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Caroline Lin Lin Chua
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Shin-Yee Fung
- Department of Molecular Medicine, Faculty of Medicine Building, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Adeline Yoke Yin Chia
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia.
| |
Collapse
|
4
|
Kou F, Mei Y, Wang W, Wei X, Xiao H, Wu X. Phellinus linteus polysaccharides: A review on their preparation, structure-activity relationships, and drug delivery systems. Int J Biol Macromol 2024; 258:128702. [PMID: 38072341 DOI: 10.1016/j.ijbiomac.2023.128702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Phellinus linteus polysaccharides exhibit antitumor, immunomodulatory, anti-inflammatory, and antioxidant properties, mitigate insulin resistance, and enhance the diversity and abundance of gut microbiota. However, the bioactivities of P. linteus polysaccharides vary owing to the complex structure, thereby, limiting their application. Various processing strategies have been employed to modify them for improving the functional properties and yield. Herein, we compare the primary modes of extraction and purification employed to improve the yield and purity, review the structure-activity relationships, and discuss the application of P. linteus polysaccharides using nano-carriers for the encapsulation and delivery of various drugs to improve bioactivity. The limitations and future perspectives are also discussed. Exploring the bioactivity, structure-activity relationship, processing methods, and delivery routes of P. linteus polysaccharides will facilitate the development of functional foods and dietary supplements rich in P. linteus polysaccharides.
Collapse
Affiliation(s)
- Fang Kou
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, South Korea; College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuxia Mei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Weihao Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China.
| | - Xuetuan Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, United States of America
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, OH, United States of America
| |
Collapse
|
5
|
Ni Z, Li J, Qian X, Yong Y, Wu M, Wang Y, Lv W, Zhang S, Zhang Y, Shao Y, Chen A. Phellinus igniarius Polysaccharides Ameliorate Hyperglycemia by Modulating the Composition of the Gut Microbiota and Their Metabolites in Diabetic Mice. Molecules 2023; 28:7136. [PMID: 37894615 PMCID: PMC10609020 DOI: 10.3390/molecules28207136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Gut microbiota dysbiosis has been reported as a risk factor in the development of type 2 diabetes mellitus (T2DM). Polysaccharides from Phellinus igniarius (P. igniarius) possess various properties that help manage metabolic diseases; however, their underlying mechanism of action remains unclear. Therefore, in this study, we aimed to evaluate the effect of P. igniarius polysaccharides (SH-P) on improving hyperglycemia in mice with T2DM and clarified its association with the modulation of gut microbiota and their metabolites using 16S rDNA sequencing and liquid chromatography-mass spectrometry. Fecal microbiota transplantation (FMT) was used to verify the therapeutic effects of microbial remodeling. SH-P supplementation alleviated hyperglycemia symptoms in T2DM mice, ameliorated gut dysbiosis, and significantly increased the abundance of Lactobacillus in the gut. Pathway enrichment analysis indicated that SH-P treatment altered metabolic pathways associated with the occurrence and development of diabetes. Spearman's correlation analysis revealed that changes in the dominant bacterial genera were significantly correlated with metabolite levels closely associated with hyperglycemia. Additionally, FMT significantly improved insulin sensitivity and antioxidative capacity and reduced inflammation and tissue injuries, indicating improved glucose homeostasis. These results indicate that the ameliorative effects of SH-P on hyperglycemia are associated with the modulation of gut microbiota composition and its metabolites.
