3
|
Skoulidis F, Araujo HA, Do MT, Qian Y, Sun X, Cobo AG, Le JT, Montesion M, Palmer R, Jahchan N, Juan JM, Min C, Yu Y, Pan X, Arbour KC, Vokes N, Schmidt ST, Molkentine D, Owen DH, Memmott R, Patil PD, Marmarelis ME, Awad MM, Murray JC, Hellyer JA, Gainor JF, Dimou A, Bestvina CM, Shu CA, Riess JW, Blakely CM, Pecot CV, Mezquita L, Tabbó F, Scheffler M, Digumarthy S, Mooradian MJ, Sacher AG, Lau SCM, Saltos AN, Rotow J, Johnson RP, Liu C, Stewart T, Goldberg SB, Killam J, Walther Z, Schalper K, Davies KD, Woodcock MG, Anagnostou V, Marrone KA, Forde PM, Ricciuti B, Venkatraman D, Van Allen EM, Cummings AL, Goldman JW, Shaish H, Kier M, Katz S, Aggarwal C, Ni Y, Azok JT, Segal J, Ritterhouse L, Neal JW, Lacroix L, Elamin YY, Negrao MV, Le X, Lam VK, Lewis WE, Kemp HN, Carter B, Roth JA, Swisher S, Lee R, Zhou T, Poteete A, Kong Y, Takehara T, Paula AG, Parra Cuentas ER, Behrens C, Wistuba II, Zhang J, Blumenschein GR, Gay C, Byers LA, Gibbons DL, Tsao A, Lee JJ, Bivona TG, Camidge DR, Gray JE, Leighl NB, Levy B, Brahmer JR, Garassino MC, et alSkoulidis F, Araujo HA, Do MT, Qian Y, Sun X, Cobo AG, Le JT, Montesion M, Palmer R, Jahchan N, Juan JM, Min C, Yu Y, Pan X, Arbour KC, Vokes N, Schmidt ST, Molkentine D, Owen DH, Memmott R, Patil PD, Marmarelis ME, Awad MM, Murray JC, Hellyer JA, Gainor JF, Dimou A, Bestvina CM, Shu CA, Riess JW, Blakely CM, Pecot CV, Mezquita L, Tabbó F, Scheffler M, Digumarthy S, Mooradian MJ, Sacher AG, Lau SCM, Saltos AN, Rotow J, Johnson RP, Liu C, Stewart T, Goldberg SB, Killam J, Walther Z, Schalper K, Davies KD, Woodcock MG, Anagnostou V, Marrone KA, Forde PM, Ricciuti B, Venkatraman D, Van Allen EM, Cummings AL, Goldman JW, Shaish H, Kier M, Katz S, Aggarwal C, Ni Y, Azok JT, Segal J, Ritterhouse L, Neal JW, Lacroix L, Elamin YY, Negrao MV, Le X, Lam VK, Lewis WE, Kemp HN, Carter B, Roth JA, Swisher S, Lee R, Zhou T, Poteete A, Kong Y, Takehara T, Paula AG, Parra Cuentas ER, Behrens C, Wistuba II, Zhang J, Blumenschein GR, Gay C, Byers LA, Gibbons DL, Tsao A, Lee JJ, Bivona TG, Camidge DR, Gray JE, Leighl NB, Levy B, Brahmer JR, Garassino MC, Gandara DR, Garon EB, Rizvi NA, Scagliotti GV, Wolf J, Planchard D, Besse B, Herbst RS, Wakelee HA, Pennell NA, Shaw AT, Jänne PA, Carbone DP, Hellmann MD, Rudin CM, Albacker L, Mann H, Zhu Z, Lai Z, Stewart R, Peters S, Johnson ML, Wong KK, Huang A, Winslow MM, Rosen MJ, Winters IP, Papadimitrakopoulou VA, Cascone T, Jewsbury P, Heymach JV. CTLA4 blockade abrogates KEAP1/STK11-related resistance to PD-(L)1 inhibitors. Nature 2024; 635:462-471. [PMID: 39385035 PMCID: PMC11560846 DOI: 10.1038/s41586-024-07943-7] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 08/13/2024] [Indexed: 10/11/2024]
Abstract
For patients with advanced non-small-cell lung cancer (NSCLC), dual immune checkpoint blockade (ICB) with CTLA4 inhibitors and PD-1 or PD-L1 inhibitors (hereafter, PD-(L)1 inhibitors) is associated with higher rates of anti-tumour activity and immune-related toxicities, when compared with treatment with PD-(L)1 inhibitors alone. However, there are currently no validated biomarkers to identify which patients will benefit from dual ICB1,2. Here we show that patients with NSCLC who have mutations in the STK11 and/or KEAP1 tumour suppressor genes derived clinical benefit from dual ICB with the PD-L1 inhibitor durvalumab and the CTLA4 inhibitor tremelimumab, but not from durvalumab alone, when added to chemotherapy in the randomized phase III POSEIDON trial3. Unbiased genetic screens identified loss of both of these tumour suppressor genes as independent drivers of resistance to PD-(L)1 inhibition, and showed that loss of Keap1 was the strongest genomic predictor of dual ICB efficacy-a finding that was confirmed in several mouse models of Kras-driven NSCLC. In both mouse models and patients, KEAP1 and STK11 alterations were associated with an adverse tumour microenvironment, which was characterized by a preponderance of suppressive myeloid cells and the depletion of CD8+ cytotoxic T cells, but relative sparing of CD4+ effector subsets. Dual ICB potently engaged CD4+ effector cells and reprogrammed the tumour myeloid cell compartment towards inducible nitric oxide synthase (iNOS)-expressing tumoricidal phenotypes that-together with CD4+ and CD8+ T cells-contributed to anti-tumour efficacy. These data support the use of chemo-immunotherapy with dual ICB to mitigate resistance to PD-(L)1 inhibition in patients with NSCLC who have STK11 and/or KEAP1 alterations.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- AMP-Activated Protein Kinase Kinases/genetics
- AMP-Activated Protein Kinase Kinases/metabolism
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- B7-H1 Antigen/metabolism
- B7-H1 Antigen/antagonists & inhibitors
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/immunology
- Clinical Trials, Phase III as Topic
- CTLA-4 Antigen/antagonists & inhibitors
- CTLA-4 Antigen/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Kelch-Like ECH-Associated Protein 1/genetics
- Kelch-Like ECH-Associated Protein 1/metabolism
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Mutation
- Nitric Oxide Synthase Type II/metabolism
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Genes, Tumor Suppressor
Collapse
Affiliation(s)
- Ferdinandos Skoulidis
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Haniel A Araujo
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Minh Truong Do
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yu Qian
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin Sun
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ana Galan Cobo
