1
|
Wang N, Yuan K, Yang S, Jin X. 13- cis Retinoic Acid-Mediated Modulation of Human Meibomian Gland Epithelial Cells Development: Implications for In Vitro Modeling of Meibomian Gland Dysfunction. J Ocul Pharmacol Ther 2024; 40:659-667. [PMID: 39383020 DOI: 10.1089/jop.2024.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024] Open
Abstract
Purpose: This study aimed to investigate the effect of 13-cis retinoic acid (13-cis RA) on human meibomian gland epithelial cells (HMGECs) and explore the potential of using this experimental model as an in vitro approach for studying meibomian gland dysfunction (MGD). Methods: First, HMGECs were cultured with 13-cis RA at different doses and times, and cell viability and proliferation rates were assessed to determine the appropriate stimulation concentration and time. Subsequently, during the proliferation stage, the expression of proliferation, inflammation, and oxidative stress genes and their products were evaluated. The meibum synthesis capacity was determined during the differentiation stage. Additionally, the peroxisome proliferator-activated receptor gamma (PPARγ) antagonist GW9662 was used as a control to assess the impact of 13-cis RA on PPARγ. Results: 13-cis RA significantly inhibited cell viability and proliferation in a time-dose response manner. Under the stimulation of 2 and 5 μM for 48 h during the proliferation stage, a significant decrease was observed in the expression of cell proliferation markers Ki67, antioxidant SOD-2, and Nrf-2. However, the expression of the pro-inflammatory factors IL-1β, IL-8, MMP9, and oxidative stress markers NOX-4 and reactive oxygen species increased. During the differentiation stage, it suppressed meibum synthesis and the expression of meibocyte differentiation-related proteins adipose differentiation-associated protein 4 (ADFP4), elongation of very long chain fatty acid protein 4 (ELOVL4), sterol regulatory element-binding protein 2 (SREBP-2), and PPARγ. Conclusion: 13-cis RA inhibited cell viability, promoted inflammation and oxidative stress, and suppressed meibum synthesis through the PPARγ pathway. Our study shed light on the effect of 13-cis RA on HMGECs and provided a promising direction for studying MGD in vitro.
Collapse
Affiliation(s)
- Ning Wang
- Eye Center, The Second Affiliated Hospital Zhejiang University of Medicine, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Kelan Yuan
- Eye Center, The Second Affiliated Hospital Zhejiang University of Medicine, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Shuo Yang
- Eye Center, The Second Affiliated Hospital Zhejiang University of Medicine, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Xiuming Jin
- Eye Center, The Second Affiliated Hospital Zhejiang University of Medicine, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| |
Collapse
|
2
|
Xie J, Li Y, Zeng T, Fan T, Shan H, Shi G, Zhou W, Zou J, Lei X. ANGPTL4 plays a paradoxical role in gastric cancer through the LGALS7 and Hedgehog pathways. Sci Rep 2024; 14:23173. [PMID: 39369030 PMCID: PMC11457493 DOI: 10.1038/s41598-024-71415-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/27/2024] [Indexed: 10/07/2024] Open
Abstract
Gastric cancer (GC) is a malignant disease worldwide. Angiopoietin-like protein 4 (ANGPTL4) plays a role in pathophysiological processes, including metabolic reprogramming, angiogenesis, proliferation, and metastasis. Current evidence shows conflicting findings regarding the role of ANGPTL4 in the progression of GC. ANGPTL4 in GC was confirmed through bioinformatic analysis and immunofluorescence staining. The impact of ANGPTL4 was subsequently validated in GC cell lines using various assays, including 5-ethynyl-2-deoxyuridine (EdU), 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Flow Cytometry (FCM), wound healing, transwell, tube formation, chorioallantoic membrane model, and nude mouse model assays. RNA-seq analysis, polymerase chain reaction (PCR), western blotting (WB), immunofluorescence (IF) and coimmunoprecipitation (co-IP) were conducted to determine the potential downstream mechanism of ANGPTL4. In SNU5 and MKN7 cells, ANGPTL4 was found to augment proliferation, migration, invasion, evasion of apoptosis, and angiogenesis. Conversely, in the AGS cell line, ANGPTL4 was observed to suppress these processes. Notably, the overexpression of ANGPTL4 in AGS cells led to the upregulation of LGALS7, which has emerged as a pivotal factor contributing to the manifestation of an anticancer phenotype induced by ANGPTL4. LGALS7, which is involved in the regulation of the hedgehog pathway and subsequent promotion of GC progression through various processes, such as proliferation, migration, apoptosis evasion, angiogenesis, and lymphangiogenesis, was found to contribute to the contradictory effects of ANGPTL4.
Collapse
Affiliation(s)
- Juan Xie
- Institute of Translational Medicine, Hengyang Medical School, University of South China, No. 28 Changsheng West Road, Zhengxiang District, Hengyang, 421001, Hunan, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, No. 28 Changsheng West Road, Zhengxiang District, Hengyang, 421001, Hunan, China
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, 412001, Hunan, China
| | - Tian Zeng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, No. 28 Changsheng West Road, Zhengxiang District, Hengyang, 421001, Hunan, China
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, No. 28 Changsheng West Road, Zhengxiang District, Hengyang, 421001, Hunan, China
| | - Tingyu Fan
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, No. 28 Changsheng West Road, Zhengxiang District, Hengyang, 421001, Hunan, China
| | - Hanguo Shan
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Gangqing Shi
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, No. 28 Changsheng West Road, Zhengxiang District, Hengyang, 421001, Hunan, China
| | - Wenchao Zhou
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, No. 28 Changsheng West Road, Zhengxiang District, Hengyang, 421001, Hunan, China
| | - Juan Zou
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, 412001, Hunan, China.
