1
|
Li Q, Zhang R, Ouyang C, Wang S, Li S, Yin X, Deng Z, Han B, Chi J. Photocurable Dual-Network Hydrogels Based on Natural Polymers for Sutureless Repair of Large Corneal Defects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500150. [PMID: 40159843 DOI: 10.1002/smll.202500150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Corneal transplantation remains the prevailing treatment for corneal defects, which is always restricted by donor shortages and numerous postoperative complications accompanying suturing. Photocurable hydrogels have emerged as alternative therapeutic strategies for the repair of corneal defects, but most hydrogels focus on repairing focal corneal defects and still suffer from low transparency and poor mechanical properties. Herein, photocurable hydrogel GelMA/OCS composed of gelatin methacryloyl (GelMA) and oxidized chondroitin sulfate (OCS) is developed for sutureless repair of large corneal defects (6 mm). This injectable hybridized hydrogel demonstrates excellent transparency, low swelling rate, enhanced mechanical properties, and superior adhesion properties. In vitro experiments reveal that GelMA/OCS hydrogel can support the proliferation and migration, and adhesion growth of human corneal epithelial cells (HCECs), demonstrating satisfactory cytocompatibility and cell affinity. In addition, GelMA/OCS hydrogel is capable of accurately filling the large corneal defects in rabbits and forming hydrogel grafts with smooth surfaces. Postoperative slit lamp, histological evaluation, and transcriptomic analysis reveal that GelMA/OCS hydrogel can significantly facilitate corneal re-epithelialization and the integration and reconstruction of stromal structures, as well as reduce inflammation responses and scar formation. Therefore, GelMA/OCS hydrogel may provide a promising alternative for the sutureless treatment of large corneal defects.
Collapse
Affiliation(s)
- Qing Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Ruyin Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Chengpei Ouyang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shuo Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shanshan Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xinchao Yin
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zimeng Deng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Baoqin Han
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jinhua Chi
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
2
|
Basu B, Mallick S, Dhauria S, Nagime PV, Singh S. Native/modified dextran-based nanogel in delivering drug and management of ocular complications: a review. Z NATURFORSCH C 2025:znc-2025-0014. [PMID: 40294585 DOI: 10.1515/znc-2025-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025]
Abstract
Ocular nanogels have emerged as a promising therapeutic approach, and nanotechnology has speed up the growth of the pharmaceutical and medical technology sectors. The physiological and anatomical barriers of the eye limit the use of traditional ocular preparations, which leads to low drug bioavailability and a brief retention period. This presents a serious problem for patients, doctors, and chemists. Nevertheless, nanogels can encapsulate medications within three-dimensional crosslinked polymeric networks and provide controlled and prolonged drug delivery by using particular structural layouts and unique preparation techniques, improving therapeutic efficacy and patient compliance. Dextran and its variants, a naturally occurring polysaccharide, have drawn a lot of interest in developing delivery systems for use in pharmaceutical and medical applications. Many dextran-based delivery systems with customized geometries and features have been fabricated recently, such as hydrogels, nanogels, magnetic nanoparticles, nanoemulsions, self-assembled micelles and nanoparticles, and microparticles. The review presents advancement and therapeutic potential of dextran-based nanogels for the treatment of various eye conditions, such as cataract, conjunctivitis, glaucoma, dry eye syndrome, age-related macular degeneration, and corneal ulcers. Moreover, the process for development and assessing these nanomedicines, emphasizing their safety and effectiveness as established by preclinical, toxicological, clinical assessments, and patent updates, has been elaborated.
Collapse
Affiliation(s)
- Biswajit Basu
- Department of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Barasat, Kolkata, West Bengal, 700126, India
| | - Suraj Mallick
- Department of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Barasat, Kolkata, West Bengal, 700126, India
| | - Suman Dhauria
- Department of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Barasat, Kolkata, West Bengal, 700126, India
| | - Pooja V Nagime
- Centre of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Sudarshan Singh
- Office of Research Administrations, Chiang Mai University, Chiang Mai 50200, Thailand
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Zhao L, Shi Z, Wang J, Dou S, Sun X, Yang S, Wang H, Zhou Q, Wang T, Shi W. Natural Extracellular Matrix Scaffold-Based Hydrogel Corneal Patch with Temperature and Light-Responsiveness for Penetrating Keratoplasty and Sutureless Stromal Defect Repair. Adv Healthc Mater 2025; 14:e2402567. [PMID: 39558795 DOI: 10.1002/adhm.202402567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/28/2024] [Indexed: 11/20/2024]
Abstract
Corneal transplantation remains the gold standard for treating corneal blindness; however, it is hampered globally by donor shortages and the complexity of suture-dependent procedures. Tissue-engineered corneas have demonstrated potential as corneal equivalents. Nevertheless, the development of adhesive corneal patches and full-thickness corneal substitutes remains challenging. In this study, a multifunctional hydrogel corneal patch (MHCP) is constructed by integrating a dual-crosslinked hybrid hydrogel with temperature and light responsiveness with a natural extracellular matrix scaffold. When applied to the ocular surface, MHCP spontaneously releases adhesives at body temperature and forms a stable adhesion with the recipient cornea through photocuring. In addition to its inherent mechanical, optical, and ultrastructural characteristics, which are similar to those of the natural stroma, MHCP demonstrates excellent suture resistance, anti-swelling, and anti-degradation properties after curing. MHCP promotes the proliferation and migration of corneal epithelial cells in vitro and maintains the phenotype of corneal stromal cells. In vivo, MHCP maintains graft hydration and restores corneal structural integrity and transparency during penetrating keratoplasty of various sizes and sutureless lamellar keratoplasty. Collectively, given the advantages of native stroma-like characteristics, operation-facilitating multiple functions, and convenient preparation, MHCP is a promising corneal substitute for clinical applications.
Collapse
Affiliation(s)
- Long Zhao
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Zhen Shi
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Jingting Wang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Shengqian Dou
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Xiuli Sun
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Shang Yang
- Binzhou Medical University, Binzhou, 264003, China
| | - Hongwei Wang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Qingjun Zhou
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Ting Wang
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250021, China
| | - Weiyun Shi
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| |
Collapse
|
4
|
Romo-Valera C, Appel EA, Etxebarria J, Arluzea J, Andollo N. In Vitro Evaluation of Gelatin-Based Hydrogels as Potential Fillers for Corneal Wounds. Biomacromolecules 2025. [PMID: 40079491 DOI: 10.1021/acs.biomac.4c01759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Corneal persistent epithelial defects are common ophthalmic injuries that can cause significant visual and structural damage. While diagnosis is straightforward, treatment remains challenging. Noninvasive therapies like eye drops are preferred, but severe neurotrophic keratopathy may require surgical interventions. This study explores gelatin-based hydrogels as noninvasive alternatives for corneal repair. Four photo-cross-linkable hydrogels with gelatin and riboflavin phosphate (RFP) were evaluated: a control and variants incorporating 2.5% dextran (D), 0.4% hyaluronic acid (HA), or 1% methylcellulose (MC). In vitro assessments included physicochemical properties, biocompatibility, and release kinetics alongside ex vivo wound healing assays. The gelatin-RFP hydrogel maintained corneal transparency, while additives reduced it. Dextran slowed compound release, and HA and MC reduced the release rate of larger molecules. All hydrogels showed excellent biocompatibility, and ex vivo models confirmed re-epithelialization, though slower than controls. The unmodified gelatin-RFP hydrogel demonstrated the best potential for corneal tissue engineering, supporting its future clinical translation.
