1
|
Sato S, Teramura Y, Ogawa Y, Shimizu E, Otake M, Hori K, Kamata T, Shu Y, Seta Y, Kuramochi A, Asai K, Shimizu S, Negishi K, Hirayama M. Conditioned media of stem cells from human exfoliated deciduous teeth contain factors related to extracellular matrix organization and promotes corneal epithelial wound healing. Regen Ther 2025; 29:148-161. [PMID: 40170802 PMCID: PMC11960544 DOI: 10.1016/j.reth.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/27/2025] [Accepted: 03/09/2025] [Indexed: 04/03/2025] Open
Abstract
This study aimed to investigate the therapeutic potential of cell-free conditioned media (CM) from human mesenchymal stem cells (hMSCs), specifically stem cells from human exfoliated deciduous teeth (SHED), for treating ocular surface diseases. The proteomes of various hMSC-CMs were compared using cytokine array and liquid chromatography-mass spectrometry (LC-MS). Bioinformatic analysis identified key biological pathways associated with SHED-CM, immortalized SHED-CM (IM-SHED-CM), and a fractionated component of IM-SHED-CM in which low weight molecules (less than 3.5kD) were depleted. Corneal epithelial wound healing models were constructed by epithelial scraping and treated with eye drops derived from SHED-CM. For the migration assay, the human corneal epithelial cells were wounded and then incubated with SHED-CM. SHED-CM, IM-SHED-CM, and >3.5 kD fractionated component eyedrops were administered to a chronic graft-versus-host disease (cGVHD) mouse model with sever corneal epithelial damages. SHED-CM, IM-SHED-CM, and >3.5 kD fractionated component of IM-SHED-CM were enriched in factors involved in epithelial wound healing, particularly extracellular matrix (ECM) organization. Both in vitro and in vivo assays demonstrated that SHED-CM significantly enhanced corneal epithelial wound healing. Furthermore, SHED-CM-derived eye drops reduced corneal epithelial damage, inflammatory cell infiltration, and oxidative stress in the corneal epithelium and maintained the expression of limbal stem cell markers in the cGVHD mouse model. These findings suggest that SHED-CM eye drops could be a novel treatment for corneal epithelial damage, highlighting the role of bioactive factors in promoting wound healing and offering an alternative to cell-based MSC therapies for corneal wound healing.
Collapse
Affiliation(s)
- Shinri Sato
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuji Teramura
- Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
- Master's/Doctoral Program in Life Science Innovation (T-LSI), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Eisuke Shimizu
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masato Otake
- U-Factor Co., Ltd., 1F ESCALIER Rokubancho, 7-11 Rokubancho, Chiyoda-ku, Tokyo 102-0085, Japan
| | - Keigo Hori
- U-Factor Co., Ltd., 1F ESCALIER Rokubancho, 7-11 Rokubancho, Chiyoda-ku, Tokyo 102-0085, Japan
| | - Takamitsu Kamata
- U-Factor Co., Ltd., 1F ESCALIER Rokubancho, 7-11 Rokubancho, Chiyoda-ku, Tokyo 102-0085, Japan
| | - Yujing Shu
- U-Factor Co., Ltd., 1F ESCALIER Rokubancho, 7-11 Rokubancho, Chiyoda-ku, Tokyo 102-0085, Japan
| | - Yasuhiro Seta
- Hitonowa Medical, K. PLAZA 2F, 1-7 Rokubancho, Chiyoda-ku, Tokyo 102-0085, Japan
| | - Akiko Kuramochi
- Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kazuki Asai
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shota Shimizu
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masatoshi Hirayama
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
2
|
Tu GC, Abedi F, Chang AY, Shen X, Soleimani M, Araujo I, Jung R, Kwon J, Anwar KN, Arabpour Z, Mahmud N, Tu EY, Dana R, Hematti P, Joslin CE, Djalilian AR. Safety of subconjunctival injection of mesenchymal stromal cells in persistent corneal epithelial disease - A phase 1b clinical trial. Ocul Surf 2025; 38:8-13. [PMID: 40414287 DOI: 10.1016/j.jtos.2025.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/19/2025] [Accepted: 05/20/2025] [Indexed: 05/27/2025]
Abstract