Collapse
Affiliation(s)
- Zaizhong Ni
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Jinting Li
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Xinyi Qian
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Yidan Yong
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Mengmeng Wu
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Yanan Wang
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Wendi Lv
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Simeng Zhang
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Yifei Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Shao
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Anhui Chen
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China
| |
Collapse
|
6
|
Suh MG, Shin HY, Jeong EJ, Kim G, Jeong SB, Ha EJ, Choi SY, Moon SK, Shin KS, Yu KW, Suh HJ, Kim H. Identification of galacturonic acid-rich polysaccharide with intestinal immune system modulating activity via Peyer's patch from postbiotics of Phellinus linteus mycelial submerged culture. Int J Biol Macromol 2023; 234:123685. [PMID: 36796554 DOI: 10.1016/j.ijbiomac.2023.123685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Interests in the development and exploration of industrial applications of medicinal mushrooms as postbiotics have lately increased. We recently reported the potential use of Phellinus linteus mycelial-containing whole culture extract (PLME) prepared by submerged cultivation as a postbiotic that promotes immune system activation. Here, we aimed to isolate and structurally elucidate the active ingredients in PLME by activity-guided fractionation. The intestinal immunostimulatory activity was evaluated by bone marrow (BM) cell proliferation activity and related cytokine production in C3H-HeN mouse-derived Peyer's patch (PP) cells treated with polysaccharide fractions. The initially crude polysaccharide (PLME-CP) of PLME prepared using ethanol precipitation was further fractionated into four fractions (PLME-CP-0 to -III) by anion-exchange column chromatography. BM cell proliferation and cytokine production of PLME-CP-III were significantly improved compared to those of PLME-CP. PLME-CP-III was then fractionated into PLME-CP-III-1 and PLME-CP-III-2 by gel filtration chromatography. Based on the molecular weight distribution, monosaccharide, and glycosyl linkage analyses, PLME-CP-III-1 was revealed as a novel galacturonic acid-rich acidic polysaccharide and further shown to play an important role in facilitating PP-mediated intestinal immunostimulatory activity. This is the first study demonstrating the structural characteristics of a novel intestinal immune system modulating acidic polysaccharide from P. linteus mycelium-containing whole culture broth postbiotics.
Collapse
Affiliation(s)
- Min Geun Suh
- Department of Integrated Biomedical and Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea; R&D Center Neo Cremar Cooperation Limited, 211 Jungdae-ro, Songpa-gu, Seoul 05702, South Korea
| | - Hyun Young Shin
- Department of Integrated Biomedical and Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea; BK21FOUR R&E Center for Learning Health Systems, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Eun-Jin Jeong
- Department of Integrated Biomedical and Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea; BK21FOUR R&E Center for Learning Health Systems, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Gaeuleh Kim
- Major in Food & Nutrition, Korea National University of Transportation, 61 Daehak-ro, Jeungpyeong 27909, South Korea
| | - Se Bin Jeong
- Major in Food & Nutrition, Korea National University of Transportation, 61 Daehak-ro, Jeungpyeong 27909, South Korea
| | - Eun Ji Ha
- Major in Food & Nutrition, Korea National University of Transportation, 61 Daehak-ro, Jeungpyeong 27909, South Korea
| | - Sang-Yong Choi
- R&D Center Neo Cremar Cooperation Limited, 211 Jungdae-ro, Songpa-gu, Seoul 05702, South Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong 17546, South Korea
| | - Kwang-Soon Shin
- Department of Food and Biotechnology, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon 16227, South Korea
| | - Kwang-Won Yu
- Major in Food & Nutrition, Korea National University of Transportation, 61 Daehak-ro, Jeungpyeong 27909, South Korea
| | - Hyung-Joo Suh
- Department of Integrated Biomedical and Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea; BK21FOUR R&E Center for Learning Health Systems, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Hoon Kim
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong 17546, South Korea.