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, No. 28 Changsheng West Road, Zhengxiang District, Hengyang, 421001, Hunan, China.
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, No. 28 Changsheng West Road, Zhengxiang District, Hengyang, 421001, Hunan, China.
| |
Collapse
|
3
|
Ziemanski JF, Wilson L, Barnes S, Nichols KK. Evaluation of the effects of latanoprost and benzalkonium chloride on the cell viability and nonpolar lipid profile produced by human meibomian gland epithelial cells in culture. Mol Vis 2023; 29:289-305. [PMID: 38264609 PMCID: PMC10805331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/02/2023] [Indexed: 01/25/2024] Open
Abstract
Purpose The purpose of this study was to explore the effects of a PGF2α analog, latanoprost, and its preservative, benzalkonium chloride (BAK), on the cell viability and lipidomic expression of immortalized human meibomian gland epithelial cells (HMGECs). Methods Differentiated HMGECs were exposed to latanoprost (0.05 to 50 µg/ml), BAK (0.2 to 200 µg/ml), or combined latanoprost-BAK (0.05-0.2 to 50-200 µg/ml). EP- and FP-type receptors, the cognate receptors of PGE2 and PGF2α, were inhibited, thereby sparing and isolating the function of each receptor to one condition. Cell viability was assessed by ATP quantitation, and lipid extracts were analyzed by ESI-MSMSALL with a Triple TOF 5600 Mass Spectrometer (SCIEX, Framingham, MA) using SCIEX LipidView 1.3. Results Latanoprost and BAK were found to be lethal to HMGECs at the highest concentrations (p < 0.001 for both). The cytotoxicity of latanoprost was mediated through FP- and EP-independent mechanisms. Both latanoprost and BAK significantly modulated the lipidomic expression of several cholesteryl esters (8% and 30%, respectively) and triacylglycerols (10% and 12%, respectively). The combined latanoprost-BAK agent appeared to be no more toxic and to only negligibly alter the lipid profile relative to its individual components. Conclusions The use of latanoprost and BAK in glaucoma may alter the viability of the meibomian glands and their lipid expression in vivo. Sublethal concentrations of BAK appear to modulate meibum lipid expression, particularly in relation to sterol biosynthesis. Non-preserved latanoprost had less cytotoxicity at lower doses and fewer lipidomic effects compared to BAK, further strengthening the argument in favor of BAK-free pharmaceutical preparations.
Collapse
Affiliation(s)
- Jillian F. Ziemanski
- University of Alabama at Birmingham School of Optometry Department of Optometry and Vision Science Birmingham, AL
| | - Landon Wilson
- University of Alabama at Birmingham School of Medicine Department of Pharmacology and Toxicology Birmingham, AL
| | - Stephen Barnes
- University of Alabama at Birmingham School of Medicine Department of Pharmacology and Toxicology Birmingham, AL
| | - Kelly K. Nichols
- University of Alabama at Birmingham School of Optometry Department of Optometry and Vision Science Birmingham, AL
| |
Collapse
|
4
|
Nuwormegbe S, Park NY, Park HJ, Jin Y, Kim SW, Jester JV. Induction of meibocyte differentiation by three-dimensional, matrigel culture of immortalized human meibomian gland epithelial cells to form acinar organoids. Ocul Surf 2022; 26:271-282. [PMID: 36341959 PMCID: PMC10364613 DOI: 10.1016/j.jtos.2022.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 09/20/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE Recent studies have shown that two-dimensional (2D) culture of primary rabbit and immortalized human meibomian gland epithelial cells (iHMGEC) do not recapitulate normal meibocyte differentiation and fail to express critical enzymes necessary for synthesis of meibum lipids. The purpose of this study was to test the hypothesis that 3D-spheroid culture of iHMGEC can facilitate meibocyte differentiation and induce the expression of acyl-CoA wax-alcohol acyltransferase 2 (AWAT2), shown to be required for synthesis of meibum wax esters. METHODS iHMGEC were suspended in matrigel/basement membrane matrix and grown in proliferation media to form distinct cell clusters or spheroids. Cells were then treated with serum-free, differentiation media (advanced DMEM/F12) with and without FGF10 and synthetic agonists for the nuclear lipid receptor, peroxisome proliferator activator receptor gamma (PPARγ). Cells were then evaluated for differentiation markers using western blotting, immunocytochemistry (ICC) and real-time PCR. Control cells were grown in standard 2D culture systems. RESULTS Under proliferative conditions, 3D culture induced the formation of KRT5+ spheroids that contained a Ki67+/P63+ undifferentiated, basal cell population. When spheroids were switched to differentiation media containing PPARγ agonists, two different organoid populations were detected, a KRT6low population that was AWAT2+/PPARγ+ and a KRT6high population that was AWAT2-/PPARγ-, suggesting that iHMGEC exhibit a dual differentiation potential toward either a ductal or meibocyte organoid phenotype. CONCLUSION The 3D culturing of iHMGEC can induce the formation of both meibocyte and ductal organoids and may thus serve as a better in vitro model system for studying the regulatory mechanisms controlling meibomian gland function.
