1
|
Sabira O, Ajaykumar AP, Varma SR, Jayaraj KN, Kotakonda M, Kumar P, Vaikkathillam P, Sivadasan Binitha V, Alen AP, Raghu AV, Zeena KV. Nepenthes pitcher fluid for the green synthesis of silver nanoparticles with biofilm inhibition, anticancer and antioxidant properties. Sci Rep 2025; 15:5349. [PMID: 39948126 PMCID: PMC11825719 DOI: 10.1038/s41598-025-89212-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
This is the first report of silver nanoparticles (AgNPs) synthesis utilizing the pitcher secretion from an insectivorous plant, specifically Nepenthes ventrata, through a microwave assisted green synthesis approach. The successful formation of AgNPs was validated through a comprehensive set of analyses, including UV-Vis spectroscopy, Fourier-transform infrared spectroscopy, transmission electron microscopy, DLS analysis and Zeta potential measurements. In addition gas chromatography-high-resolution mass spectrometry and liquid chromatography-high-resolution mass spectrometry analyses were conducted to examine the components present in the pitcher secretion. These analyses aimed to identify the capping and stabilizing agents in the secretion that facilitate the synthesis and stability of AgNPs. The synthesized AgNPs significantly inhibited biofilm formation by Pseudomonas aeruginosa PAO1, as demonstrated by Crystal Violet staining and fluorescence microscopy. Additionally, these AgNPs showed promising antioxidant properties through a DPPH radical scavenging assay. Furthermore, the anticancer properties of the AgNPs were analyzed using an MTT assay, which measures cell metabolic activity as an indicator of cell viability, proliferation, and cytotoxicity. Collectively, these findings suggest that the biosynthesized AgNPs possess multifaceted biological applications, showcasing their utility as both antimicrobial and antioxidative agents, and highlighting their potential in medical and environmental applications.
Collapse
Affiliation(s)
- Ovungal Sabira
- Division of Biomaterial Sciences, Department of Zoology, Sree Neelakanta Government Sanskrit College, Pattambi, Palakkad, Kerala, India
| | - Anthyalam Parambil Ajaykumar
- Division of Biomaterial Sciences, Department of Zoology, Sree Neelakanta Government Sanskrit College, Pattambi, Palakkad, Kerala, India.
| | - Sudhir Rama Varma
- Clinical Sciences Department, Centre for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Kodangattil Narayanan Jayaraj
- Basic Medical and Dental Sciences Department, Centre for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| | | | - Praveen Kumar
- Department of Zoology, Government College for Women, Thiruvananthapuram, Kerala, India
| | | | | | - Alex Philip Alen
- Department of Botany, Government Victoria College, Palakkad, Kerala, India
| | - A V Raghu
- Kerala Forest Research Institute, Peechi, Thrissur, Kerala, 680653, India
| | - Koladath Vasu Zeena
- Division of Biomaterial Sciences, Department of Zoology, Sree Neelakanta Government Sanskrit College, Pattambi, Palakkad, Kerala, India
| |
Collapse
|
2
|
Sabira O, Drisya N, Ajaykumar AP, Mathew A, Narayanan Jayaraj K, Binitha VS, Zeena KV, Roy KB, Janish PA, Sheena P, Viswanathan KP. From Ficus recemosa Leaf Galls to Therapeutic Silver Nanoparticles: Antibacterial and Anticancer Applications. Pharmaceutics 2024; 16:1025. [PMID: 39204370 PMCID: PMC11359757 DOI: 10.3390/pharmaceutics16081025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The synthesis of silver nanoparticles (AgNPs) using environmentally friendly methods has become increasingly important due to its sustainability and cost-effectiveness. This study investigates the green synthesis of AgNPs using gall extracts from the plant Ficus recemosa, known for its high phytochemical content. The formation of AgNPs was verified through multiple analytical techniques, including UV-Vis spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), zeta potential analysis, and dynamic light scattering (DLS). The UV-Vis spectroscopy results displayed a distinct surface plasmon resonance peak indicative of AgNP formation. FTIR analysis revealed specific interactions between silver ions and phytochemicals in the gall extract, while TEM images confirmed the nanoscale morphology and size of the synthesized particles. Zeta potential and DLS analyses provided insights into the stability and size distribution of the AgNPs, demonstrating good colloidal stability. Biological properties of the AgNPs were assessed through various assays. Antimicrobial activity was tested using the disc diffusion method against Escherichia coli and Staphylococcus aureus, showing significant inhibitory effects. The anticancer potential was evaluated using the trypan blue exclusion assay on Dalton's Lymphoma Ascites (DLA) cells, revealing considerable cytotoxicity. Additionally, antimitotic activity was studied in the dividing root cells of Allium cepa, where the AgNPs significantly inhibited cell division. This research highlights the effective use of F. recemosa gall extracts for the green synthesis of AgNPs, presenting an eco-friendly approach to producing nanoparticles with strong antimicrobial, anticancer, and antimitotic properties. The promising results suggest potential applications of these biogenic AgNPs in medical and agricultural sectors, paving the way for further exploration and utilization.