| |
Collapse
|
7
|
Lin G, Li Y, Chen X, Zhang F, Linhardt RJ, Zhang A. Extraction, structure and bioactivities of polysaccharides from Sanghuangporus spp.: A review. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
8
|
Xia Y, Yang C, Liu X, Wang G, Xiong Z, Song X, Yang Y, Zhang H, Ai L. Enhancement of triterpene production via in situ extractive fermentation of Sanghuangporus vaninii YC-1. Biotechnol Appl Biochem 2022; 69:2561-2572. [PMID: 34967056 DOI: 10.1002/bab.2305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/27/2021] [Indexed: 12/27/2022]
Abstract
There have been many studies on the activities and polysaccharide production of Sanghuangporus vaninii. However, few studies have looked at triterpene production from S. vaninii using liquid-state fermentation. A method for enhancing the production of triterpenes by in situ extractive fermentation (ISEF) was studied. Eight solvents were investigated as extractants for triterpene production in the ISEF system. The results showed that using vegetable oil as an extractant significantly increased the yield of total triterpenes and biomass of S. vaninii YC-1, reaching 18.98 ± 0.71 and 44.67 ± 2.21 g/L, respectively. In 5 L fermenter experiments, the added vegetable oil improved the dissolved oxygen condition of the fermentation broth and promoted the growth of S. vaninii YC-1. Furthermore, adding vegetable oil increased the expression of fatty acid synthesis-related genes such as FAD2 and SCD, thereby increasing the synthesis of unsaturated fatty acids in the cell membrane of S. vaninii YC-1. Therefore, the cell membrane permeability of S. vaninii YC-1 increased by 19%. Our results indicated that vegetable oil increased the permeability of S. vaninii YC-1 cell membranes to promote the production of total triterpenes. The use of vegetable oil as an extractant was thus effective in increasing the yield of triterpenes in the ISEF system.
Collapse
Affiliation(s)
- Yongjun Xia
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Caiyun Yang
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiaofeng Liu
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Guangqiang Wang
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhiqiang Xiong
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Song
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Yijin Yang
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Hui Zhang
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Lianzhong Ai
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
9
|
Wang H, Ma JX, Zhou M, Si J, Cui BK. Current advances and potential trends of the polysaccharides derived from medicinal mushrooms sanghuang. Front Microbiol 2022; 13:965934. [PMID: 35992671 PMCID: PMC9382022 DOI: 10.3389/fmicb.2022.965934] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/04/2022] [Indexed: 12/16/2022] Open
Abstract
For thousands of years, sanghuang is distinctive as a general designation for a group of precious and rare Chinese medicinal mushrooms. Numerous investigations have revealed that polysaccharide is one of the important biological active ingredients of sanghuang with various excellent biological activities, including antioxidant, anti-aging, anti-tumor, immunomodulatory, anti-inflammatory, anti-diabetic, hepatoprotective, and anti-microbial functionalities. For the past two decades, preparation, structural characterization, and reliable bioactivities of the polysaccharides from fruiting bodies, cultured mycelia, and fermentation broth of sanghuang have been arousing extensive interest, and particularly, different strains, sources, and isolation protocols might result in obvious discrepancies in structural features and bioactivities. Therefore, this review summarizes the recent reports on preparation strategies, structural features, bioactivities, and structure-activity relationships of sanghuang polysaccharides, which will enrich the knowledge on the values of natural sanghuang polysaccharides and support their further development and utilization as therapeutic agents, vaccines, and functional foods in tonic and clinical treatment.
Collapse
|
10
|
Structural diversity and bioactivity of polysaccharides from medicinal mushroom Phellinus spp.: A review. Food Chem 2022; 397:133731. [PMID: 35908464 DOI: 10.1016/j.foodchem.2022.133731] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/24/2022] [Accepted: 07/15/2022] [Indexed: 02/07/2023]
Abstract
Phellinus spp., an important medicinal fungus mushroom extensively cultivated and consumed in East Asia for over 2000 years, is traditionally considered a precious food supplement and medicinal ingredient. Published studies showed that the polysaccharides are major bioactive macromolecules from Phellinus spp. (PPs) with multiple health-promoting effects, including immunomodulatory, anti-cancer, anti-inflammatory, hepatoprotective, hypoglycemic, hypolipidemic, antioxidant, and other bioactivities. Although the polysaccharides extracted from the fruiting body, mycelium, and fermentation broth of Phellinus spp. have been extensively studied for the extraction and purification methods, structural characteristics, and pharmacological activities, the knowledge for their structures and bioactivity relationship, toxicologic effects, and pharmacokinetic profile is limited. This review systematically summarizes the recent progress in the isolation and purification, chemical structures, bioactivities, and the underlying mechanisms of PPs. Information from this review provides insights into the further development of polysaccharides from PPs as therapeutic agents and functional foods.