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John T Le
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | - Yi Yu
- Tango Therapeutics, Boston, MA, USA
| | | | - Kathryn C Arbour
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Natalie Vokes
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie T Schmidt
- Department of Genomic Medicine and the Institute for Data Science in Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Molkentine
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dwight H Owen
- Division of Medical Oncology, Ohio State University-James Comprehensive Cancer Center, Columbus, OH, USA
| | - Regan Memmott
- Division of Medical Oncology, Ohio State University-James Comprehensive Cancer Center, Columbus, OH, USA
| | - Pradnya D Patil
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Melina E Marmarelis
- Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Mark M Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joseph C Murray
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | - Jonathan W Riess
- University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | | | - Chad V Pecot
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Laura Mezquita
- Department of Medical Oncology, Hospital Clinic de Barcelona, Barcelona, Spain
| | | | - Matthias Scheffler
- Department of Internal Medicine, Center for Integrated Oncology, University Hospital Cologne, Cologne, Germany
| | - Subba Digumarthy
- Department of Radiology, Massachussetts General Hospital, Boston, MA, USA
| | | | | | - Sally C M Lau
- Department of Medical Oncology, NYU Langone Perlmutter Cancer Center, New York, NY, USA
| | - Andreas N Saltos
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Julia Rotow
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rocio Perez Johnson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Corinne Liu
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tyler Stewart
- Division of Hematology-Oncology, University of California San Diego, La Jolla, CA, USA
| | | | | | - Zenta Walther
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Kurt Schalper
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Kurtis D Davies
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mark G Woodcock
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Valsamo Anagnostou
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristen A Marrone
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patrick M Forde
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Deepti Venkatraman
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Eliezer M Van Allen
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amy L Cummings
- David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Jonathan W Goldman
- David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | | | - Melanie Kier
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sharyn Katz
- Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Charu Aggarwal
- Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Ni
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Joseph T Azok
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jeremy Segal
- Department of Pathology, University of Chicago, Chicago, USA
| | | | - Joel W Neal
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Yasir Y Elamin
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marcelo V Negrao
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiuning Le
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vincent K Lam
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Whitney E Lewis
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haley N Kemp
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brett Carter
- Department of Thoracic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephen Swisher
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard Lee
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Teng Zhou
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alissa Poteete
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yifan Kong
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tomohiro Takehara
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alvaro Guimaraes Paula
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edwin R Parra Cuentas
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carmen Behrens
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Zhang
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George R Blumenschein
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carl Gay
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren A Byers
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Don L Gibbons
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anne Tsao
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Jack Lee
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Trever G Bivona
- University of California San Francisco, San Francisco, CA, USA
| | | | - Jhannelle E Gray
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | - Benjamin Levy
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Julie R Brahmer
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - David R Gandara
- University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Edward B Garon
- David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | | | | | - Jürgen Wolf
- Department of Internal Medicine, Center for Integrated Oncology, University Hospital Cologne, Cologne, Germany
| | | | | | | | | | | | - Alice T Shaw
- Novartis Institute for Biomedical Research, Cambridge, MA, USA