PURPOSE To investigate the safety and tolerability of subconjunctival injection of three escalating doses of allogeneic bone marrow-derived mesenchymal stromal cells (MSCs) in patients with persistent corneal epithelial defect/disease (PCED). DESIGN Prospective single-center open label phase 1b clinical trial. PARTICIPANTS Patients with PCED in the setting of neurotrophic keratitis and/or limbal stem cell deficiency. METHODS A dose escalation study design was used. The first three patients received a subconjunctival injection of 1 × 106 MSCs/50 μL suspension; subsequently, three participants were treated with 1 subconjunctival injection of 3 × 106 MSCs/150 μL; and two participants received 2 subconjunctival injections of 3 × 106 MSCs/150 μl in 2 conjunctival sites. MAIN OUTCOME MEASURES The primary outcome was the safety of the treatment determined on day 28 post-injection. Ocular surface toxicity and other ocular or systemic treatment emergent adverse events (TEAEs) were assessed at 1, 7, 14, 28 and 90 days. Demonstration of safety on day 28 was required before escalating to the next higher dose. Changes in the PCED were also monitored. RESULTS Eight participants completed the 90-day study. All 3 doses of subconjunctival MSCs were well tolerated. No participant developed ocular surface toxicity or other ocular or systemic TEAEs. The size of the PCED improved in 5 (63 %) patients; it increased in 2 (25 %) patients; and no progressive improvement was observed with dose escalation. CONCLUSION Subconjunctival administration of MSCs was safe and well tolerated with no systemic or ocular toxicity in patients with PCED. Improvement in epithelial defect size was observed in 63 % of the participants.
Collapse
Affiliation(s)
- Grace C Tu
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Farshad Abedi
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Arthur Y Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiang Shen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Mohammad Soleimani
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Iskra Araujo
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Rebecca Jung
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Jeonghyun Kwon
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Khandeker N Anwar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Zohreh Arabpour
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Nadim Mahmud
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Elmer Y Tu
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Reza Dana
- Massachusetts Eye and Ear, Harvard Medical School Department of Ophthalmology, Boston, MA, USA
| | - Peiman Hematti
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Charlotte E Joslin
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA; Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Jiang D, Yu J, Wu X, Yu X, Jin P, Zheng H, Liu H, Xu W, Lian Q, Chen W. Isolated Mitochondrial Transplantation as a Novel Treatment for Corneal Chemical Burns. Invest Ophthalmol Vis Sci 2025; 66:14. [PMID: 40048188 PMCID: PMC11895849 DOI: 10.1167/iovs.66.3.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/23/2025] [Indexed: 03/14/2025] Open
Abstract
Purpose This study aimed to investigate the therapeutic potential of isolated mitochondrial transplantation for the restoration of corneal surface injury in mice after corneal chemical burn. Methods Mitochondria were isolated from mesenchymal stem cells via ultracentrifugation, followed by an assessment of their purity and viability. The internalization of mitochondria by human corneal epithelial cells was tracked using a live fluorescence imaging system. Apoptosis-related markers and mitochondrial function were measured by Western blotting and flow cytometry, respectively. Mitochondrial morphology was examined using confocal laser scanning microscopy. The therapeutic effects of subconjunctival administration of isolated mitochondria in vivo were evaluated by fluorescein sodium staining and histopathological examination of the corneas. Results Our study demonstrates that corneal epithelial cells possess the capacity to internalize isolated exogenous mitochondria in vitro. Under oxidative stress conditions, recipient cells exhibited an enhanced uptake of exogenous mitochondria. We observed a decrease in apoptosis and a reduction in oxidative stress levels within the recipient cells, as well as a partial restoration of mitochondrial function. Notably, after a single subconjunctival injection, corneal epithelial cells were able to use isolated mitochondria to enhance the repair process in a mouse model of corneal acid burn. Conclusions Subconjunctival injection of isolated mitochondria promoted the repair of acute corneal burns in mice. The results of our investigation using injection of isolated mitochondria as a treatment modality for corneal chemical burn offers a novel approach to the treatment of ocular disorders associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Dan Jiang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jinjie Yu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaoqing Wu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xintong Yu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Pinyan Jin