Collapse
|
11
|
Extraction, Structure and Immunoregulatory Activity of Low Molecular Weight Polysaccharide from Dendrobium officinale. Polymers (Basel) 2022; 14:polym14142899. [PMID: 35890675 PMCID: PMC9315851 DOI: 10.3390/polym14142899] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
The ethanol precipitation method has been widely-used for Dendrobium officinale polysaccharides preparation. However, the alcohol-soluble fractions have always been ignored, which causes significant wastes of resources and energies. In this study, the extraction, physicochemical properties, and immune regulation activity of an edible D. officinale polysaccharide (DOPs) isolated from the supernatant after 75% ethanol precipitation were systematically investigated. The structural characteristics determination results showed that DOPs was mainly composed of glucose and mannose at a molar ratio of 1.00:5.78 with an average molecular weight of 4.56 × 103 Da, which was made up of α-(1,3)-Glcp as the main skeleton, and the α-(1,4)-Glcp and β-(1,4)-Manp as the branches. Subsequently, the cyclophosphamide (CTX)-induced immunosuppressive mice model was established, and the results demonstrated that DOPs could dose-dependently protect the immune organs against CTX damage, improve the immune cells activities, and promote the immune-related cytokines (IL-2, IFN-γ and TNF-α) secretions. Furthermore, DOPs treatment also effectively enhanced the antioxidant enzymes levels (SOD, GSH-Px) in sera and livers, therefore weakening the oxidative damage of CTX-treated mice. Considering these above data, DOPs presented great potential to be explored as a natural antioxidant and supplement for functional foods.
Collapse
|
12
|
Cai J, Zhong X, Liang J, Xu C, Yu H, Xian M, Yan C, Wang S. Structural characterization, anti-inflammatory and glycosidase inhibitory activities of two new polysaccharides from the root of Pueraria lobata. RSC Adv 2021; 11:35994-36006. [PMID: 35492792 PMCID: PMC9043251 DOI: 10.1039/d1ra07385k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetes seriously endangers public health and brings a heavy economic burden to the country. Inflammation is one of the main inducing factors of type-2 diabetes (T2D) and may cause some complications of diabetes, such as diabetic encephalopathy and peripheral neuropathy. In-depth research and development of drugs to cure diabetes and complications are of great significance. Pueraria lobate is a medicinal herb used in several countries to treat many diseases. Here, two new polysaccharides (PLB-1-1 and PLB-1-2) were isolated and purified from the root of Pueraria lobata with molecular weights of 9.1 × 103 Da and 3.8 × 103 Da, respectively. The structure was evaluated by monosaccharide composition, GC-MS and NMR spectroscopy. It was determined that PLB-1-1 comprised →4)-α-d-Glcp-(1→, α-d-Glcp-(1→, →6)-β-d-Galp-(1→, →3)-α-l-Araf-(1→, →3,6)-β-d-Manp-(1→ and →4,6)-β-d-Manp-(1→, and PLB-1-2 consisted of →4)-α-d-Glcp-(1→, β-d-Glcp-(1→, →4,6)-β-d-Glcp-(1→, →3,6)-β-d-Manp-(1→ and α-l-Fucp-(1→. Furthermore, both PLB-1-1 and PLB-1-2 showed anti-inflammatory and inhibitory activities of α-glucosidase and α-amylase in vitro. Therefore, the new polysaccharides, i.e., PLB-1-1 and PLB-1-2, may be considered candidates for the treatment of diabetes and its related complications. Through the extraction, isolation and purification of Pueraria lobata, we identified two new polysaccharides with molecular weights of 9.1 × 103 Da and 3.8 × 103 Da, and found that they have excellent anti-inflammatory and glycosidase inhibitory effects.![]()
Collapse
Affiliation(s)
- Jiale Cai
- Guangdong Pharmaceutical University Guangzhou 510006 China .,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University Guangzhou 510006 China.,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Xiaoting Zhong