Collapse
Affiliation(s)
- Selikem Nuwormegbe
- Research Institute of Metabolism and Inflammation, Yonsei University, Wonju College of Medicine, Wonju, Ilsan-ro, Gangwon-do, 26426, Republic of Korea
| | - Na-Young Park
- Research Institute of Metabolism and Inflammation, Yonsei University, Wonju College of Medicine, Wonju, Ilsan-ro, Gangwon-do, 26426, Republic of Korea
| | - Hee Joo Park
- Research Institute of Metabolism and Inflammation, Yonsei University, Wonju College of Medicine, Wonju, Ilsan-ro, Gangwon-do, 26426, Republic of Korea
| | - Yeonwoo Jin
- Department of Ophthalmology, Yonsei University, Wonju College of Medicine, Wonju, Ilsan-ro, Gangwon-do, 26426, Republic of Korea
| | - Sun Woong Kim
- Department of Ophthalmology, Yonsei University, Wonju College of Medicine, Wonju, Ilsan-ro, Gangwon-do, 26426, Republic of Korea; Research Institute of Metabolism and Inflammation, Yonsei University, Wonju College of Medicine, Wonju, Ilsan-ro, Gangwon-do, 26426, Republic of Korea.
| | - James V Jester
- Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
5
|
Effects of PPAR-γ and RXR-α on mouse meibomian gland epithelial cells during inflammation induced by latanoprost. Exp Eye Res 2022; 224:109251. [PMID: 36150542 DOI: 10.1016/j.exer.2022.109251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022]
Abstract
The purpose of this study is to investigate the effects of latanoprost on the secretion of cytokines and chemokines from meibomian gland epithelial cells, and to evaluate the modulation of peroxisome proliferator-activated receptor γ (PPAR-γ) and retinoid X receptor α (RXR-α) during latanoprost-induced inflammation. Mouse meibomian gland epithelial cells were cultured in proliferation and differentiation medium, respectively. Cells were exposed to latanoprost, rosiglitazone (PPAR-γ agonist), or LG100268 (RXR-α agonist), respectively. The expression of IL-6, IL-1β, TNF-α, MMP-9, MCP-1, and CCL-5 were detected by real-time PCR and ELISA. The effect of latanoprost, rosiglitazone, LG100268, and inflammatory cytokines on the differentiation of meibocyte were evaluated by related gene expression and lipid staining. The expression of Keratin-1, 6, 17 protein was detected by western immunoblotting. The results showed that the above cytokines could be induced by latanoprost in meibomian gland epithelial cells. LG100268 and rosiglitazone could inhibit the production of IL-6 and TNF-α induced by latanoprost, respectively. Latanoprost suppressed the expression of differentiation-related mRNA through a positive feedback loop by enhancement of COX-2 expression via FP receptor-activated ERK signaling. The expression of Keratin-17 was upregulated by rosiglitazone and suppressed by LG100268. The application of IL-6 and TNF-α showed negative effects on lipid accumulation in meibomian gland epithelial cells. These results demonstrated that latanoprost could induce inflammation and suppress differentiation of mouse meibomian gland epithelial cells. The activation of PPAR-γ and RXR-α showed an anti-inflammatory effect, showing a potential role to antagonize the effect of latanoprost eyedrops on meibomian gland epithelial cells.
Collapse
|
6
|
Zou Z, Wang H, Zhang B, Zhang Z, Chen R, Yang L. Inhibition of Gli1 suppressed hyperglycemia-induced meibomian gland dysfunction by promoting pparγ expression. Biomed Pharmacother 2022; 151:113109. [PMID: 35594713 DOI: 10.1016/j.biopha.2022.113109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/01/2022] [Accepted: 05/10/2022] [Indexed: 11/19/2022] Open
Abstract
Diabetes is one of the risk factors for meibomian gland dysfunction (MGD); however, the underlying molecular mechanism remains unknown. The current study aims to examine the effects of glioma-associated oncogene homolog 1 (Gli1), a transcription factor of the sonic hedgehog (Shh) pathway, in the modulation of diabetic-related MGD. Here, using RNA sequencing and qRT-PCR, we examined the mRNA changes of Shh pathway involving genes. mRNA sequencing analysis showed that the Shh pathway involving genes Shh and Gli1 were markedly upregulated in diabetic MG, and qRT-PCR detection of Shh pathway-associated genes found that Gli1 expression increased most significantly. Contrary to the elevation of Gli1 level, the expression of pparγ was downregulated in diabetic MG and in high glucose treated organotypic cultured mouse MG. GANT61, an inhibitor of Gli1, effectively inhibited the reduction of pparγ expression and lipid accumulation induced by high glucose, which was suppressed by pparγ inhibitor T0070907. We further demonstrated that advanced glycation end products (AGEs) treatment also promoted the expression of Gli1 and pparγ in organotypic cultured mouse MG. AGEs inhibitor Aminoguanidine suppressed high glucose caused Gli1 upregulation in organotypic cultured mouse MG. These results suggest that suppression of Gli1 may be a potentially useful therapeutic option for diabetic-related MGD.