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David P Carbone
- Division of Medical Oncology, Ohio State University-James Comprehensive Cancer Center, Columbus, OH, USA
| | | | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | | | - Solange Peters
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne University, Lausanne, Switzerland
| | - Melissa L Johnson
- Sarah Cannon Research Institute, Tennessee Oncology, Nashville, TN, USA
| | - Kwok K Wong
- Division of Hematology & Medical Oncology, NYU Langone Perlmutter Cancer Center, New York, NY, USA
| | | | - Monte M Winslow
- D2G Oncology, Mountain View, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | | | | | - Tina Cascone
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - John V Heymach
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
Mfumbilwa ZA, Simons MJHG, Ramaekers B, Retèl VP, Mankor JM, Groen HJM, Aerts JGJV, Joore M, Wilschut JA, Coupé VMH. Exploring the Cost Effectiveness of a Whole-Genome Sequencing-Based Biomarker for Treatment Selection in Patients with Advanced Lung Cancer Ineligible for Targeted Therapy. PHARMACOECONOMICS 2024; 42:419-434. [PMID: 38194023 PMCID: PMC10937799 DOI: 10.1007/s40273-023-01344-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/10/2024]
Abstract
OBJECTIVE We aimed to perform an early cost-effectiveness analysis of using a whole-genome sequencing-based tumor mutation burden (WGS-TMB), instead of programmed death-ligand 1 (PD-L1), for immunotherapy treatment selection in patients with non-squamous advanced/metastatic non-small cell lung cancer ineligible for targeted therapy, from a Dutch healthcare perspective. METHODS A decision-model simulating individual patients with metastatic non-small cell lung cancer was used to evaluate diagnostic strategies to select first-line immunotherapy only or the immunotherapy plus chemotherapy combination. Treatment was selected using PD-L1 [A, current practice], WGS-TMB [B], and both PD-L1 and WGS-TMB [C]. Strategies D, E, and F take into account a patient's disease burden, in addition to PD-L1, WGS-TMB, and both PD-L1 and WGS-TMB, respectively. Disease burden was defined as a fast-growing tumor, a high number of metastases, and/or weight loss. A threshold of 10 mutations per mega-base was used to classify patients into TMB-high and TMB-low groups. Outcomes were discounted quality-adjusted life-years (QALYs) and healthcare costs measured from the start of first-line treatment to death. Healthcare costs includes drug acquisition, follow-up costs, and molecular diagnostic tests (i.e., standard diagnostic techniques and/or WGS for strategies involving TMB). Results were reported using the net monetary benefit at a willingness-to-pay threshold of €80,000/QALY. Additional scenario and threshold analyses were performed. RESULTS Strategy B had the lowest QALYs (1.84) and lowest healthcare costs (€120,800). The highest QALYs and healthcare costs were 2.00 and €140,400 in strategy F. In the base-case analysis, strategy A was cost effective with the highest net monetary benefit (€27,300), followed by strategy B (€26,700). Strategy B was cost effective when the cost of WGS testing was decreased by at least 24% or when immunotherapy results in an additional 0.5 year of life gained or more for TMB high compared with TMB low. Strategies C and F, which combined TMB and PD-L1 had the highest net monetary benefit (≥ €76,900) when the cost of WGS testing, immunotherapy, and chemotherapy acquisition were simultaneously reduced by at least 47%, 39%, and 43%, respectively. Furthermore, strategy C resulted in the highest net monetary benefit (≥ €39,900) in a scenario where patients with both PD-L1 low and TMB low were treated with chemotherapy instead of immunotherapy plus chemotherapy. CONCLUSIONS The use of WGS-TMB is not cost effective compared to PD-L1 for immunotherapy treatment selection in non-squamous metastatic non-small cell lung cancer in the Netherlands. WGS-TMB could become cost effective provided there is a reduction in the cost of WGS testing or there is an increase in the predictive value of WGS-TMB for immunotherapy effectiveness. Alternatively, a combination strategy of PD-L1 testing with WGS-TMB would be cost effective if used to support the choice to withhold immunotherapy in patients with a low expected benefit of immunotherapy.
Collapse
Affiliation(s)
- Zakile A Mfumbilwa
- Department of Epidemiology and Data Science, Disease Modelling and Health Care Evaluation, Amsterdam UMC, Location Vrije Universiteit Amsterdam, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
- Department of Mathematics and Statistics, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Martijn J H G Simons
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - Bram Ramaekers
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - Valesca P Retèl
- Department of Health Technology and Services Research, University of Twente, Enschede, The Netherlands
| | - Joanne M Mankor
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Harry J M Groen
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Manuela Joore
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - Janneke A Wilschut
- Department of Epidemiology and Data Science, Disease Modelling and Health Care Evaluation, Amsterdam UMC, Location Vrije Universiteit Amsterdam, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
| | - Veerle M H Coupé
- Department of Epidemiology and Data Science, Disease Modelling and Health Care Evaluation, Amsterdam UMC, Location Vrije Universiteit Amsterdam, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands.
| |
Collapse
|