- Guangdong Pharmaceutical University Guangzhou 510006 China .,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University Guangzhou 510006 China.,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Jiayin Liang
- Guangdong Pharmaceutical University Guangzhou 510006 China .,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University Guangzhou 510006 China.,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Can Xu
- Guangdong Pharmaceutical University Guangzhou 510006 China .,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University Guangzhou 510006 China.,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Huanzheng Yu
- Guangdong Pharmaceutical University Guangzhou 510006 China .,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University Guangzhou 510006 China.,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Minghua Xian
- Guangdong Pharmaceutical University Guangzhou 510006 China .,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University Guangzhou 510006 China.,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Chunyan Yan
- Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Shumei Wang
- Guangdong Pharmaceutical University Guangzhou 510006 China .,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University Guangzhou 510006 China.,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University Guangzhou 510006 China
| |
Collapse
|
13
|
Structural characterization and immunomodulatory activity of a polysaccharide from Eurotium cristatum. Int J Biol Macromol 2020; 162:609-617. [DOI: 10.1016/j.ijbiomac.2020.06.099] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/30/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022]
|
14
|
Kuang H, Jiao Y, Wang W, Wang F, Chen Q. Characterization and antioxidant activities of intracellular polysaccharides from Agaricus bitorquis (QuéL.) Sacc. Chaidam ZJU-CDMA-12. Int J Biol Macromol 2020; 156:1112-1125. [DOI: 10.1016/j.ijbiomac.2019.11.142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 12/30/2022]
|
15
|
Zheng T, Gu D, Wang X, Shen X, Yan L, Zhang W, Pu Y, Ge C, Fan J. Purification, characterization and immunomodulatory activity of polysaccharides from Leccinum crocipodium (Letellier.) Watliag. Int J Biol Macromol 2020; 148:647-656. [DOI: 10.1016/j.ijbiomac.2020.01.155] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/23/2019] [Accepted: 01/16/2020] [Indexed: 01/09/2023]
|
16
|
Chang Y, Lu W, Chu Y, Yan J, Wang S, Xu H, Ma H, Ma J. Extraction of polysaccharides from maca: Characterization and immunoregulatory effects on CD4 + T cells. Int J Biol Macromol 2020; 154:477-485. [PMID: 32179120 DOI: 10.1016/j.ijbiomac.2020.03.098] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022]
Abstract
The immunomodulatory effects of maca polysaccharides (MCPs) on macrophages have been demonstrated in many studies. However, the effects of MCPs on CD4+ T cells have not been studied. Four water-soluble MCPs, labeled MCP1 (weight-average molecular weights [Mws] of 896.1 and 276.6 kDa), MCP2 (Mws of 337.8 and 219.0 kDa), MCP3 (Mws of 110.6, 58.1, and 38.9 kDa), and MCP4 (Mws of 15.7, 12.6, and 12.1 kDa), were obtained from maca by graded ethanol precipitation. The immunoregulatory effects of MCPs on CD4+ T cells were evaluated for the first time. The experimental results indicated that all MCPs had immunoregulatory effects on CD4+ T cells. However, the effects of MCP2 were stronger compared to the other three components, not only in promoting the proliferation of CD4+ T cells but also in terms of secretion of interferon-γ (IFN-γ). The molecular weight and monosaccharide compositions of MCPs were analyzed to explore the structure-activity relationship. The results suggested that the molecular weight and the galactosamine (GalN) of MCPs might be determining factors for its bioactivity. These findings suggest that the MCP2 isolated in our study have immune potentiation effects on CD4+ T cells.