Collapse
Affiliation(s)
- Zongzheng Zou
- School of Medicine and Life Sciences, Shandong First Medical University, Jinan, China
| | - Huifeng Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Bin Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Zhenzhen Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Rong Chen
- School of Medicine and Life Sciences, Shandong First Medical University, Jinan, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China.
| |
Collapse
|
7
|
Ziemanski JF, Wilson L, Barnes S, Nichols KK. Prostaglandin E2 and F2α Alter Expression of Select Cholesteryl Esters and Triacylglycerols Produced by Human Meibomian Gland Epithelial Cells. Cornea 2022; 41:95-105. [PMID: 34483274 PMCID: PMC8648972 DOI: 10.1097/ico.0000000000002835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/10/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE PGF2α analogs are commonly used to treat glaucoma and are associated with higher rates of meibomian gland dysfunction (MGD). The purpose of this study was to evaluate the physiological effects of PGF2α and PGE2 on immortalized human meibomian gland epithelial cells (HMGECs). METHODS HMGECs were immunostained for the 4 PGE2 receptors (EP1, EP2, EP3, and EP4) and 1 PGF2α receptor (FP) and imaged. Rosiglitazone-differentiated HMGECs were exposed to PGF2α and PGE2 (10-9 to 10-6 M) for 3 hours. Cell viability was assessed by an adenosine triphosphate-based luminescent assay, and lipid extracts were analyzed for cholesteryl esters (CEs), wax esters (WEs), and triacylglycerols (TAGs) by ESI-MSMSALL in positive ion mode by a Triple TOF 5600 Mass Spectrometer using SCIEX LipidView 1.3. RESULTS HMGECs expressed 3 PGE2 receptors (EP1, EP2, and EP4) and the 1 PGF2α receptor (FP). Neither PGE2 nor PGF2α showed signs of cytotoxicity at any of the concentrations tested. WEs were not detected from any of the samples, but both CEs and TAGs exhibited a diverse and dynamic profile. PGE2 suppressed select CEs (CE 22:1, CE 26:0, CE 28:1, and CE 30:1). PGF2α dose dependently increased several CEs (CE 20:2, CE 20:1, CE 22:1, and CE 24:0) yet decreased others. Both prostaglandins led to nonspecific TAG remodeling. CONCLUSIONS PGE2 and PGF2α showed minimal effect on HMGEC viability. PGF2α influences lipid expression greater than PGE2 and may do so by interfering with meibocyte differentiation. This work may provide insight into the mechanism of MGD development in patients with glaucoma treated with PGF2α analogs.
Collapse
Affiliation(s)
- Jillian F. Ziemanski
- University of Alabama at Birmingham, School of Optometry, Department of Optometry Vision Science, Birmingham, AL, USA
| | - Landon Wilson
- University of Alabama at Birmingham, School of Medicine, Department of Pharmacology Toxicology, Birmingham, AL, USA
| | - Stephen Barnes
- University of Alabama at Birmingham, School of Medicine, Department of Pharmacology Toxicology, Birmingham, AL, USA
| | - Kelly K. Nichols
- University of Alabama at Birmingham, School of Optometry, Department of Optometry Vision Science, Birmingham, AL, USA
| |
Collapse
|
8
|
Phan MAT, Madigan MC, Stapleton F, Willcox M, Golebiowski B. Human meibomian gland epithelial cell culture models: Current progress, challenges, and future directions. Ocul Surf 2021; 23:96-113. [PMID: 34843998 DOI: 10.1016/j.jtos.2021.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/04/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022]
Abstract
The widely used immortalised human meibomian gland epithelia cell (iHMGEC) line has made possible extensive studies of the biology and pathophysiology of meibomian glands (MG). Tissue culture protocols for iHMGEC have been revised and modified to optimise the growth conditions for cell differentiation and lipid accumulation. iHMGEC proliferate in serum-free medium but require serum or other appropriate exogenous factors to differentiate. Several supplements can enhance differentiation and neutral lipid accumulation in iHMGEC grown in serum-containing medium. In serum-free medium, rosiglitazone, a peroxisome proliferator activator receptor-γ (PPARγ) agonist, is reported to induce iHMGEC differentiation, neutral lipid accumulation and expression of key biomarkers of differentiation. iHMGEC cultured in serum-containing medium under hypoxia or with azithromycin increases DNAse 2 activity, a biomarker of terminal differentiation in sebocytes. The production of lipids with composition similar to meibum has not been observed in vitro and this remains a major challenge for iHMGEC culture. Innovative methodologies such as 3D ex vivo culture of MG and generation of MG organoids from stem cells are important for further developing a model that more closely mimics the in vivo biology of human MG and to facilitate the next generation of studies of MG disease and dry eye.