Collapse
Affiliation(s)
- Cristina Romo-Valera
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country UPV/EHU, Sarriena s/n, Leioa 48940, Spain
- BEGIKER Ophthalmology Research Group, Biobizkaia Health Research Institute, Plaza Cruces S/N, Barakaldo 48903, Spain
| | - Eric A Appel
- Department of Bioengineering and Department of Pediatrics (Endocrinology), Stanford University, Stanford, California 94305, United States
- Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
- Sarafan ChEM-H, Stanford University, Stanford, California 94305, United States
- Wood Institute for the Environment, Stanford University, Stanford, California 94305, United States
| | - Jaime Etxebarria
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country UPV/EHU, Sarriena s/n, Leioa 48940, Spain
- BEGIKER Ophthalmology Research Group, Biobizkaia Health Research Institute, Plaza Cruces S/N, Barakaldo 48903, Spain
- Department of Ophthalmology, University Hospital of Cruces, Plaza Cruces S/N, Barakaldo 48903, Spain
| | - Jon Arluzea
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country UPV/EHU, Sarriena s/n, Leioa 48940, Spain
- BEGIKER Ophthalmology Research Group, Biobizkaia Health Research Institute, Plaza Cruces S/N, Barakaldo 48903, Spain
| | - Noelia Andollo
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country UPV/EHU, Sarriena s/n, Leioa 48940, Spain
- BEGIKER Ophthalmology Research Group, Biobizkaia Health Research Institute, Plaza Cruces S/N, Barakaldo 48903, Spain
| |
Collapse
|
5
|
Li Y, Wang Z. Biomaterials for Corneal Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408021. [PMID: 39739318 PMCID: PMC11809424 DOI: 10.1002/advs.202408021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/19/2024] [Indexed: 01/02/2025]
Abstract
Corneal blindness is a significant reason for visual impairment globally. Researchers have been investigating several methods for corneal regeneration in order to cure these patients. Biomaterials are favored due to their biocompatibility and capacity to promote cell adhesion. A variety of natural and synthetic biomaterials, along with decellularized cornea, have been employed in corneal wound healing. Commonly utilized natural biomaterials encompass proteins such as collagen, gelatin, and silk fibroin (SF), as well as polysaccharides including alginate, chitosan (CS), hyaluronic acid (HA), and cellulose. Synthetic biomaterials primarily consist of polyvinyl alcohol (PVA), poly(ε-caprolactone) (PCL), and poly (lactic-co-glycolic acid) (PLGA). Bio-based materials and their composites are primarily utilized as hydrogels, films, scaffolds, patches, nanocapsules, and other formats for the treatment of blinding ocular conditions, including corneal wounds, corneal ulcers, corneal endothelium, and stromal defects. This review attempts to summarize in vitro, preclinical, and clinical trial studies relevant to corneal regeneration using biomaterials within the last five years, and expect that these experiences and outcomes will inspire and provide practical strategies for the future development of biomaterials for corneal regeneration. Furthermore, potential improvements and difficulties for these biomaterials are discussed.
Collapse
Affiliation(s)
- Yimeng Li
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310058China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310058China
| |
Collapse
|
6
|
Maher C, Chen Z, Zhou Y, You J, Sutton G, Wallace G. Innervation in corneal bioengineering. Acta Biomater 2024; 189:73-87. [PMID: 39393658 DOI: 10.1016/j.actbio.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
Given the crucial role nerves play in maintaining corneal function and integrity, the ability of bioengineered cornea to demonstrate functional nerve regeneration directly influences their longevity and stability. Despite advances in biofabrication techniques and an increasing appreciation of the importance of neural innervation, to this day none have completely replicated the complexity and functionality of the cornea with successful innervation. This review evaluates the materials and fabrication techniques used to produce and enhance innervation in bioengineered cornea. Approaches to facilitating innervation are discussed and methods of assessing innervation compared. Finally, current challenges and future directions for innervated bioengineered cornea are presented, providing guidance for future work. STATEMENT OF SIGNIFICANCE: The functional nerve regeneration in bioengineered corneas directly influences their longevity and stability. Despite advancements in biofabrication techniques and growing recognition of the importance of neural innervation for bioengineered cornea, there remains a lack of comprehensive reviews on this topic. This review addresses the critical gap by evaluating the materials and fabrication techniques employed to promote innervation in bioengineered corneas. Additionally, we discuss various approaches to enhancing innervation, compare assessment methods, and examine both in vitro and in vivo responses. By providing a comprehensive overview of the current state of research and highlighting challenges and future directions, this review aims to provide guidance for inducing innervation of bioengineered cornea.
Collapse
Affiliation(s)
- Clare Maher
- Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Fairy Meadow, New South Wales, Australia; School of Medicine, University of Notre Dame, Sydney, NSW, Australia
| | - Zhi Chen
- Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Fairy Meadow, New South Wales, Australia.
| | - Ying Zhou
- Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Fairy Meadow, New South Wales, Australia
| | - Jingjing You
- Save Sight Institute, University of Sydney, Sydney, New South Wales 2000, Australia
| | - Gerard Sutton
- Save Sight Institute, University of Sydney, Sydney, New South Wales 2000, Australia; Lions New South Wales Eye Bank and New South Wales Bone Bank, New South Wales Organ and Tissue Donation Service, GPO Box 1614, Sydney, New South Wales 2000, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gordon Wallace
- Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Fairy Meadow, New South Wales, Australia.
| |
Collapse
|
7
|
Yan D, Zhang Y, Huang Y, Ouyang W. Progranulin Facilitates Corneal Repair Through Dual Mechanisms of Inflammation Suppression and Regeneration Promotion. Inflammation 2024; 47:1648-1666. [PMID: 38460093 DOI: 10.1007/s10753-024-01999-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
The cornea serves as a vital protective barrier for the eye; however, it is prone to injury and damage that can disrupt corneal epithelium and nerves, triggering inflammation. Therefore, understanding the biological effects and molecular mechanisms involved in corneal wound healing and identifying drugs targeting these pathways is crucial for researchers in this field. This study aimed to investigate the therapeutic potential of progranulin (PGRN) in treating corneal injuries. Our findings demonstrated that PGRN significantly enhanced corneal wound repair by accelerating corneal re-epithelialization and re-innervation. In vitro experiments with cultured epithelial cells and trigeminal ganglion cells further revealed that PGRN stimulated corneal epithelial cell proliferation and promoted axon growth in trigeminal ganglion cells. Through RNA-sequencing (RNA-seq) analysis and other experimental techniques, we discovered that PGRN exerted its healing effects modulating Wnt signaling pathway, which played a critical role in repairing epithelial cells and promoting axon regeneration in trigeminal neurons. Importantly, our study highlighted the anti-inflammatory properties of PGRN by inhibiting the NF-κB signaling pathway, leading to decreased infiltration of macrophages. In conclusion, our findings underscored the potential of PGRN in facilitating corneal wound healing by promoting corneal epithelial cell proliferation, trigeminal ganglion cell axon regeneration, and suppressing ocular inflammation. These results suggest that PGRN could potentially expedite the healing process and improve visual outcomes in patients with corneal injuries.
Collapse
Affiliation(s)
- Dan Yan
- Department of Ophthalmology, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Guizhou, Xiamen, China
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, China
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Yunuo Zhang
- Department of Ophthalmology, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Guizhou, Xiamen, China
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, China
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Yuhan Huang
- Department of Ophthalmology, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Guizhou, Xiamen, China
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, China
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Weijie Ouyang
- Department of Ophthalmology, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Guizhou, Xiamen, China.