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Huikang Zheng
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Huiru Liu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wei Xu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qizhou Lian
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Center for Translational Stem Cell Biology, Hong Kong, China; HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Department of Surgery, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
- Cord Blood Bank Centre, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Jammes M, Tabasi A, Bach T, Ritter T. Healing the cornea: Exploring the therapeutic solutions offered by MSCs and MSC-derived EVs. Prog Retin Eye Res 2025; 105:101325. [PMID: 39709150 DOI: 10.1016/j.preteyeres.2024.101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Affecting a large proportion of the population worldwide, corneal disorders constitute a concerning health hazard associated to compromised eyesight or blindness for most severe cases. In the last decades, mesenchymal stem/stromal cells (MSCs) demonstrated promising abilities in improving symptoms associated to corneal diseases or alleviating these affections, especially through their anti-inflammatory, immunomodulatory and pro-regenerative properties. More recently, MSC therapeutic potential was shown to be mediated by the molecules they release, and particularly by their extracellular vesicles (EVs; MSC-EVs). Consequently, using MSC-EVs emerged as a pioneering strategy to mitigate the risks related to cell therapy while providing MSC therapeutic benefits. Despite the promises given by MSC- and MSC-EV-based approaches, many improvements are considered to optimize the therapeutic significance of these therapies. This review aspires to provide a comprehensive and detailed overview of current knowledge on corneal therapies involving MSCs and MSC-EVs, the strategies currently under evaluation, and the gaps remaining to be addressed for clinical implementation. From encapsulating MSCs or their EVs into biomaterials to enhance the ocular retention time to loading MSC-EVs with therapeutic drugs, a wide range of ground-breaking strategies are currently contemplated to lead to the safest and most effective treatments. Promising research initiatives also include diverse gene therapies and the targeting of specific cell types through the modification of the EV surface, paving the way for future therapeutic innovations. As one of the most important challenges, MSC-EV large-scale production strategies are extensively investigated and offer a wide array of possibilities to meet the needs of clinical applications.
Collapse
Affiliation(s)
- Manon Jammes
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Abbas Tabasi
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Trung Bach
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
5
|
Lin H, Guo B, Li Z, Wang C, Wu W, Lu Z, Wang L, Wu J, Li J, Hao J, Feng Y. Human embryonic stem cell-derived immunity-and-matrix-regulatory cells on collagen scaffold effectively treat rat corneal alkali burn. Exp Eye Res 2025; 251:110164. [PMID: 39571781 DOI: 10.1016/j.exer.2024.110164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024]
Abstract
Corneal alkali burns (CAB) are a severe form of ocular injury that often leads to significant vision loss, with limited effective treatment options available beyond corneal transplantation. Immunity and matrix-regulatory cells (IMRCs) have emerged as a promising alternative due to their ability to modulate immune responses and support tissue repair. This study investigates the efficacy of IMRCs on collagen scaffolds (IMRCs-col) for treating CAB in a rat model. We developed a novel treatment combining IMRCs with a collagen scaffold to align with the ocular surface structure. In vitro analyses showed that IMRCs-col significantly upregulated the expression of immune regulatory molecules, including IL-1RA and SCF. Additionally, IMRCs-col effectively inhibited the production of pro-inflammatory cytokines (IL-8 and Gro-a/CXCL1) while promoting pro-regenerative cytokines (bFGF, HGF, and PDGF). In an animal model of CAB, IMRCs-col transplantation demonstrated substantial efficacy in restoring corneal opacity and reducing neovascularization. Histological examination revealed reduced inflammation and improved corneal tissue regeneration compared to untreated CAB. Enhanced activation of pathways associated with anti-inflammatory responses and tissue repair was observed at days 3, 7, and 21 post-treatment.