Collapse
Affiliation(s)
- Minh Anh Thu Phan
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW Sydney, NSW, 2033, Australia.
| | - Michele C Madigan
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW Sydney, NSW, 2033, Australia
| | - Fiona Stapleton
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW Sydney, NSW, 2033, Australia
| | - Mark Willcox
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW Sydney, NSW, 2033, Australia
| | - Blanka Golebiowski
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW Sydney, NSW, 2033, Australia
| |
Collapse
|
9
|
Expression of Acyl-CoA wax-alcohol acyltransferase 2 (AWAT2) by human and rabbit meibomian glands and meibocytes. Ocul Surf 2021; 23:60-70. [PMID: 34838721 PMCID: PMC10393063 DOI: 10.1016/j.jtos.2021.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 11/22/2022]
Abstract
PURPOSE Previously, we showed that Acyl-CoA wax-alcohol acyltransferase 2 (AWAT2), an essential enzyme required for meibum wax ester synthesis, was not expressed by immortalized human meibomian gland epithelial cells (hMGEC) in culture. To begin to understand the mechanisms controlling AWAT2 expression, we have analyzed its expression in human and rabbit meibomian glands and cultured meibocytes. METHODS Rabbit meibocyte progenitor cells (rMPC) were first grown in Cnt-BM.1 basal medium (Cellntec) supplemented with rhEGF, FGF10, and ROCK inhibitor (Y-27632 dihydrochloride), and then passed at 70-80% confluency with Accutase. Differentiation of rMPC to meibocytes (rMC) was induced by removal of Y-27632 and addition of 1 mM calcium with and without PPARγ agonists. RNA from the tissue, primary, passaged rMPC and differentiated rMC were obtained for AWAT2 qPCR analysis. Proteins and cells were evaluated for western blotting and neutral lipid synthesis, respectively. For comparison, human meibomian glands were separated for RNA and protein analysis. hMGEC was cultured to collect RNA and protein. RESULTS Rabbit rMPCs were successfully grown, passaged, and differentiated, showing a significant increase in lipid droplet accumulation. AWAT2 RNA was highly expressed in tissue but showed a -16.9 log2 fold decrease in primary and passaged rMPCs and was not induced by differentiation to rMC. By comparison, human meibomian glands showed high expression of AWAT2, and hMGEC expressed non-detectable levels of AWAT2 transcripts or protein. CONCLUSIONS AWAT2 expression is lost in cultured rMPC and rMC suggesting that cells in culture do not undergo complete meibocyte differentiation and require yet to be identified culture conditions.
Collapse
|
10
|
Hu N, Chen C, Wang J, Huang J, Yao D, Li C. Atorvastatin Ester Regulates Lipid Metabolism in Hyperlipidemia Rats via the PPAR-signaling Pathway and HMGCR Expression in the Liver. Int J Mol Sci 2021; 22:11107. [PMID: 34681767 PMCID: PMC8538474 DOI: 10.3390/ijms222011107] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/22/2022] Open
Abstract
Atorvastatin ester (Ate) is a structural trim of atorvastatin that can regulate hyperlipidemia. The purpose of this study was to evaluate the lipid-lowering effect of Ate. Male Sprague Dawley (SD) rats were fed a high-fat diet for seven months and used as a hyperlipidemia model. The lipid level and liver function of the hyperlipidemia rats were studied by the levels of TG, TC, LDL, HDL, ALT, and AST in serum after intragastric administration with different doses of Ate. HE staining was used to observe the pathological changes of the rat liver and gastrocnemius muscle. The lipid deposits in the liver of rats were observed by staining with ORO. The genes in the rat liver were sequenced by RNA-sequencing. The results of the RNA-sequencing were further examined by qRT-PCR and western blotting. Biochemical test results indicated that Ate could obviously improve the metabolic disorder and reduce both the ALT and AST levels in serum of the hyperlipidemia rats. Pathological results showed that Ate could improve HFD-induced lipid deposition and had no muscle toxicity. The RNA-sequencing results suggested that Ate affected liver lipid metabolism and cholesterol, metabolism in the hyperlipidemia-model rats may vary via the PPAR-signaling pathway. The western blotting and qRT-PCR results demonstrated the Ate-regulated lipid metabolism in the hyperlipidemia model through the PPAR-signaling pathway and HMGCR expression. In brief, Ate can significantly regulate the blood lipid level of the model rats, which may be achieved by regulating the PPAR-signaling pathway and HMGCR gene expression.
Collapse
Affiliation(s)
- Nan Hu
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China;
| | - Chunyun Chen
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China;
| | - Jinhui Wang
- School of Pharmacy, Harbin Medical University, Harbin 150000, China; (J.W.); (J.H.)
| | - Jian Huang
- School of Pharmacy, Harbin Medical University, Harbin 150000, China; (J.W.); (J.H.)
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518060, China;
| | - Chunli Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China;
| |
Collapse
|
11
|
Abstract
Purpose: The meibomian glands are located in the tarsal plate of the upper and lower eyelid and are responsible for the production of a lipid-rich secretion, the meibum, which forms the outer component of the tear film. Meibomian gland dysfunction results in excessive evaporation of the tear film and is the leading cause of dry eye disease (DED). Despite the high prevalence of DED, the etiology of meibomian gland dysfunction is only basically understood. In addition, the molecular mechanisms of meibomian gland maturation and physiological function are currently the focus of research.Methods: A systematic literature search was performed using the main scientific databases, including all relevant published articles up to September 2020.Results: This article provides an overview of the current state of knowledge about meibomian gland stem cells, cell surface marker expression and PPARγ signaling, as well as the pathological causes of meibomian gland dysfunction.Conclusion: Androgen deficiency, hyperkeratinization, PPARγ signaling and inflammatory reactions including neutrophil extracellular traps (NETs) seem to be key factors within the pathological processes of the meibomian gland.