Collapse
Affiliation(s)
- Yi Chang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Wei Lu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Ying Chu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jingkun Yan
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Huaxi Xu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Haile Ma
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jie Ma
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
17
|
Chakraborty I, Sen IK, Mondal S, Rout D, Bhanja SK, Maity GN, Maity P. Bioactive polysaccharides from natural sources: A review on the antitumor and immunomodulating activities. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101425] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Mzoughi Z, Souid G, Timoumi R, Le Cerf D, Majdoub H. Partial characterization of the edible Spinacia oleracea polysaccharides: Cytoprotective and antioxidant potentials against Cd induced toxicity in HCT116 and HEK293 cells. Int J Biol Macromol 2019; 136:332-340. [DOI: 10.1016/j.ijbiomac.2019.06.089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
|
19
|
Dammak MI, Salem YB, Belaid A, Mansour HB, Hammami S, Le Cerf D, Majdoub H. Partial characterization and antitumor activity of a polysaccharide isolated from watermelon rinds. Int J Biol Macromol 2019; 136:632-641. [DOI: 10.1016/j.ijbiomac.2019.06.110] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/14/2019] [Accepted: 06/16/2019] [Indexed: 10/26/2022]
|
20
|
Preparation of Polysaccharides from Ramulus mori, and Their Antioxidant, Anti-Inflammatory and Antibacterial Activities. Molecules 2019; 24:molecules24050856. [PMID: 30823408 PMCID: PMC6429365 DOI: 10.3390/molecules24050856] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/21/2019] [Accepted: 02/24/2019] [Indexed: 01/28/2023] Open
Abstract
The extraction of Ramulus mori polysaccharides (RMPs) was optimized using response surface methodology (RSM). The optimal process conditions, which gave the highest yield of RMPs (6.25%) were 80 °C, 50 min, and a solid–liquid ratio of 1:40 (g/mL), with the extraction performed twice. The RMPs contained seven monosaccharides, namely, mannose, rhamnose; glucuronic acid, glucose, xylose, galactose, and arabinose, in a 1.36:2.68:0.46:328.17:1.53:21.80:6.16 molar ratio. The glass transition and melting temperatures of RMPs were 83 and 473 °C, respectively. RMPs were α-polysaccharides and had surfaces that resembled a porous sponge, as observed by scanning electron microscopy. RMPs inhibited the proliferation of Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa and showed antioxidant activity (assessed by three different methods), although it was generally weaker than that of vitamin C. RMPs showed anti-inflammatory activity in a concentration-dependent manner. This study provides a basis for exploring the potential uses of RMPs.
Collapse
|
21
|
Jiao Y, Kuang H, Hu J, Chen Q. Structural characterization and anti-hypoxia activities of polysaccharides from the sporocarp, fermentation broth and cultured mycelium of Agaricus bitorquis (Quél.) Sacc. Chaidam in mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
22
|
Enzyme Assisted Extraction, Purification and Structure Analysis of the Polysaccharides from Naked Pumpkin Seeds. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8101866] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Enzyme assisted extraction was used to extract the polysaccharides from pumpkin seeds (PSP) and the extraction parameters were optimized by response surface methodology (RSM). Under the optimum experimental parameters: Extraction temperature of 60 °C, extraction time of 43 min, enzyme concentration of 2.5%, and pH of 6.0, the yield of PSP was 3.22 ± 0.04%, which was in close agreement with the predicted value (3.24%). After further purification on anion exchange column and gelfiltration column, a novel purified polysaccharide (PSPE) with molecular weight of 16,700 g/mol was obtained. PSPE was mainly composed of mannose, galactose and glucose in the molar ratio of 1.00:3.84:1.62. NMR spectra analysis showed that the major backbone of PSPE consisted of →4)-α-d-Glcp-(1→, →4)-β-d-Manp-(1→, →3,6)-β-d-Glap-(1→, and β-d-galactose.