Collapse
Affiliation(s)
- Haimiao Lin
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Baojie Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhongwen Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Chenxin Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Wenyu Wu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Zhaoxiang Lu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Liu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jun Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jinming Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Jie Hao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Yun Feng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
6
|
Chen X, Zhang C, Peng F, Wu L, Zhuo D, Wang L, Zhang M, Li Z, Tian L, Jie Y, Huang Y, Yang X, Li X, Lei F, Cheng Y. Identification of glutamine as a potential therapeutic target in dry eye disease. Signal Transduct Target Ther 2025; 10:27. [PMID: 39837870 PMCID: PMC11751114 DOI: 10.1038/s41392-024-02119-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 01/30/2025] Open
Abstract
Dry eye disease (DED) is a prevalent inflammatory condition significantly impacting quality of life, yet lacks effective pharmacological therapies. Herein, we proposed a novel approach to modulate the inflammation through metabolic remodeling, thus promoting dry eye recovery. Our study demonstrated that co-treatment with mesenchymal stem cells (MSCs) and thymosin beta-4 (Tβ4) yielded the best therapeutic outcome against dry eye, surpassing monotherapy outcomes. In situ metabolomics through matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) revealed increased glutamine levels in cornea following MSC + Tβ4 combined therapy. Inhibition of glutamine reversed the anti-inflammatory, anti-apoptotic, and homeostasis-preserving effects observed with combined therapy, highlighting the critical role of glutamine in dry eye therapy. Clinical cases and rodent model showed elevated expression of glutaminase (GLS1), an upstream enzyme in glutamine metabolism, following dry eye injury. Mechanistic studies indicated that overexpression and inhibition of GLS1 counteracted and enhanced, respectively, the anti-inflammatory effects of combined therapy, underscoring GLS1's pivotal role in regulating glutamine metabolism. Furthermore, single-cell sequencing revealed a distinct subset of pro-inflammatory and pro-fibrotic corneal epithelial cells in the dry eye model, while glutamine treatment downregulated those subclusters, thereby reducing their inflammatory cytokine secretion. In summary, glutamine effectively ameliorated inflammation and the occurrence of apoptosis by downregulating the pro-inflammatory and pro-fibrotic corneal epithelial cells subclusters and the related IκBα/NF-κB signaling. The present study suggests that glutamine metabolism plays a critical, previously unrecognized role in DED and proposes an attractive strategy to enhance glutamine metabolism by inhibiting the enzyme GLS1 and thus alleviating inflammation-driven DED progression.
Collapse
Affiliation(s)
- Xiaoniao Chen
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China.
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China.
| | - Chuyue Zhang
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China
| | - Fei Peng
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China
| | - Lingling Wu
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China
| | - Deyi Zhuo
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Liqiang Wang
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China
| | - Min Zhang
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China
| | - Zhaohui Li
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lei Tian
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ying Jie
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yifei Huang
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xinji Yang
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoqi Li
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fengyang Lei
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yu Cheng
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
De Miguel MP, Cadenas-Martin M, Stokking M, Martin-Gonzalez AI. Biomedical Application of MSCs in Corneal Regeneration and Repair. Int J Mol Sci 2025; 26:695. [PMID: 39859409 PMCID: PMC11766311 DOI: 10.3390/ijms26020695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The World Health Organization estimates that approximately 285 million people suffer from visual impairments, around 5% of which are caused by corneal pathologies. Currently, the most common clinical treatment consists of a corneal transplant (keratoplasty) from a human donor. However, worldwide demand for donor corneas amply exceeds the available supply. Lamellar keratoplasty (transplantation replacement of only one of the three layers of the cornea) is partially solving the problem of cornea undersupply. Obviously, cell therapy applied to every one of these layers will expand current therapeutic options, reducing the cost of ophthalmological interventions and increasing the effectiveness of surgery. Mesenchymal stem cells (MSCs) are adult stem cells with the capacity for self-renewal and differentiation into different cell lineages. They can be obtained from many human tissues, such as bone marrow, umbilical cord, adipose tissue, dental pulp, skin, and cornea. Their ease of collection and advantages over embryonic stem cells or induced pluripotent stem cells make them a very practical source for experimental and potential clinical applications. In this review, we focus on recent advances using MSCs from different sources to replace the damaged cells of the three corneal layers, at both the preclinical and clinical levels for specific corneal diseases.