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, China.
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.
| |
Collapse
|
8
|
Li S, Sun H, Chen L, Fu Y. Targeting limbal epithelial stem cells: master conductors of corneal epithelial regeneration from the bench to multilevel theranostics. J Transl Med 2024; 22:794. [PMID: 39198892 PMCID: PMC11350997 DOI: 10.1186/s12967-024-05603-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/10/2024] [Indexed: 09/01/2024] Open
Abstract
The cornea is the outermost layer of the eye and plays an essential role in our visual system. Limbal epithelial stem cells (LESCs), which are localized to a highly regulated limbal niche, are the master conductors of corneal epithelial regeneration. Damage to LESCs and their niche may result in limbal stem cell deficiency (LSCD), a disease confused ophthalmologists so many years and can lead to corneal conjunctivalization, neovascularization, and even blindness. How to restore the LESCs function is the hot topic for ocular scientists and clinicians around the world. This review introduced LESCs and the niche microenvironment, outlined various techniques for isolating and culturing LESCs used in LSCD research, presented common diseases that cause LSCD, and provided a comprehensive overview of both the diagnosis and multiple treatments for LSCD from basic research to clinical therapies, especially the emerging cell therapies based on various stem cell sources. In addition, we also innovatively concluded the latest strategies in recent years, including exogenous drugs, tissue engineering, nanotechnology, exosome and gene therapy, as well as the ongoing clinical trials for treating LSCD in recent five years. Finally, we highlighted challenges from bench to bedside in LSCD and discussed cutting-edge areas in LSCD therapeutic research. We hope that this review could pave the way for future research and translation on treating LSCD, a crucial step in the field of ocular health.
Collapse
Affiliation(s)
- Shiding Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Rd, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 639 Zhizaoju Rd, Shanghai, 200011, China
| | - Hao Sun
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Rd, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 639 Zhizaoju Rd, Shanghai, 200011, China
| | - Liangbo Chen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Rd, Shanghai, 200011, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 639 Zhizaoju Rd, Shanghai, 200011, China.
| | - Yao Fu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Rd, Shanghai, 200011, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 639 Zhizaoju Rd, Shanghai, 200011, China.
| |
Collapse
|
9
|
Nie R, Zhang QY, Feng ZY, Huang K, Zou CY, Fan MH, Zhang YQ, Zhang JY, Li-Ling J, Tan B, Xie HQ. Hydrogel-based immunoregulation of macrophages for tissue repair and regeneration. Int J Biol Macromol 2024; 268:131643. [PMID: 38643918 DOI: 10.1016/j.ijbiomac.2024.131643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
The rational design of hydrogel materials to modulate the immune microenvironment has emerged as a pivotal approach in expediting tissue repair and regeneration. Within the immune microenvironment, an array of immune cells exists, with macrophages gaining prominence in the field of tissue repair and regeneration due to their roles in cytokine regulation to promote regeneration, maintain tissue homeostasis, and facilitate repair. Macrophages can be categorized into two types: classically activated M1 (pro-inflammatory) and alternatively activated M2 (anti-inflammatory and pro-repair). By regulating the physical and chemical properties of hydrogels, the phenotypic transformation and cell behavior of macrophages can be effectively controlled, thereby promoting tissue regeneration and repair. A full understanding of the interaction between hydrogels and macrophages can provide new ideas and methods for future tissue engineering and clinical treatment. Therefore, this paper reviews the effects of hydrogel components, hardness, pore size, and surface morphology on cell behaviors such as macrophage proliferation, migration, and phenotypic polarization, and explores the application of hydrogels based on macrophage immune regulation in skin, bone, cartilage, and nerve tissue repair. Finally, the challenges and future prospects of macrophage-based immunomodulatory hydrogels are discussed.
Collapse
Affiliation(s)
- Rong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Qing-Yi Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Zi-Yuan Feng
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Kai Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Chen-Yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ming-Hui Fan
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yue-Qi Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ji-Ye Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jesse Li-Ling
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Medical Genetics, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Bo Tan
- Department of Orthopedic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, PR China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, PR China.
| |
Collapse
|
10
|
Borouman S, Sigaroodi F, Ahmadi Tafti SM, Khoshmaram K, Soleimani M, Khani MM. ECM-based bioadhesive hydrogel for sutureless repair of deep anterior corneal defects. Biomater Sci 2024; 12:2356-2368. [PMID: 38497791 DOI: 10.1039/d4bm00129j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Corneal transplantation is the gold standard treatment for corneal-related blindness; however, this strategy faces challenges such as limited donor cornea, graft rejection, suture-related complications, and the need for specialized equipment and advanced surgical skills. Development of tissue adhesives for corneal regeneration is of great clinical value. However, currently available corneal tissue sealants pose challenges, such as lack of safety, biocompatibility, and desired mechanical properties. To meet these requirements simultaneously, a bovine stromal corneal extracellular matrix (dCor) was used to design a bioadhesive photocurable hydrogel based on gelatin methacrylate (GelMA) and polyethylene glycol diacrylate (PEGDA) hydrogels (dCor/Gel-PEG). Integration of dCor into the dual networks of GelMA and PEGDA (Gel-PEG) led to a bioadhesive hydrogel for curing corneal defects, which could be crosslinked by Irgacure 2959 within 5 min ultraviolet irradiation. The viability of corneal stromal stem cells (CSSCs) was improved on the dCor/Gel-PEG hydrogel in comparison to the Gel-PEG hydrogel. The gene expression profile supported the keratocyte differentiation of CSSCs seeded on dCor/Gel-PEG via increased KERA and ALDH, with inhibited myofibroblast transdifferentiation via decreased α-SMA due to the presence of dCor. Interestingly, the dCor/Gel-PEG hydrogel exhibited favorable mechanical performance in terms of elasticity and bioadherence to the host corneal stroma. Ex vivo and in vivo examinations proved the feasibility of this hydrogel for the sutureless reconstruction of deep anterior corneal defects with promising histopathological results.
Collapse
Affiliation(s)
- Safieh Borouman
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Faraz Sigaroodi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohsen Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran 1411713138, Iran
| | - Keyvan Khoshmaram
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran (1417935840), Tehran, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad-Mehdi Khani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Di Francesco D, Di Varsavia C, Casarella S, Donetti E, Manfredi M, Mantovani D, Boccafoschi F. Characterisation of Matrix-Bound Nanovesicles (MBVs) Isolated from Decellularised Bovine Pericardium: New Frontiers in Regenerative Medicine. Int J Mol Sci 2024; 25:740. [PMID: 38255814 PMCID: PMC10815362 DOI: 10.3390/ijms25020740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Matrix-bound nanovesicles (MBVs) are a recently discovered type of extracellular vesicles (EVs), and they are characterised by a strong adhesion to extracellular matrix structural proteins (ECM) and ECM-derived biomaterials. MBVs contain a highly bioactive and tissue-specific cargo that recapitulates the biological activity of the source ECM. The rich content of MBVs has shown to be capable of potent cell signalling and of modulating the immune system, thus the raising interest for their application in regenerative medicine. Given the tissue-specificity and the youthfulness of research on MBVs, until now they have only been isolated from a few ECM sources. Therefore, the objective of this research was to isolate and identify the presence of MBVs in decellularised bovine pericardium ECM and to characterise their protein content, which is expected to play a major role in their biological potential. The results showed that nanovesicles, corresponding to the definition of recently described MBVs, could be isolated from decellularised bovine pericardium ECM. Moreover, these MBVs were composed of numerous proteins and cytokines, thus preserving a highly potential biological effect. Overall, this research shows that bovine pericardium MBVs show a rich and tissue-specific biological potential.