Collapse
Affiliation(s)
- Ovungal Sabira
- Division of Biomaterial Sciences, Department of Zoology, Sree Neelakanta Government Sanskrit College, Pattambi 679303, Kerala, India; (O.S.); (N.D.); (K.V.Z.); (P.A.J.)
| | - Nedumbayil Drisya
- Division of Biomaterial Sciences, Department of Zoology, Sree Neelakanta Government Sanskrit College, Pattambi 679303, Kerala, India; (O.S.); (N.D.); (K.V.Z.); (P.A.J.)
| | - Anthyalam Parambil Ajaykumar
- Division of Biomaterial Sciences, Department of Zoology, Sree Neelakanta Government Sanskrit College, Pattambi 679303, Kerala, India; (O.S.); (N.D.); (K.V.Z.); (P.A.J.)
| | - Asok Mathew
- Clinical Sciences Department, Centre for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
| | - Kodangattil Narayanan Jayaraj
- Basic Sciences Department, Centre for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | | | - Koladath Vasu Zeena
- Division of Biomaterial Sciences, Department of Zoology, Sree Neelakanta Government Sanskrit College, Pattambi 679303, Kerala, India; (O.S.); (N.D.); (K.V.Z.); (P.A.J.)
| | - Kanakkassery Balan Roy
- Department of Chemistry, Sree Neelakanta Government Sanskrit College, Pattambi 679303, Kerala, India;
| | - Pandikkadan Ayyappan Janish
- Division of Biomaterial Sciences, Department of Zoology, Sree Neelakanta Government Sanskrit College, Pattambi 679303, Kerala, India; (O.S.); (N.D.); (K.V.Z.); (P.A.J.)
| | - Padannappurath Sheena
- Division of Biomaterial Sciences, Department of Zoology, Sree Neelakanta Government Sanskrit College, Pattambi 679303, Kerala, India; (O.S.); (N.D.); (K.V.Z.); (P.A.J.)
| | | |
Collapse
|
3
|
Padilla-Camberos E, Juárez-Navarro KJ, Sanchez-Hernandez IM, Torres-Gonzalez OR, Flores-Fernandez JM. Toxicological Evaluation of Silver Nanoparticles Synthesized with Peel Extract of Stenocereus queretaroensis. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5700. [PMID: 36013835 PMCID: PMC9413338 DOI: 10.3390/ma15165700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Silver nanoparticles (AgNPs) synthesized with plants are widely used in different industries, such as the medical, industrial, and food industries; however, their hazards and risks remain unclear. Here, we aimed to evaluate the toxicological effects of AgNPs in both in vitro and in vivo models. Previously, we developed and characterized green synthesized AgNPs based on Stenocereus queretaroensis (S. queretaroensis). The present study evaluates the toxicity of these AgNPs through cytotoxicity and mutagenicity tests in vitro, as well as genotoxicity tests, including the evaluation of acute oral, dermal, and inhalation toxicity, along with dermal and ocular irritation, in vivo, according to guidelines of The Organization for Economic Co-operation and Development (OECD). We evaluated cell cytotoxicity in L929 cells, and the half-maximal inhibitory concentration was 134.76 µg/mL. AgNPs did not cause genotoxic or mutagenic effects. Furthermore, in vivo oral, dermal, and acute inhalation toxicity results did not show any adverse effects or mortality in the test animals, and after the dermal and ocular irritation assessments, the in vivo models did not exhibit irritation or corrosion. Therefore, the results show that these previously synthesized S. queretaroensis AgNPs do not represent a risk at the tested concentrations; however, little is known about the effects that AgNPs induce on physiological systems or the possible risk following long-term exposure.