Collapse
|
23
|
Chen Y, Liu X, Wu L, Tong A, Zhao L, Liu B, Zhao C. Physicochemical characterization of polysaccharides from Chlorella pyrenoidosa and its anti-ageing effects in Drosophila melanogaster. Carbohydr Polym 2018; 185:120-126. [DOI: 10.1016/j.carbpol.2017.12.077] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/17/2017] [Accepted: 12/28/2017] [Indexed: 02/08/2023]
|
24
|
Mzoughi Z, Abdelhamid A, Rihouey C, Le Cerf D, Bouraoui A, Majdoub H. Optimized extraction of pectin-like polysaccharide from Suaeda fruticosa leaves: Characterization, antioxidant, anti-inflammatory and analgesic activities. Carbohydr Polym 2018; 185:127-137. [DOI: 10.1016/j.carbpol.2018.01.022] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/05/2018] [Accepted: 01/05/2018] [Indexed: 02/04/2023]
|
25
|
Xu C, Qin N, Yan C, Wang S. Isolation, purification, characterization and bioactivities of a glucan from the root of Pueraria lobata. Food Funct 2018; 9:2644-2652. [DOI: 10.1039/c7fo01921a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The root of Pueraria lobata is considered to be a medicinal and edible herb for the treatment of diabetes, and it has a long history of application in China.
Collapse
Affiliation(s)
- Can Xu
- School of Chinese Materia Medica
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM
| | - Ningbo Qin
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
| | - Chunyan Yan
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
| | - Shumei Wang
- School of Chinese Materia Medica
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM
| |
Collapse
|
26
|
Chiang PS, Lee DJ, G. Whiteley C, Huang CY. Antioxidant phenolic compounds from Pinus morrisconicola using compressional-puffing pretreatment and water–ethanol extraction: Optimization of extraction parameters. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2016.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
27
|
Extraction, Structural Characterization, and Potential Antioxidant Activity of the Polysaccharides from Four Seaweeds. Int J Mol Sci 2016; 17:ijms17121988. [PMID: 27916796 PMCID: PMC5187788 DOI: 10.3390/ijms17121988] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/13/2016] [Accepted: 11/21/2016] [Indexed: 12/11/2022] Open
Abstract
Four seaweed polysaccharides were extracted from Sarcodia ceylonensis, Ulva lactuca L., Gracilaria lemaneiformis, and Durvillaea antarctica, respectively, by microwave-assisted extraction. The effect of three significant variables (extraction time, extraction temperature, and the ratio of water to raw material) on the process for extracting polysaccharides was investigated, along with the optimization of the extraction using the response surface method (RSM) with a Box–Behnken design. The polysaccharide structure, monosaccharide composition, degree of sulfation, and molecular weight (MW) distribution were analyzed by infrared (IR) spectrometry, gas chromatography (GC), and high-performance gel permeation chromatography (HPGPC). IR spectrometry showed that Sarcodia ceylonensis polysaccharide (SCP), Ulva lactuca L. polysaccharide (ULLP), and Durvillaea antarctica polysaccharide (DAP) were all sulfated polysaccharides and, except Gracilaria lemaneiformis polysaccharide (GLP), all belong to β-pyranosidic polysaccharides. The average molecular weight (MW) of SCP, ULLP, GLP, and DAP was 466, 404, 591, and 482 kDa, respectively. The quantitative and comparative results with external standards indicated that the main monosaccharide in SCP and ULLP was mannose; and GLP and DAP were mainly composed of galactose and glucose, respectively. Then the in vitro antioxidant activity of all of the polysaccharides was evaluated using different assays—2,2–azino –bis (3-ethylbenzthiazoline-6- sulfonate) (ABTS), hydroxyl radical, nitrite scavenging capacity, and reducing power—and the relationship between their antioxidant activity and chemical characteristics were also examined. ULLP presented the highest ABTS radical scavenging activity; ULLP, SCP and DAP also showed a strong effect on the ABTS radical scavenging activity. SCP and ULLP exhibited excellent hydroxyl radical scavenging activities, about 83.33% ± 2.31% and 80.07% ± 2.17%, respectively, at 4 mg/mL. The reducing power of DAP was relatively more pronounced than that of the three other polysaccharides. However, the nitrite scavenging activities of the four seaweed polysaccharides were weaker than other antioxidant activity (ABTS), hydroxyl radical scavenging capacity, and reducing power. In addition, GLP exhibited lower activities than the other three samples in all of the tests for the antioxidant activity.
Collapse
|