Collapse
Affiliation(s)
- Jana Dietrich
- Institute of Anatomy, Department of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Fabian Garreis
- Institute of Anatomy, Department of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Friedrich Paulsen
- Institute of Anatomy, Department of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Department of Topographic Anatomy and Operative Surgery, Sechenov University, Moscow, Russia
| |
Collapse
|
12
|
Ziemanski JF, Wilson L, Barnes S, Nichols KK. Triacylglycerol lipidome from human meibomian gland epithelial cells: Description, response to culture conditions, and perspective on function. Exp Eye Res 2021; 207:108573. [PMID: 33848521 DOI: 10.1016/j.exer.2021.108573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/16/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
Preliminary work has shown that select triacylglycerols (TAGs) are upregulated in a preclinical model of MGD, suggesting that TAGs may be an important outcome variable in research involving human meibomian gland epithelial cells (HMGECs). The purpose of this study was to explore the HMGEC TAG lipidome in culture conditions known to influence differentiation. HMGECs were differentiated in DMEM/F12 with 10 ng/ml EGF, FBS (2% or 10%), and rosiglitazone (0, 20, or 50 μM) for two or five days. Following culture, lipids were extracted, processed, and directly infused into a Triple TOF 5600 mass spectrometer (SCIEX, Framingham, MA) with electrospray ionization. MS and MS/MSALL spectra were acquired in the positive ion mode and performed with the SWATH technology. Only the TAGs that were present in all 48 samples were included in the analysis. Multiple regression techniques were utilized to assess the effects of each factor (FBS, rosiglitazone, and culture duration) on each expressed TAG. The HMGEC TAG lipidome consisted of 115 TAGs with 42-62 carbons and zero to 10 double bonds. Fatty acyl chains had 14 to 26 carbons and zero to five double bonds. C18:1 (oleic acid, 25/115, 21.7%) and C16:0 (palmitic acid, 16/115, 13.9%) were the most common fatty acids. FBS, rosiglitazone, and culture duration were significant predictors for 93 TAGs (80.9%) with R2 values ranging from 0.20 to 0.77 (p < 0.05). FBS and rosiglitazone achieved significance (p < 0.05) for 80 (69.6%) and 67 TAGs (58.3%), respectively. Rosiglitazone demonstrated a selective upregulation of TAGs containing 16 or 18 carbons. Culture duration reached significance (p < 0.05) for only 36 TAGs (31.3%). When comparing the 10 most abundant C18:1-containing TAGs in meibum, FBS was a negative predictor for five TAGs (mean standardized coefficient [SC] = -0.58, p < 0.001), rosiglitazone was a positive predictor for six TAGs (mean SC = 0.41, p ≤ 0.03), and culture duration weakly influenced one TAG (SC = 0.27, p = 0.008). FBS and rosiglitazone, unlike culture duration, are powerful modulators of the TAG profile. Rosiglitazone induces changes that could be consistent with fatty acid synthesis, suggesting that quantifying the TAG lipidome could be an indirect measure of lipogenesis. Though both have been described as differentiating agents, FBS and rosiglitazone induce opposing effects on meibum-relevant TAGs. Culturing with rosiglitazone is associated with a TAG profile that is more consistent with the expected outcome of lipogenesis and with the profile observed in normal human meibum.
Collapse
Affiliation(s)
- Jillian F Ziemanski
- University of Alabama at Birmingham, School of Optometry, Department of Optometry and Vision Science, Birmingham, AL, USA.
| | - Landon Wilson
- University of Alabama at Birmingham, School of Medicine, Department of Pharmacology and Toxicology, Birmingham, AL, USA
| | - Stephen Barnes
- University of Alabama at Birmingham, School of Medicine, Department of Pharmacology and Toxicology, Birmingham, AL, USA
| | - Kelly K Nichols
- University of Alabama at Birmingham, School of Optometry, Department of Optometry and Vision Science, Birmingham, AL, USA
| |
Collapse
|
13
|
Utilizing systems biology to reveal cellular responses to peroxisome proliferator-activated receptor γ ligand exposure. Curr Res Toxicol 2021; 2:169-178. [PMID: 34345858 PMCID: PMC8320640 DOI: 10.1016/j.crtox.2021.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/28/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
Human (HepG2) cells were exposed to PPARγ ligands to induce systems-level effects. Ciglitazone decreases HepG2 cell viability while GW 9662 had no effect. Ciglitazone and GW 9662 increase neutral lipids as a function of concentration. Cholesterol biosynthesis transcripts are affected by ciglitazone and GW 9662. Ciglitazone alters lipid profiles but GW 9662 was similar to vehicle-exposed cells.
Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor that, upon activation by ligands, heterodimerizes with retinoid X receptor (RXR), binds to PPAR response elements (PPREs), and activates transcription of downstream genes. As PPARγ plays a central role in adipogenesis, fatty acid storage, and glucose metabolism, PPARγ-specific pharmaceuticals (e.g., thiazolidinediones) have been developed to treat Type II diabetes and obesity within human populations. However, to our knowledge, no prior studies have concurrently assessed the effects of PPARγ ligand exposure on genome-wide PPARγ binding as well as effects on the transcriptome and lipidome within human cells at biologically active, non-cytotoxic concentrations. In addition to quantifying concentration-dependent effects of ciglitazone (a reference PPARγ agonist) and GW 9662 (a reference PPARγ antagonist) on human hepatocarcinoma (HepG2) cell viability, PPARγ abundance in situ, and neutral lipids, HepG2 cells were exposed to either vehicle (0.1% DMSO), ciglitazone, or GW 9662 for up to 24 h, and then harvested for 1) chromatin immunoprecipitation-sequencing (ChIP-seq) to identify PPARγ-bound regions across the entire genome, 2) mRNA-sequencing (mRNA-seq) to identify potential impacts on the transcriptome, and 3) lipidomics to identify potential alterations in lipid profiles. Following exposure to ciglitazone and GW 9662, we found that PPARγ levels were not significantly different after 2–8 h of exposure. While ciglitazone and GW 9662 resulted in a concentration-dependent increase in neutral lipids, the magnitude and localization of PPARγ-bound regions across the genome (as identified by ChIP-seq) did not vary by treatment. However, mRNA-seq and lipidomics revealed that exposure of HepG2 cells to ciglitazone and GW 9662 resulted in significant, treatment-specific effects on the transcriptome and lipidome. Overall, our findings suggest that exposure of human cells to PPARγ ligands at biologically active, non-cytotoxic concentrations results in toxicity that may be driven by a combination of both PPARγ-dependent and PPARγ-independent mechanisms.
Collapse
|
14
|
Ziemanski JF, Wilson L, Barnes S, Nichols KK. Saturation of cholesteryl esters produced by human meibomian gland epithelial cells after treatment with rosiglitazone. Ocul Surf 2020; 20:39-47. [PMID: 33248214 DOI: 10.1016/j.jtos.2020.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/29/2020] [Accepted: 11/22/2020] [Indexed: 01/14/2023]
Abstract
PURPOSE The purpose of this study was to compare the cholesteryl ester (CE) profiles expressed from human meibomian gland epithelial cells (HMGECs) in response to rosiglitazone-induced differentiation to that of normal human meibum. METHODS HMGECs were cultured with rosiglitazone (vehicle control, 20 μM, or 50 μM) and fetal bovine serum (FBS, 2% or 10%) for 2 days or 5 days. Following culture, lipid extracts were processed and analyzed by ESI-MSMSALL in positive ion mode. CEs were identified using both LipidView 1.2 and PeakView 2.2 (SCIEX, Framingham, MA) and compared to literature reports of CEs in normal human meibum. RESULTS There were 34 CEs with carbon number ranging from 14 to 34 detected from HMGECs. Across all conditions, HMGECs provided a CE profile that was 14.0% saturated, 60.6% monounsaturated, and 25.4% polyunsaturated. Culturing with 50 μM rosiglitazone and 2% FBS for 2 days resulted in the greatest number of upregulated saturated and monounsaturated CEs and downregulated polyunsaturated CEs. Five CEs were identified as being the most responsive to 50 μM rosiglitazone: CE 24:1, CE 28:1, CE 26:1, CE 18:1, and CE 22:1. CONCLUSION Although differences in the CE profile exist between meibum and HMGECs, rosiglitazone promotes upregulation of highly expressed meibum-relevant CEs and shifts the saturation level toward a more meibum-like profile. The use of rosiglitazone as a differentiating agent is recommended in HMGEC research, and analysis by ESI-MSMSALL is encouraged to differentiate meibum-relevant CEs from other nonpolar distractors detected by vital stains.
Collapse
Affiliation(s)
- Jillian F Ziemanski
- University of Alabama at Birmingham, School of Optometry, Department of Optometry and Vision Science, Birmingham, AL, USA.