Collapse
Affiliation(s)
- Dalila Di Francesco
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (C.D.V.); (S.C.)
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Carolina Di Varsavia
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (C.D.V.); (S.C.)
| | - Simona Casarella
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (C.D.V.); (S.C.)
| | - Elena Donetti
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy;
| | - Marcello Manfredi
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy;
- Center for Translational Research on Autoimmune and Allergic Diseases, Department of Translational Medicine, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (C.D.V.); (S.C.)
| |
Collapse
|
12
|
Chameettachal S, Venuganti A, Parekh Y, Prasad D, Joshi VP, Vashishtha A, Basu S, Singh V, Bokara KK, Pati F. Human cornea-derived extracellular matrix hydrogel for prevention of post-traumatic corneal scarring: A translational approach. Acta Biomater 2023; 171:289-307. [PMID: 37683964 DOI: 10.1016/j.actbio.2023.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Corneal scarring and opacification are a significant cause of blindness affecting millions worldwide. The current standard of care for corneal blindness is corneal transplantation, which suffers from several drawbacks. One alternative approach that has shown promise is the use of xenogeneic corneal extracellular matrix (ECM), but its clinical applicability is challenging due to safety concerns. This study reports the innovative use of human cornea-derived ECM to prevent post-traumatic corneal scarring. About 30 - 40% of corneas donated to the eye banks do not meet the standards defined for clinical use and are generally discarded, although they are completely screened for their safety. In this study, human cornea-derived decellularized ECM hydrogel was prepared from the non-transplantation grade human cadaveric corneas obtained from an accredited eye-bank. The prepared hydrogel was screened for its efficacy against corneal opacification following an injury in an animal model. Our in vivo study revealed that, the control collagen-treated group developed corneal opacification, while the prophylactic application of human cornea-derived hydrogel effectively prevented corneal scarring and opacification. The human hydrogel-treated corneas were indistinguishable from healthy corneas and comparable to those treated with the xenogeneic bovine corneal hydrogel. We also demonstrated that the application of the hydrogel retained the biological milieu including cell behavior, protein components, optical properties, curvature, and nerve regeneration by remodeling the corneal wound after injury. The hydrogel application is also sutureless, resulting in faster corneal healing. We envision that this human cornea-derived ECM-based hydrogel has potential clinical application in preventing scarring from corneal wounding. STATEMENT OF SIGNIFICANCE: There are significant challenges surrounding corneal regeneration after injury due to extensive scarring. Although there is substantial research on corneal regeneration, much of it uses synthetic materials with chemical cross-linking methods or xenogeneic tissue-based material devices which have to undergo exhaustive safety analysis before clinical trials. Herein, we demonstrate the potential application of a human corneal extracellular matrix hydrogel without any additional materials for scarless corneal tissue regeneration, and a method to reduce the wasting of donated allogenic corneal tissue from eye banks. We found no difference in efficacy between the usage of human tissues compared to xenogeneic sources. This may help ease clinical translation and can be used topically without sutures as an outpatient procedure.
Collapse
Affiliation(s)
- Shibu Chameettachal
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| | - Animith Venuganti
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Yash Parekh
- CSIR-Center for Cellular and Molecular Biology, ANNEXE II, Medical Biotechnology Complex, Uppal Road, Hyderabad, Telangana, India
| | - Deeksha Prasad
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Vineet P Joshi
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India; Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Anviti Vashishtha
- CSIR-Center for Cellular and Molecular Biology, ANNEXE II, Medical Biotechnology Complex, Uppal Road, Hyderabad, Telangana, India
| | - Sayan Basu
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India.
| | - Vivek Singh
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India.
| | - Kiran Kumar Bokara
- CSIR-Center for Cellular and Molecular Biology, ANNEXE II, Medical Biotechnology Complex, Uppal Road, Hyderabad, Telangana, India.
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India.
| |
Collapse
|
13
|
Liu LC, Chen YH, Lu DW. Overview of Recent Advances in Nano-Based Ocular Drug Delivery. Int J Mol Sci 2023; 24:15352. [PMID: 37895032 PMCID: PMC10607833 DOI: 10.3390/ijms242015352] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Ocular diseases profoundly impact patients' vision and overall quality of life globally. However, effective ocular drug delivery presents formidable challenges within clinical pharmacology and biomaterial science, primarily due to the intricate anatomical and physiological barriers unique to the eye. In this comprehensive review, we aim to shed light on the anatomical and physiological features of the eye, emphasizing the natural barriers it presents to drug administration. Our goal is to provide a thorough overview of various characteristics inherent to each nano-based drug delivery system. These encompass nanomicelles, nanoparticles, nanosuspensions, nanoemulsions, microemulsions, nanofibers, dendrimers, liposomes, niosomes, nanowafers, contact lenses, hydrogels, microneedles, and innovative gene therapy approaches employing nano-based ocular delivery techniques. We delve into the biology and methodology of these systems, introducing their clinical applications over the past decade. Furthermore, we discuss the advantages and challenges illuminated by recent studies. While nano-based drug delivery systems for ophthalmic formulations are gaining increasing attention, further research is imperative to address potential safety and toxicity concerns.
Collapse
Affiliation(s)
| | | | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (L.-C.L.); (Y.-H.C.)
| |
Collapse
|
14
|
SARIAN MN, ZULKEFLI N, CHE ZAIN MS, MANIAM S, FAKURAZI S. A review with updated perspectives on in vitro and in vivo wound healing models. Turk J Biol 2023; 47:236-246. [PMID: 38152620 PMCID: PMC10751087 DOI: 10.55730/1300-0152.2659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/31/2023] [Accepted: 08/10/2023] [Indexed: 12/29/2023] Open
Abstract
A skin wound or perforation triggers a series of homeostatic reactions to safeguard internal organs from invasion by pathogens or other substances that could damage body tissues. An injury may occasionally heal quickly, leading to the closure of the skin's structure. Healing from chronic wounds takes a long time. Although many treatment options are available to manage wound healing, an unmet therapy need remains because of the complexity of the processes and the other factors involved. It is crucial to conduct consistent research on novel therapeutic approaches to find an effective healing agent. Therefore, this work aims to cover various in vitro and in vivo methodologies that could be utilised to examine wound recovery. Before deciding on the optimal course of action, several techniques' benefits, drawbacks, and factors need to be reviewed.