Collapse
Affiliation(s)
- Maria P. De Miguel
- Cell Engineering Laboratory, La Paz University Hospital Health Research Institute, IdiPAZ, 28046 Madrid, Spain; (M.C.-M.); (M.S.); (A.I.M.-G.)
| | | | | | | |
Collapse
|
8
|
Lee DH, Han JW, Park H, Hong SJ, Kim CS, Kim YS, Lee IS, Kim GJ. Achyranthis radix Extract Enhances Antioxidant Effect of Placenta-Derived Mesenchymal Stem Cell on Injured Human Ocular Cells. Cells 2024; 13:1229. [PMID: 39056810 PMCID: PMC11274440 DOI: 10.3390/cells13141229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Age-related ocular diseases such as age-related macular degeneration, glaucoma, and diabetic retinopathy are major causes of irreversible vision impairment in the elderly. Conventional treatments focus on symptom relief and disease slowdown, often involving surgery, but fall short of providing a cure, leading to substantial vision loss. Regenerative medicine, particularly mesenchymal stem cells (MSCs), holds promise for ocular disease treatment. This study investigates the synergistic potential of combining placenta-derived MSCs (PD-MSCs) with Achyranthis radix extract (ARE) from Achyranthes japonica to enhance therapeutic outcomes. In a 24-h treatment, ARE significantly increased the proliferative capacity of PD-MSCs and delayed their senescence (* p < 0.05). ARE also enhanced antioxidant capabilities and increased the expression of regeneration-associated genes in an in vitro injured model using chemical damages on human retinal pigment epithelial cell line (ARPE-19) (* p < 0.05). These results suggest that ARE-primed PD-MSC have the capability to enhance the activation of genes associated with regeneration in the injured eye via increasing antioxidant properties. Taken together, these findings support the conclusion that ARE-primed PD-MSC may serve as an enhanced source for stem cell-based therapy in ocular diseases.
Collapse
Affiliation(s)
- Dae-Hyun Lee
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (D.-H.L.); (H.P.); (S.J.H.)
| | - Ji Woong Han
- Advanced PLAB, PLABiologics Co., Ltd., Seongnam 13522, Republic of Korea;
| | - Hyeri Park
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (D.-H.L.); (H.P.); (S.J.H.)
| | - Se Jin Hong
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (D.-H.L.); (H.P.); (S.J.H.)
| | - Chan-Sik Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (C.-S.K.); (Y.S.K.)
| | - Young Sook Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (C.-S.K.); (Y.S.K.)
| | - Ik Soo Lee
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (C.-S.K.); (Y.S.K.)
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (D.-H.L.); (H.P.); (S.J.H.)
| |
Collapse
|
9
|
Xie ZJ, Yuan BW, Chi MM, Hong J. Focus on seed cells: stem cells in 3D bioprinting of corneal grafts. Front Bioeng Biotechnol 2024; 12:1423864. [PMID: 39050685 PMCID: PMC11267584 DOI: 10.3389/fbioe.2024.1423864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Corneal opacity is one of the leading causes of severe vision impairment. Corneal transplantation is the dominant therapy for irreversible corneal blindness. However, there is a worldwide shortage of donor grafts and consequently an urgent demand for alternatives. Three-dimensional (3D) bioprinting is an innovative additive manufacturing technology for high-resolution distribution of bioink to construct human tissues. The technology has shown great promise in the field of bone, cartilage and skin tissue construction. 3D bioprinting allows precise structural construction and functional cell printing, which makes it possible to print personalized full-thickness or lamellar corneal layers. Seed cells play an important role in producing corneal biological functions. And stem cells are potential seed cells for corneal tissue construction. In this review, the basic anatomy and physiology of the natural human cornea and the grafts for keratoplasties are introduced. Then, the applications of 3D bioprinting techniques and bioinks for corneal tissue construction and their interaction with seed cells are reviewed, and both the application and promising future of stem cells in corneal tissue engineering is discussed. Finally, the development trends requirements and challenges of using stem cells as seed cells in corneal graft construction are summarized, and future development directions are suggested.
Collapse
Affiliation(s)
- Zi-jun Xie
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Bo-wei Yuan
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Miao-miao Chi
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Jing Hong
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| |
Collapse
|
10
|
Surico PL, Scarabosio A, Miotti G, Grando M, Salati C, Parodi PC, Spadea L, Zeppieri M. Unlocking the versatile potential: Adipose-derived mesenchymal stem cells in ocular surface reconstruction and oculoplastics. World J Stem Cells 2024; 16:89-101. [PMID: 38455097 PMCID: PMC10915950 DOI: 10.4252/wjsc.v16.i2.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/06/2024] [Accepted: 01/29/2024] [Indexed: 02/26/2024] Open
Abstract
This review comprehensively explores the versatile potential of mesenchymal stem cells (MSCs) with a specific focus on adipose-derived MSCs. Ophthalmic and oculoplastic surgery, encompassing diverse procedures for ocular and periocular enhancement, demands advanced solutions for tissue restoration, functional and aesthetic refinement, and aging. Investigating immunomodulatory, regenerative, and healing capacities of MSCs, this review underscores the potential use of adipose-derived MSCs as a cost-effective alternative from bench to bedside, addressing common unmet needs in the field of reconstructive and regenerative surgery.