| | - Landon Wilson
- University of Alabama at Birmingham, School of Medicine, Department of Pharmacology and Toxicology, Birmingham, AL, USA
| | - Stephen Barnes
- University of Alabama at Birmingham, School of Medicine, Department of Pharmacology and Toxicology, Birmingham, AL, USA
| | - Kelly K Nichols
- University of Alabama at Birmingham, School of Optometry, Department of Optometry and Vision Science, Birmingham, AL, USA
| |
Collapse
|
15
|
He H, Liang M, Li L, Luo S, Fang X, He H, Xiao X, Wu H, Lin Z. PPAR-α Agonist Fenofibrate Suppressed the Formation of Ocular Surface Squamous Metaplasia Induced by Topical Benzalkonium Chloride. Invest Ophthalmol Vis Sci 2020; 61:54. [PMID: 32232349 PMCID: PMC7401654 DOI: 10.1167/iovs.61.3.54] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose To investigate the effects and mechanisms of the peroxisome proliferator-activated receptor alpha (PPAR-α) agonist fenofibrate on the formation of ocular surface squamous metaplasia induced by topical benzalkonium chloride (BAC) in a mouse model. Methods Ocular surface squamous metaplasia was induced in 16 days by topical BAC application in mice. During the period of induction, mice were divided into four groups: no additional treatment (BAC+UT), topical vehicle (BAC+Vehicle), topical fenofibrate (BAC+Feno), or topical fenofibrate plus intraperitoneal injection of MK886 (BAC+Feno+MK886). The parameters of tear film were evaluated on day 16, and eye specimens were collected. Histologic investigation; PAS assays; immunostaining for cytokeratin 10 (K10), Ki67, and F4/80; and PCR assays for TNF-α and IL-6 were performed. Cell Counting Kit 8 (CCK-8) assays were performed to evaluate the inhibitory effects of fenofibrate on RAW264.7 cells. Results Fenofibrate suppressed the formation of BAC-induced instable tear film. In the BAC+Feno group, the expression of K10 and Ki67 was lower than in the other three groups. The number of goblet cells was reduced in eyes of the BAC+UT and BAC+Vehicle groups but was maintained in eyes of the BAC+Feno group. The number of F4/80-positive cells and the levels of TNF-α and IL-6 mRNA were significantly reduced in the cornea of the BAC+Feno group. These effects of fenofibrate could be attenuated by MK886. The cell viability of RAW264.7 cells could be significantly inhibited by fenofibrate in a dose-dependent pattern. Conclusions Topical application of fenofibrate suppressed the formation of ocular surface squamous metaplasia, which might be mediated through the PPAR-α signaling pathway.
Collapse
|
16
|
Evaluation of Cell Harvesting Techniques to Optimize Lipidomic Analysis from Human Meibomian Gland Epithelial Cells in Culture. Int J Mol Sci 2020; 21:ijms21093277. [PMID: 32384602 PMCID: PMC7247324 DOI: 10.3390/ijms21093277] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 12/18/2022] Open
Abstract
The lipidomic analysis of immortalized human meibomian gland epithelial cells (HMGECs) has been proposed as a preclinical model to study meibomian gland dysfunction. An in vitro study was conducted to evaluate neutral lipid recovery following three harvesting techniques and to identify candidate lipid biomarkers of HMGECs. HMGECs were cultured in serum-containing media for two days to promote lipid production. Cells were either harvested by 0.25% trypsin–ethylenediaminetetraacetic acid (EDTA), harvested by 10 mM EDTA, or simultaneously harvested and extracted by 2:1 chloroform–methanol (CM). After extraction by a modified Folch technique, the nonpolar phase was processed and infused into a TripleTOF 5600 mass spectrometer (Sciex, Framingham, MA, USA) with electrospray ionization. MS and MS/MSall spectra were acquired. Nonpolar cholesteryl esters (CEs) were consistently detected in all samples, while wax esters were not. Only small differences in two out of twenty CEs were detected between harvesting methods. CM yielded less CE18:1 than the other methods but greater CE20:4 than the trypsin–EDTA method (p < 0.05 for all). Similar to human meibum, very long-chain CEs with carbon number (nc) ≥ 24 were detected in all samples and may serve as HMGEC lipid biomarkers. Further work is needed to address the absence of wax esters. Overall, the three harvesting methods are reasonably equivalent, though CM promotes much better efficiency and is recommended for higher throughput.
Collapse
|
17
|
Eicosapentaenoic acid (EPA) activates PPARγ signaling leading to cell cycle exit, lipid accumulation, and autophagy in human meibomian gland epithelial cells (hMGEC). Ocul Surf 2020; 18:427-437. [PMID: 32360782 DOI: 10.1016/j.jtos.2020.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE The purpose of this study was to access the ability of the natural PPAR agonist, eicosapentaenoic acid (EPA), to activate PPAR gamma (γ) signaling leading to meibocyte differentiation in human meibomian gland epithelial cell (hMGEC). METHODS HMGEC were exposed to EPA, alone and in combination with the specific PPARγ antagonist, T0070907, to selectively block PPARγ signaling. Expression of PPARγ response genes were evaluated by qPCR. Effect on cell cycle was evaluated using Ki-67 labelling and western blots. During differentiation, autophagy was monitored using the Autophagy Tandem Sensor (ATS) and LysoTracker. Lipid accumulation was characterized by Stimulated Raman Scattering microscopy (SRS) and neutral lipid staining in combination with ER-Tracker, LysoTracker, and ATS. Autophagy was also investigated using western blotting. Seahorse XF analysis was performed to monitor mitochondrial function. RESULTS EPA specifically upregulated expression of genes related to lipid synthesis and induced cell cycle exit through reduced cyclin D1 expression and increased p21 and p27 expression. EPA also induced accumulation of lipid droplets in a time and dose dependent manner (P < 0.05) by specific PPARγ signaling. Lipid analysis identified both de novo synthesis and extracellular transport of lipid to form lipid droplets that were localized to the ER. PPARγ signaling also induced activation of AMPK-ULK1 signaling and autophagy, while inhibition of autophagy induced mitochondrial crisis with no effect on lipid accumulation. CONCLUSIONS EPA induces meibocyte differentiation through PPARγ activation that is characterized by cell cycle exit, de novo and transported lipid accumulation in the ER, and autophagy.
Collapse
|