Collapse
Affiliation(s)
- Murni Nazira SARIAN
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (National University of Malaysia), 43600, Bandar Baru Bangi, Selangor,
Malaysia
| | - Nabilah ZULKEFLI
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (National University of Malaysia), 43600, Bandar Baru Bangi, Selangor,
Malaysia
| | - Mohamad Shazeli CHE ZAIN
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia (Science University of Malaysia), 11800, Pulau Pinang,
Malaysia
| | - Sandra MANIAM
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (University of Putra Malaysia), Serdang 43400, Selangor,
Malaysia
| | - Sharida FAKURAZI
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (University of Putra Malaysia), Serdang 43400, Selangor,
Malaysia
| |
Collapse
|
15
|
Wang F, Zhang W, Qiao Y, Shi D, Hu L, Cheng J, Wu J, Zhao L, Li D, Shi W, Xie L, Zhou Q. ECM-Like Adhesive Hydrogel for the Regeneration of Large Corneal Stromal Defects. Adv Healthc Mater 2023; 12:e2300192. [PMID: 37097884 DOI: 10.1002/adhm.202300192] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/09/2023] [Indexed: 04/26/2023]
Abstract
The repair of large-diameter corneal stroma defects is a major clinical problem. Although some studies have attempted to use hydrogels to repair corneal damage, most of these hydrogels can only be used for focal stromal defects that are ≤3.5 mm in diameter due to poor hydrogel adhesion. Here, a photocurable adhesive hydrogel that mimics the extracellular matrix (ECM) with regard to composition for repairing 6 mm-diameter corneal stromal defects in rabbits is investigated. This ECM-like adhesive can be rapidly cured after light exposure, with high light transmittance and good mechanical properties. More importantly, this hydrogel maintains the viability and adhesion of cornea-derived cells and promotes their migration in vitro in 2D and 3D culture environments. Proteomics analysis confirms that the hydrogel promotes cell proliferation and ECM synthesis. Furthermore, in rabbit corneal stromal defect repair experiments, it is proven by histological and proteomic analysis that this hydrogel can effectively promote corneal stroma repair, reduce scar formation, and increase corneal stromal-neural regeneration at the six months follow-up. This work demonstrates the great application of ECM-like adhesive hydrogels for the regeneration of large-diameter corneal defects.
Collapse
Affiliation(s)
- Fuyan Wang
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yujie Qiao
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Depeng Shi
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Lizhi Hu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jun Cheng
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Jingyi Wu
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Long Zhao
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Donfang Li
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Weiyun Shi
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Lixin Xie
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Qingjun Zhou
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| |
Collapse
|
16
|
Cai D, Weng W. Development potential of extracellular matrix hydrogels as hemostatic materials. Front Bioeng Biotechnol 2023; 11:1187474. [PMID: 37383519 PMCID: PMC10294235 DOI: 10.3389/fbioe.2023.1187474] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023] Open
Abstract
The entry of subcutaneous extracellular matrix proteins into the circulation is a key step in hemostasis initiation after vascular injury. However, in cases of severe trauma, extracellular matrix proteins are unable to cover the wound, making it difficult to effectively initiate hemostasis and resulting in a series of bleeding events. Acellular-treated extracellular matrix (ECM) hydrogels are widely used in regenerative medicine and can effectively promote tissue repair due to their high mimic nature and excellent biocompatibility. ECM hydrogels contain high concentrations of extracellular matrix proteins, including collagen, fibronectin, and laminin, which can simulate subcutaneous extracellular matrix components and participate in the hemostatic process. Therefore, it has unique advantages as a hemostatic material. This paper first reviewed the preparation, composition and structure of extracellular hydrogels, as well as their mechanical properties and safety, and then analyzed the hemostatic mechanism of the hydrogels to provide a reference for the application and research, and development of ECM hydrogels in the field of hemostasis.
Collapse
|
17
|
Yazdanpanah G, Jalilian E, Shen X, Anwar KN, Jiang Y, Jabbehdari S, Rosenblatt MI, Pan Y, Djalilian AR. The effect of decellularization protocols on characterizations of thermoresponsive and light-curable corneal extracellular matrix hydrogels. Sci Rep 2023; 13:8145. [PMID: 37208411 PMCID: PMC10199007 DOI: 10.1038/s41598-023-35202-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/14/2023] [Indexed: 05/21/2023] Open
Abstract
To compare the effects of two decellularization protocols on the characteristics of fabricated COrnea Matrix (COMatrix) hydrogels. Porcine corneas were decellularized with Detergent (De) or Freeze-Thaw (FT)-based protocols. DNA remnant, tissue composition and α-Gal epitope content were measured. The effect of α-galactosidase on α-Gal epitope residue was assessed. Thermoresponsive and light-curable (LC) hydrogels were fabricated from decellularized corneas and characterized with turbidimetric, light-transmission and rheological experiments. The cytocompatibility and cell-mediated contraction of the fabricated COMatrices were assessed. Both protocols reduced the DNA content to < 0.1 µg/mg (native, > 0.5 µg/mg), and preserved the collagens and glycosaminoglycans. The α-Gal epitope remnant decreased by > 50% following both decellularization methods. We observed more than 90% attenuation in α-Gal epitope after treatment with α-galactosidase. The thermogelation half-time of thermoresponsive COMatrices derived from De-Based protocol (De-COMatrix) was 18 min, similar to that of FT-COMatrix (21 min). The rheological characterizations revealed significantly higher shear moduli of thermoresponsive FT-COMatrix (300.8 ± 22.5 Pa) versus De-COMatrix 178.7 ± 31.3 Pa, p < 0.01); while, this significant difference in shear moduli was preserved after fabrication of FT-LC-COMatrix and De-LC-COMatrix (18.3 ± 1.7 vs 2.8 ± 2.6 kPa, respectively, p < 0.0001). All thermoresponsive and light-curable hydrogels have similar light-transmission to human corneas. Lastly, the obtained products from both decellularization methods showed excellent in vitro cytocompatibility. We found that FT-LC-COMatrix was the only fabricated hydrogel with no significant cell-mediated contraction while seeded with corneal mesenchymal stem cells (p < 0.0001). The significant effect of decellularization protocols on biomechanical properties of hydrogels derived from porcine corneal ECM should be considered for further applications.
Collapse
Affiliation(s)
- Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, 1855 W. Taylor Street, MC 648, Chicago, IL, 60612, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Elmira Jalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, 1855 W. Taylor Street, MC 648, Chicago, IL, 60612, USA
| | - Xiang Shen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, 1855 W. Taylor Street, MC 648, Chicago, IL, 60612, USA
| | - Khandaker N Anwar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, 1855 W. Taylor Street, MC 648, Chicago, IL, 60612, USA
| | - Yizhou Jiang
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Sayena Jabbehdari
- Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, 1855 W. Taylor Street, MC 648, Chicago, IL, 60612, USA
| | - Yayue Pan
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, 1855 W. Taylor Street, MC 648, Chicago, IL, 60612, USA.
| |
Collapse
|
18
|
An S, Anwar K, Ashraf M, Lee H, Jung R, Koganti R, Ghassemi M, Djalilian AR. Wound-Healing Effects of Mesenchymal Stromal Cell Secretome in the Cornea and the Role of Exosomes. Pharmaceutics 2023; 15:1486. [PMID: 37242728 PMCID: PMC10221647 DOI: 10.3390/pharmaceutics15051486] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) and their secreted factors have been shown to have immunomodulatory and regenerative effects. In this study, we investigated human bone-marrow-derived MSC secretome (MSC-S) for the treatment of corneal epithelial wounds. Specifically, we evaluated the role of MSC extracellular vesicles (EV)/exosomes in mediating the wound-healing effects of the MSC-S. In vitro studies using human corneal epithelial cells showed that MSC-CM increased cell proliferation in HCEC and HCLE cells, while EV-depleted MSC-CM showed lower cell proliferation in both cell lines compared to the MSC-CM group. In vitro and in vivo experiments revealed that 1X MSC-S consistently promoted wound healing more effectively than 0.5X MSC-S, and MSC-CM promoted wound healing in a dose-dependent manner, while exosome deprivation delayed wound healing. We further evaluated the incubation period of MSC-CM on corneal wound healing and showed that MSC-S collected for 72 h is more effective than MSC-S collected for 48 h. Finally, we evaluated the stability of MSC-S under different storage conditions and found that after one cycle of freeze-thawing, MSC-S is stable at 4 °C for up to 4 weeks. Collectively, we identified the following: (i) MSC-EV/Exo as the active ingredient in MSC-S that mediates the wound-healing effects in the corneal epithelium, providing a measure to optimize its dosing for a potential clinical product; (ii) Treatment with EV/Exo-containing MSC-S resulted in an improved corneal barrier and decreased corneal haze/edema relative to EV/Exo-depleted MSC-S; (iii) The stability of MSC-CM for up to 4 weeks showed that the regular storage condition did not significantly impact its stability and therapeutic functions.