Collapse
Affiliation(s)
- Pier Luigi Surico
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, United States
- Department of Ophthalmology, Campus Bio-Medico University, Rome 00128, Italy
| | - Anna Scarabosio
- Department of Plastic Surgery, University Hospital of Udine, Udine 33100, Italy
| | - Giovanni Miotti
- Department of Plastic Surgery, University Hospital of Udine, Udine 33100, Italy
| | - Martina Grando
- Department of Internal Medicine, Azienda Sanitaria Friuli Occidentale, San Vito al Tagliamento 33078, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Pier Camillo Parodi
- Department of Plastic Surgery, University Hospital of Udine, Udine 33100, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00142, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy.
| |
Collapse
|
11
|
Wu D, Tao S, Zhu L, Zhao C, Xu N. Chitosan Hydrogel Dressing Loaded with Adipose Mesenchymal Stem Cell-Derived Exosomes Promotes Skin Full-Thickness Wound Repair. ACS APPLIED BIO MATERIALS 2024; 7:1125-1134. [PMID: 38319146 DOI: 10.1021/acsabm.3c01039] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cutaneous trauma repair is still a challenge in the clinic due to the scar formation and slow healing rate, especially for diabetic patients. Various drug-loading wound dressings have been explored to solve this problem. Mesenchymal stem cell (MSC)-derived exosomes have been considered as a potential cell-free drug because of their anti-inflammation function and tissue repair property that are comparable to that of MSCs. Herein, a composite wound dressing (Exo/Gel) consisting of the chitosan hydrogel and adipose MSC-derived exosome (ADMSC-Exo) was designed and fabricated by a physical mixing method to promote the skin full-thickness wound repair. The exosomes were slowly released from the Exo/Gel dressing with the degradation of the chitosan hydrogel. The Exo/Gel displayed enhanced cell migration and angiogenic properties in vitro. And the results in the rat skin wound model showed that the Exo/Gel could promote the regular collagen deposition, angiogenesis, and hair follicle mosaicism regeneration. These results proved that the hydrogel dressing with ADMSCs-derived exosomes can accelerate skin wound healing, which is a strategy for developing wound dressings.
Collapse
Affiliation(s)
- Dingwei Wu
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Suwan Tao
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Lian Zhu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chenchen Zhao
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
- School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou 121000, China
| | - Na Xu
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
12
|
El Zarif M, Abdul Jawad K, Alió JL, Makdissy N, De Miguel MP. In vivo confocal microscopy evaluation of infiltrated immune cells in corneal stroma treated with cell therapy in advanced keratoconus. J Ophthalmic Inflamm Infect 2024; 14:5. [PMID: 38277094 PMCID: PMC10817874 DOI: 10.1186/s12348-024-00385-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/06/2024] [Indexed: 01/27/2024] Open
Abstract
PURPOSE This study investigates immune cell (ICs) infiltration in advanced keratoconus patients undergoing autologous adipose-derived adult stem cell (ADASC) therapy with recellularized human donor corneal laminas (CL). METHODS A prospective clinical trial included fourteen patients divided into three groups: G-1, ADASCs; G-2, decellularized CL (dCL); and G-3, dCL recellularized with ADASCs (ADASCs-rCL). Infiltrated ICs were assessed using in vivo confocal microscopy (IVCM) at 1,3,6, and12 months post-transplant. RESULTS Infiltrated ICs, encompassing granulocytes and agranulocytes, were observed across all groups, categorized by luminosity, structure, and area. Stromal ICs infiltration ranged from 1.19% to 6.62%, with a consistent increase in group-related cell density (F = 10.68, P < .0001), independent of post-op time (F = 0.77, P = 0.511); the most substantial variations were observed in G-3 at 6 and 12 months (2.0 and 1.87-fold, respectively). Similarly, significant size increases were more group-dependent (F = 5.76, P < .005) rather than time-dependent (F = 2.84, P < .05); G-3 exhibited significant increases at 6 and 12 months (3.70-fold