Collapse
Affiliation(s)
- Eduardo Padilla-Camberos
- Unit of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Normalistas 800, Guadalajara 44270, Jalisco, Mexico
| | - Karen J. Juárez-Navarro
- Unit of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Normalistas 800, Guadalajara 44270, Jalisco, Mexico
| | - Ivan Moises Sanchez-Hernandez
- Unit of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Normalistas 800, Guadalajara 44270, Jalisco, Mexico
| | - Omar Ricardo Torres-Gonzalez
- Unit of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Normalistas 800, Guadalajara 44270, Jalisco, Mexico
| | - Jose Miguel Flores-Fernandez
- Department of Biochemistry & Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB T6G 2M8, Canada
- Department of Research and Innovation, Universidad Tecnológica de Oriental, de la No. 3402, Calle 37 Nte., Oriental 75020, Puebla, Mexico
| |
Collapse
|
4
|
Gadouche L, Zerrouki K, Zidane A, Ababou A, Bachir Elazaar I, Merabet D, Henniche W, Ikhlef S. Genoprotective, antimutagenic, and antioxidant effect of methanolic leaf extract of Rhamnus alaternus L. from the Bissa mountains in Algeria. FOODS AND RAW MATERIALS 2022. [DOI: 10.21603/2308-4057-2022-2-530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rhamnus alaternus L. is a Rhamnaceae shrub and a popular traditional medicine in Algeria. The present research objective was to investigate the antioxidant, genotoxic, and antigenotoxic properties of R. alaternus methanolic leaf extract.
Antiradical scavenging activity was tested by α, α-diphenyl-β-picrylhydrazyl free radical scavenging and β-carotene bleaching method. DNA damage and repair were measured by the Allium cepa test with sodium azide as a mutagenic agent. Mitotic index and chromosomal aberrations were calculated by microscopy of meristem roots stained with 2% carmine acetic.
The methanolic extract of R. alaternus leaves inhibited the free radical DPPH (IC50 = 0.74 ± 0.3 mg/mL) and prevented the oxidation of β-carotene (50.71 ± 4.17%). The root phenotyping showed that sodium azide changed their color and shape, decreased their stiffness, and significantly reduced their length. The roots treated with both R. alaternus leaf extract and sodium azide demonstrated a better root growth. The roots treated with the methanolic extract were much longer than the control roots (P < 0.001). The microscopy images of root meristem treated with the sodium azide mitodepressant agent showed significant chromosomal aberrations, which indicated a disruption of the cell cycle.
The R. alaternus leaf extract appeared to have a beneficial effect on cytotoxicity. The antioxidant properties of R. alaternus L. makes this plant an excellent genoportector.
Collapse
|
5
|
Aguda O, Lateef A. Recent advances in functionalization of nanotextiles: A strategy to combat harmful microorganisms and emerging pathogens in the 21 st century. Heliyon 2022; 8:e09761. [PMID: 35789866 PMCID: PMC9249839 DOI: 10.1016/j.heliyon.2022.e09761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/15/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022] Open
Abstract
The textile industry can benefit from nanotechnology as new properties are conferred on functionalized nanotextiles beyond what a fabric can traditionally offer. These properties include extermination of microorganisms by nanotextiles to curtail their growth and dissemination in the environment and in healthcare facilities. The emergence and thriving of multi-drug resistance (MDR) phenomenon among microbes are threats at achieving good health and well-being (goal 3) of sustainable development goals (SDG) of UN. In addition, MDR strains emerge at a higher rate than the frequency of discovery and production of potent antimicrobial drugs. Therefore, there is need for innovative approach to tackle MDR. Among recent innovations is functionalization of textiles with metal nanoparticles to kill microorganisms. This paper explores strategies in nanotextile production to combat emerging diseases in the 21st century. We discussed different nanotextiles with proven antimicrobial activities, and their applications as air filters, sportswear, personal wears, nose masks, health care and medical fabrics. This compendium highlights frontiers of applications of antimicrobial nanotextiles that can extend multidisciplinary research endeavours towards achieving good health and well-being. Until now, there exists no review on exploitation of nanotextiles to combat MDR pathogens as included in this report.