Collapse
Affiliation(s)
- Seungwon An
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.A.); (M.A.); (H.L.); (R.J.); (R.K.); (M.G.)
| | - Khandaker Anwar
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.A.); (M.A.); (H.L.); (R.J.); (R.K.); (M.G.)
| | - Mohammadjavad Ashraf
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.A.); (M.A.); (H.L.); (R.J.); (R.K.); (M.G.)
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Hyungjo Lee
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.A.); (M.A.); (H.L.); (R.J.); (R.K.); (M.G.)
| | - Rebecca Jung
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.A.); (M.A.); (H.L.); (R.J.); (R.K.); (M.G.)
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.A.); (M.A.); (H.L.); (R.J.); (R.K.); (M.G.)
| | - Mahmood Ghassemi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.A.); (M.A.); (H.L.); (R.J.); (R.K.); (M.G.)
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.A.); (M.A.); (H.L.); (R.J.); (R.K.); (M.G.)
| |
Collapse
|
19
|
Shen X, Li S, Zhao X, Han J, Chen J, Rao Z, Zhang K, Quan D, Yuan J, Bai Y. Dual-crosslinked regenerative hydrogel for sutureless long-term repair of corneal defect. Bioact Mater 2023; 20:434-448. [PMID: 35800407 PMCID: PMC9234351 DOI: 10.1016/j.bioactmat.2022.06.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 12/17/2022] Open
Abstract
Corneal transplantation is the most effective clinical treatment for corneal defects, but it requires precise size of donor corneas, surgical sutures, and overcoming other technical challenges. Postoperative patients may suffer graft rejection and complications caused by sutures. Ophthalmic glues that can long-term integrate with the corneal tissue and effectively repair the focal corneal damage are highly desirable. Herein, a hybrid hydrogel consisting of porcine decellularized corneal stroma matrix (pDCSM) and methacrylated hyaluronic acid (HAMA) was developed through a non-competitive dual-crosslinking process. It can be directly filled into corneal defects with various shapes. More importantly, through formation of interpenetrating network and stable amide bonds between the hydrogel and adjacent tissue, the hydrogel manifested excellent adhesion properties to achieve suture-free repair. Meanwhile, the hybrid hydrogel not only preserved bioactive components from pDCSM, but also exhibited cornea-matching transparency, low swelling ratio, slow degradation, and enhanced mechanical properties, which was capable of withstanding superhigh intraocular pressure. The combinatorial hydrogel greatly improved the poor cell adhesion performance of HAMA, supported the viability, proliferation of corneal cells, and preservation of keratocyte phenotype. In a rabbit corneal stromal defect model, the experimental eyes treated with the hybrid hydrogel remained transparent and adhered intimately to the stroma bed with long-term retention, accelerated corneal re-epithelialization and wound healing. Giving the advantages of high bioactivity, low-cost, and good practicality, the dual-crosslinked hybrid hydrogel served effectively for long-term suture-free treatment and tissue regeneration after corneal defect. Double-network hydrogel contains regenerative decellularized corneal stroma matrix. Suture-free easy operation, high transparency, strong attachment to stroma bed. Long-term retention on corneal defect with excellent force and pressure resistance. Rapid re-epithelialization, minimal scar formation, sustained cornea regeneration. A functional biomaterial-based strategy for in situ corneal wound healing.
Collapse
Affiliation(s)
- Xuanren Shen
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Saiqun Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Xuan Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Jiandong Han
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jiaxin Chen
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zilong Rao
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Kexin Zhang
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Daping Quan
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Ying Bai
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
20
|
Ahmad N. In Vitro and In Vivo Characterization Methods for Evaluation of Modern Wound Dressings. Pharmaceutics 2022; 15:42. [PMID: 36678671 PMCID: PMC9864730 DOI: 10.3390/pharmaceutics15010042] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/10/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
Chronic wound management represents a major challenge in the healthcare sector owing to its delayed wound-healing process progression and huge financial burden. In this regard, wound dressings provide an appropriate platform for facilitating wound healing for several decades. However, adherent traditional wound dressings do not provide effective wound healing for highly exudating chronic wounds and need the development of newer and innovative wound dressings to facilitate accelerated wound healing. In addition, these dressings need frequent changing, resulting in more pain and discomfort. In order to overcome these issues, a wide range of affordable and innovative modern wound dressings have been developed and explored recently to accelerate and improve the wound healing process. However, a comprehensive understanding of various in vitro and in vivo characterization methods being utilized for the evaluation of different modern wound dressings is lacking. In this context, an overview of modern dressings and their complete in vitro and in vivo characterization methods for wound healing assessment is provided in this review. Herein, various emerging modern wound dressings with advantages and challenges have also been reviewed. Furthermore, different in vitro wound healing assays and in vivo wound models being utilized for the evaluation of wound healing progression and wound healing rate using wound dressings are discussed in detail. Finally, a summary of modern wound dressings with challenges and the future outlook is highlighted.
Collapse
Affiliation(s)
- Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
| |
Collapse
|
21
|
Li G, Liu S, Chen W, Jiang Z, Luo Y, Wang D, Zheng Y, Liu Y. Acellularized Uvea Hydrogel as Novel Injectable Platform for Cell-Based Delivering Treatment of Retinal Degeneration and Optimizing Retinal Organoids Inducible System. Adv Healthc Mater 2022; 11:e2202114. [PMID: 36189847 DOI: 10.1002/adhm.202202114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 01/28/2023]
Abstract
Replenishing the retina with retinal pigment epithelial (RPE) cells derived from pluripotent stem cells (PSCs) has great promise for treating retinal degenerative diseases, but it is limited by poor cell survival and integration in vivo. Herein, porcine acellular sclera and uvea extracellular matrix (ECM) and their counterpart hydrogels are developed, and their effects on the biological behavior of human induced pluripotent stem cell (hiPSC)-derived RPE cells (hiPSC-RPE) and embryoid body (hiPSC-EB) differentiation are investigated. Both acellular ECM hydrogels have excellent biocompatibility and suitable biodegradability without evoking an obvious immune response. Most importantly, the decellularized uvea hydrogel-delivered cells' injection remarkably promotes the hiPSC-RPE cells' survival and integration in the subretinal space, rescues the photoreceptor cells' death and retinal gliosis, and restores vision in rats with retinal degeneration for a long duration. In addition, medium supplementation with decellularized uvea peptides promotes hiPSC-EBs onset morphogenesis and neural/retinal differentiation, forming layered retinal organoids. This study demonstrates that ECM hydrogel-delivered hiPSC-RPE cells' injection may be a useful approach for treating retinal degeneration disease, combined with an optimized retinal seeding cells' induction program, which has potential for clinical application.