and 2.52-fold, respectively). A lamina-induced shift in IC size occurred (F = 110.23, P < .0001), primarily with 50-100 μm2 sizes and up to larger cells > 300μm2, presumably macrophages, notably in G-3, indicating a potential role in tissue repair and remodeling, explaining reductions in cells remnants < 50μm2. CONCLUSIONS ADASCs-rCL therapy may lead to increased IC infiltration compared to ADASCs alone, impacting cell distribution and size due to the presence of the lamina. The findings reveal intricate immune patterns shaped by the corneal microenvironment and highlight the importance of understanding immune responses for the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Mona El Zarif
- Optica General, Saida, Lebanon
- Division of Ophthalmology, Universidad Miguel Hernández, Alicante, Spain
- Doctoral School of Sciences and Technology, Lebanese University, Hadath, Lebanon
| | | | - Jorge L Alió
- Division of Ophthalmology, Universidad Miguel Hernández, Alicante, Spain
- Cornea, Cataract and Refractive Surgery Unit, Vissum (Miranza Group), Alicante, Spain
| | - Nehman Makdissy
- Genomic Surveillance and Biotherapy GSBT, Faculty of Sciences, Lebanese University, RasMaska, Lebanon.
| | - María P De Miguel
- Cell Engineering Laboratory, IdiPAZ, La Paz Hospital Health Research Institute, Madrid, Spain.
| |
Collapse
|
13
|
Verma S, Ogata FT, Moreno IY, Prinholato da Silva C, Marforio TD, Calvaresi M, Sen M, Coulson-Thomas VJ, Gesteira TF. Rational design and synthesis of lumican stapled peptides for promoting corneal wound healing. Ocul Surf 2023; 30:168-178. [PMID: 37742739 PMCID: PMC11092926 DOI: 10.1016/j.jtos.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
PURPOSE Lumican is a major extracellular matrix (ECM) component in the cornea that is upregulated after injury and promotes corneal wound healing. We have recently shown that peptides designed based on the 13 C-terminal amino acids of lumican (LumC13 and LumC13C-A) are able to recapitulate the effects of lumican on promoting corneal wound healing. Herein we used computational chemistry to develop peptide mimetics derived from LumC13C-A with increased stability and half-life that are biologically active and non-toxic, thereby promoting corneal wound healing with increased pharmacological potential. METHODS Different peptides staples were rationalized using LumC13C-A sequence by computational chemistry, docked to TGFβRI and the interface binding energies compared. Lowest scoring peptides were synthesized, and the toxicity of peptides tested using CCK8-based cell viability assay. The efficacy of the stapled peptides at promoting corneal wound healing was tested using a proliferation assay, an in vitro scratch assay using human corneal epithelial cells and an in vivo murine corneal debridement wound healing model. RESULTS Binding free energies were calculated using MMGBSA algorithm, and peptides LumC13C and LumC13S5 displayed superior binding to ALK5 compared to the non-stapled peptide LumC13C-A. The presence of the hydrocarbon staple in LumC13C enhances the stability of the α-helical conformation, thereby facilitating more optimal interactions with the ALK5 receptor. The stapled peptides do not present cytotoxic effects on human corneal epithelial cells at a 300 nM concentration. Similar to lumican and LumC13C-A, both C13C and LumC13S5 significantly promote corneal wound healing both in vitro and in vivo. CONCLUSIONS Highly stable and non-toxic stapled peptides designed based on LumC13, significantly promote corneal wound healing. As a proof of principle, our data shows that more stable and pharmacologically relevant peptides can be designed based on endogenous peptide sequences for treating various corneal pathologies.
Collapse
Affiliation(s)
- Sudhir Verma
- College of Optometry, University of Houston, Houston, TX, USA; Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, New Delhi, India
| | | | - Isabel Y Moreno
- College of Optometry, University of Houston, Houston, TX, USA
| | | | - Tainah Dorina Marforio
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Italy
| | - Matteo Calvaresi
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Italy
| | - Mehmet Sen
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | | | | |
Collapse
|