Collapse
Affiliation(s)
- Guilan Li
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, #7 Jinsui Road, Tianhe District, Guangzhou, 510060, China.,Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Sheng Liu
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, #7 Jinsui Road, Tianhe District, Guangzhou, 510060, China.,Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005, China
| | - Wenfei Chen
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, #7 Jinsui Road, Tianhe District, Guangzhou, 510060, China
| | - Zhijian Jiang
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, #7 Jinsui Road, Tianhe District, Guangzhou, 510060, China
| | - Yuanting Luo
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, #7 Jinsui Road, Tianhe District, Guangzhou, 510060, China
| | - Dongliang Wang
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, #7 Jinsui Road, Tianhe District, Guangzhou, 510060, China
| | - Yingfeng Zheng
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, #7 Jinsui Road, Tianhe District, Guangzhou, 510060, China.,Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yizhi Liu
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, #7 Jinsui Road, Tianhe District, Guangzhou, 510060, China.,Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100730, China
| |
Collapse
|
22
|
Brown M, Li J, Moraes C, Tabrizian M, Li-Jessen NY. Decellularized extracellular matrix: New promising and challenging biomaterials for regenerative medicine. Biomaterials 2022; 289:121786. [DOI: 10.1016/j.biomaterials.2022.121786] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022]
|
23
|
Yazdanpanah G, Shen X, Nguyen T, Anwar KN, Jeon O, Jiang Y, Pachenari M, Pan Y, Shokuhfar T, Rosenblatt MI, Alsberg E, Djalilian AR. A Light-Curable and Tunable Extracellular Matrix Hydrogel for In Situ Suture-Free Corneal Repair. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2113383. [PMID: 35692510 PMCID: PMC9187264 DOI: 10.1002/adfm.202113383] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 05/15/2023]
Abstract
Corneal injuries are a major cause of blindness worldwide. To restore corneal integrity and clarity, there is a need for regenerative bio-integrating materials for in-situ repair and replacement of corneal tissue. Here, we introduce Light-curable COrnea Matrix (LC-COMatrix), a tunable material derived from decellularized porcine cornea extracellular matrix containing un-denatured collagen and sulfated glycosaminoglycans. It is a functionalized hydrogel with proper swelling behavior, biodegradation, and viscosity that can be cross-linked in situ with visible light, providing significantly enhanced biomechanical strength, stability, and adhesiveness. Cross-linked LC-COMatrix strongly adheres to human corneas ex vivo and effectively closes full-thickness corneal perforations with tissue loss. Likewise, in vivo, LC-COMatrix seals large corneal perforations, replaces partial-corneal stromal defects and bio-integrates into the tissue in rabbit models. LC-COMatrix is a natural ready-to-apply bio-integrating adhesive that is representative of native corneal matrix with potential applications in corneal and ocular surgeries.
Collapse
Affiliation(s)
- Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago; Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Xiang Shen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Tara Nguyen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Khandaker N Anwar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Oju Jeon
- Department of Biomedical Engineering, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Yizhou Jiang
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago; Chicago, IL, USA
| | - Mohammad Pachenari
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago; Chicago, IL, USA
| | - Yayue Pan
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago; Chicago, IL, USA
| | - Tolou Shokuhfar
- Department of Biomedical Engineering, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Eben Alsberg
- Department of Biomedical Engineering, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago; Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois at Chicago; Chicago, Illinois, USA
| |
Collapse
|
24
|
Sharifi S, Sharifi H, Akbari A, Lei F, Dohlman CH, Gonzalez-Andrades M, Guild C, Paschalis EI, Chodosh J. Critical media attributes in E-beam sterilization of corneal tissue. Acta Biomater 2022; 138:218-227. [PMID: 34755604 PMCID: PMC8738149 DOI: 10.1016/j.actbio.2021.10.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/17/2023]
Abstract
When ionizing irradiation interacts with a media, it can form reactive species that can react with the constituents of the system, leading to eradication of bioburden and sterilization of the tissue. Understanding the media's properties such as polarity is important to control and direct those reactive species to perform desired reactions. Using ethanol as a polarity modifier of water, we herein generated a series of media with varying relative polarities for electron beam (E-beam) irradiation of cornea at 25 kGy and studied how the irradiation media's polarity impacts properties of the cornea. After irradiation of corneal tissues, mechanical (tensile strength and modulus, elongation at break, and compression modulus), chemical, optical, structural, degradation, and biological properties of the corneal tissues were evaluated. Our study showed that irradiation in lower relative polarity media improved structural properties of the tissues yet reduced optical transmission; higher relative polarity reduced structural and optical properties of the cornea; and intermediate relative polarity (ethanol concentrations = 20-30% (v/v)) improved the structural properties, without compromising optical characteristics. Regardless of media polarity, irradiation did not negatively impact the biocompatibility of the corneal tissue. Our data shows that the absorbed ethanol can be flushed from the irradiated cornea to levels that are nontoxic to corneal and retinal cells. These findings suggest that the relative polarity of the irradiation media can be tuned to generate sterilized tissues, including corneal grafts, with engineered properties that are required for specific biomedical applications. STATEMENT OF SIGNIFICANCE: Extending the shelf-life of corneal tissue can improve general accessibility of cornea grafts for transplantation. Irradiation of donor corneas with E-beam is an emerging technology to sterilize the corneal tissues and enable their long-term storage at room temperature. Despite recent applications in clinical medicine, little is known about the effect of irradiation and preservation media's characteristics, such as polarity on the properties of irradiated corneas. Here, we have showed that the polarity of the media can be a valuable tool to change and control the properties of the irradiated tissue for transplantation.
Collapse
Affiliation(s)
- Sina Sharifi
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA,Corresponding authors: James Chodosh, MD MPH, Massachusetts Eye and Ear, Boston, MA, 02114, USA. , Sina Sharifi, PhD, Massachusetts Eye and Ear, Boston, MA, 02114, USA.
| | - Hannah Sharifi
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Ali Akbari
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Fengyang Lei
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Claes H. Dohlman
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Miguel Gonzalez-Andrades
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA,Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Ophthalmology, Reina Sofia University Hospital and University of Cordoba, Cordoba, Spain
| | | | - Eleftherios I. Paschalis
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - James Chodosh
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA,Corresponding authors: James Chodosh, MD MPH, Massachusetts Eye and Ear, Boston, MA, 02114, USA. , Sina Sharifi, PhD, Massachusetts Eye and Ear, Boston, MA, 02114, USA.
| |
Collapse
|
25
|
Elhusseiny AM, Soleimani M, Eleiwa TK, ElSheikh RH, Frank CR, Naderan M, Yazdanpanah G, Rosenblatt MI, Djalilian AR. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:259-268. [PMID: 35303110 PMCID: PMC8968724 DOI: 10.1093/stcltm/szab028] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/06/2021] [Indexed: 11/24/2022] Open
Abstract
The corneal epithelium serves to protect the underlying cornea from the external environment and is essential for corneal transparency and optimal visual function. Regeneration of this epithelium is dependent on a population of stem cells residing in the basal layer of the limbus, the junction between the cornea and the sclera. The limbus provides the limbal epithelial stem cells (LESCs) with an optimal microenvironment, the limbal niche, which strictly regulates their proliferation and differentiation. Disturbances to the LESCs and/or their niche can lead to the pathologic condition known as limbal stem cell deficiency (LSCD) whereby the corneal epithelium is not generated effectively. This has deleterious effects on the corneal and visual function, due to impaired healing and secondary corneal opacification. In this concise review, we summarize the characteristics of LESCs and their niche, and present the current and future perspectives in the management of LSCD with an emphasis on restoring the function of the limbal niche.
Collapse
Affiliation(s)
- Abdelrahman M Elhusseiny
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Ophthalmology, Harvey and Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mohammad Soleimani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Taher K Eleiwa
- Department of Ophthalmology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Reem H ElSheikh
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Charles R Frank
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Morteza Naderan
- Department of Ophthalmology, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Corresponding author: Ali R. Djalilian, Cornea Service, Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Illinois Eye and Ear Infirmary, 1855 W. Taylor Street, M/C 648, Chicago, IL 60612, USA.
| |
Collapse
|
26
|
Fernandes-Cunha GM, Jeong SH, Logan CM, Le P, Mundy D, Chen F, Chen KM, Kim M, Lee GH, Na KS, Hahn SK, Myung D. Supramolecular host-guest hyaluronic acid hydrogels enhance corneal wound healing through dynamic spatiotemporal effects. Ocul Surf 2022; 23:148-161. [PMID: 34537415 PMCID: PMC10867859 DOI: 10.1016/j.jtos.2021.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/23/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022]
Abstract
Severe corneal wounds can lead to ulceration and scarring if not promptly and adequately treated. Hyaluronic acid (HA) has been investigated for the treatment of corneal wounds due to its remarkable biocompatibility, transparency and mucoadhesive properties. However, linear HA has low retention time on the cornea while many chemical moieties used to crosslink HA can cause toxicity, which limits their clinical ocular applications. Here, we used supramolecular non-covalent host-guest interactions between HA-cyclodextrin and HA-adamantane to form shear-thinning HA hydrogels and evaluated their impact on corneal wound healing. Supramolecular HA hydrogels facilitated adhesion and spreading of encapsulated human corneal epithelial cells ex vivo and improved corneal wound healing in vivo as an in situ-formed, acellular therapeutic membrane. The HA hydrogels were absorbed within the corneal stroma over time, modulated mesenchymal cornea stromal cell secretome production, reduced cellularity and inflammation of the anterior stroma, and significantly mitigated corneal edema compared to treatment with linear HA and untreated control eyes. Taken together, our results demonstrate supramolecular HA hydrogels as a promising and versatile biomaterial platform for corneal wound healing.
Collapse
Affiliation(s)
| | - Sang Hoon Jeong
- Department of Materials Science and Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Caitlin M Logan
- Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, United States
| | - Peter Le
- Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, United States; Chemical Engineering, Stanford University, Palo Alto, CA, United States
| | - David Mundy
- Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, United States
| | - Fang Chen
- Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, United States; Chemical Engineering, Stanford University, Palo Alto, CA, United States
| | - Karen M Chen
- Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, United States
| | - Mungu Kim
- Department of Materials Science and Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Geon-Hui Lee
- Department of Materials Science and Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Kyung-Sun Na
- Ophthalmology & Visual Science, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
| | - David Myung
- Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, United States; Chemical Engineering, Stanford University, Palo Alto, CA, United States; VA Palo Alto HealthCare System, Palo Alto, CA, United States.
| |
Collapse
|
27
|
Amin S, Jalilian E, Katz E, Frank C, Yazdanpanah G, Guaiquil VH, Rosenblatt MI, Djalilian AR. The Limbal Niche and Regenerative Strategies. Vision (Basel) 2021; 5:vision5040043. [PMID: 34698278 PMCID: PMC8544688 DOI: 10.3390/vision5040043] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/27/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022] Open
Abstract
The protective function and transparency provided by the corneal epithelium are dependent on and maintained by the regenerative capacity of limbal epithelial stem cells (LESCs). These LESCs are supported by the limbal niche, a specialized microenvironment consisting of cellular and non-cellular components. Disruption of the limbal niche, primarily from injuries or inflammatory processes, can negatively impact the regenerative ability of LESCs. Limbal stem cell deficiency (LSCD) directly hampers the regenerative ability of the corneal epithelium and allows the conjunctival epithelium to invade the cornea, which results in severe visual impairment. Treatment involves restoring the LESC population and functionality; however, few clinically practiced therapies currently exist. This review outlines the current understanding of the limbal niche, its pathology and the emerging approaches targeted at restoring the limbal niche. Most emerging approaches are in developmental phases but show promise for treating LSCD and accelerating corneal regeneration. Specifically, we examine cell-based therapies, bio-active extracellular matrices and soluble factor therapies in considerable depth.
Collapse
Affiliation(s)
- Sohil Amin
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Elmira Jalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Eitan Katz
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Charlie Frank
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
- Richard and Loan Hill Department of Bioengineering, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Victor H. Guaiquil
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Mark I. Rosenblatt
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
- Correspondence:
| |
Collapse
|
28
|
Yazdanpanah G, Jiang Y, Rabiee B, Omidi M, Rosenblatt MI, Shokuhfar T, Pan Y, Naba A, Djalilian AR. Fabrication, Rheological, and Compositional Characterization of Thermoresponsive Hydrogel from Cornea. Tissue Eng Part C Methods 2021; 27:307-321. [PMID: 33813860 DOI: 10.1089/ten.tec.2021.0011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Fabricating thermoresponsive hydrogels from decellularized tissues is a trending and promising approach to develop novel biomaterials for tissue engineering and therapeutic purposes. There are differences in the characteristics of the produced hydrogels related to the source tissue as well as the decellularization and solubilization protocols used. Detailed characterization of the hydrogels will support the efforts to optimize their application as biomaterials for tissue engineering and therapeutics. Here, we describe an optimized method for fabricating an in situ thermoresponsive hydrogel from decellularized porcine cornea extracellular matrix (COMatrix), and provide a detailed characterization of its structure, thermoresponsive rheological behavior (heat-induced sol-gel transition), as well as exploring its protein composition using proteomics. COMatrix forms a transparent gel (10-min time to gelation) after in situ curing with heat, characterized by alteration in light absorbance and rheological indexes. The rheological characterization of heat-formed COMatrix gel shows similar behavior to common biomaterials utilized in tissue engineering. The fibrillar structure of COMatrix gel was observed by scanning electron microscopy showing that the density of fibers attenuates in lower concentrations. Mass spectrometry-based proteomic analysis revealed that COMatrix hydrogel is rich in proteins with known regenerative properties such as lumican, keratocan, and laminins in addition to structural collagen proteins (Data is available via ProteomeXchange with identifier PXD020606). COMatrix hydrogel is a naturally driven biomaterial with favorable biomechanical properties and protein content with potential application as a therapeutic biomaterial in ocular regeneration and tissue engineering. Impact statement Fabrication and application of decellularized porcine corneal extracellular matrix is an emerging approach for corneal tissue engineering and regeneration. There are several protocols for decellularization of porcine cornea with various efficiencies. Here, we are presenting an optimized protocol for decellularization of porcine cornea followed by fabrication of a thermoresponsive hydrogel from the decellularized cornea matrix. Moreover, the fabricated hydrogel was rheologically and compositionally characterized as crucial features to be employed for further application of this hydrogel in corneal tissue engineering and regeneration.
Collapse
Affiliation(s)
- Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Yizhou Jiang
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Behnam Rabiee
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Meisam Omidi
- School of Dentistry, Marquette University, Milwaukee, Wisconsin, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Tolou Shokuhfar
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Yayue Pan
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|