Collapse
Affiliation(s)
- O.N. Aguda
- Laboratory of Industrial Microbiology and Nanobiotechnology, Department of Pure and Applied Biology, PMB 4000, Ogbomoso, Nigeria
| | - A. Lateef
- Laboratory of Industrial Microbiology and Nanobiotechnology, Department of Pure and Applied Biology, PMB 4000, Ogbomoso, Nigeria
- Nanotechnology Research Group (NANO), Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria
| |
Collapse
|
6
|
Phytofabrication of titanium-silver alloy nanoparticles (Ti-AgNPs) by Cola nitida for biomedical and catalytic applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Li S, Chen S, Zhang Z, Huang Y, Li G, Li Y, Deng X, Li J. Short-term exposure to silver nano-particles alters the physiology and induces stress-related gene expression in Nelumbo nucifera. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 177:38-45. [PMID: 35245773 DOI: 10.1016/j.plaphy.2022.02.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Lotus (Nelumbo nucifera) was used as model plant in this study to explore its physiology and molecular response upon short-term exposure to silver nano-particles (AgNPs). Accumulation patterns demonstrated a potential uptake of AgNPs by roots and transport to the leaves as a likely key translocation route in lotus. AgNPs exposure was negatively correlated with lotus growth, including germination rate and petiole length in a concentration-dependent manner. Synthesis of chloroplast pigments in lotus leaves was enhanced by low AgNPs concentration, but were inhibited at high concentration. Hydrogen peroxide (H2O2) was detected in lotus leaves after AgNPs treatment. Proline accumulation in lotus leaves was induced with the increase in AgNPs concentration and exposure time. Antioxidant enzyme activities of superoxide dismutase (SOD), peroxidase (POD) as well as catalase (CAT) were enhanced after the first day of AgNPs exposure, but declined with increased exposure time, indicating a time-dependent toxicity of AgNPs. In addition, real-time PCR revealed that two detoxification-related genes, GSH1 and GST, could be activated on the first day of AgNPs exposure, but down-regulated with prolonged AgNPs treatment. Photosynthesis-related RbcS gene was up-regulated, however, no obvious difference in the expression of RbcL was observed after the first day of AgNPs exposure. Moreover, WRKY70a and WRKY70b transcription factors exhibited similar expression patterns, with the highest induction after a 5 mg/L AgNPs exposure on the first day, which decreased with prolonged exposure time. This study provides useful references for further evaluation of the toxic mechanism of AgNPs and their bio-effects on aquatic plants and ecosystems.
Collapse
Affiliation(s)
- Shang Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Simeng Chen
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Zeyu Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Yufei Huang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Guoqian Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Yi Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Xianbao Deng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Jing Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
8
|
Korcan SE, Kahraman T, Acikbas Y, Liman R, Ciğerci İH, Konuk M, Ocak İ. Cyto-genotoxicity, antibacterial, and antibiofilm properties of green synthesized silver nanoparticles using Penicillium toxicarium. Microsc Res Tech 2021; 84:2530-2543. [PMID: 33908149 DOI: 10.1002/jemt.23802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/14/2021] [Accepted: 04/16/2021] [Indexed: 11/09/2022]
Abstract
The fungi are becoming the distinguished organisms utilized in the biological synthesis of metallic nanoparticles because of their metal bioaccumulation ability. Addressed herein, the extracellular synthesis of silver nanoparticles (AgNPs) was carried out by using the cell-free filtrate of Penicillium toxicarium KJ173540.1. P. toxicarium was locally isolated and identified using both classical and molecular methods according to ribosomal internal transcribed spacer area of 18S rDNA. The optimum conditions for the AgNPs synthesis were found as 0.25 mM AgNO3 concentrations with pH 12 values at 45°C after 64 hr incubation in dark. Biosynthesized AgNPs were characterized via microscopic and spectroscopic techniques such as transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray analysis, Fourier transform infrared spectrophotometer, and ultraviolet-visible spectroscopy. Zetasizer measurements presented that the high negative potential value (-18.1 mV) and PDI (0.495) supported the excellent colloidal nature of AgNPs with long-range stability and high dispersity. AgNPs exhibited cyto-genotoxicity in Allium cepa root meristem cells by decreasing mitotic index and increasing chromosome aberrations in a dose-dependent manner. Then, 100 and 50% concentration of biosynthesized AgNPs showed antibacterial activity on Staphylococcus aureus and Bacillus subtilis. A decreasing biofilm formation of Pseudomonas aeruginosa 80.69, 48.32, and 28.41% was also observed at 100, 50, and 25% of mycosynthesized AgNP, respectively.
Collapse
Affiliation(s)
- Safiye Elif Korcan
- Health Services Vocational School Medical Laboratory Program, Uşak University, Uşak, Turkey
| | - Tuğba Kahraman
- Molecular Biology and Genetics Department, Faculty of Arts and Sciences, Uşak University, Uşak, Turkey
| | - Yaser Acikbas
- Department of Materials Science and Nanotechnology, Faculty of Engineering, Usak University, Usak, Turkey
| | - Recep Liman
- Molecular Biology and Genetics Department, Faculty of Arts and Sciences, Uşak University, Uşak, Turkey
| | - İbrahim Hakkı Ciğerci
- Molecular Biology and Genetics Department, Faculty of Science and Literatures, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Muhsin Konuk
- Biotechnology Research and Application Center, University of Üsküdar, Istanbul, Turkey
| | - İjlal Ocak
- Department of Science Education, Faculty of Education, Afyon Kocatepe University, Afyonkarahisar, Turkey
| |
Collapse
|
9
|
Nayaka S, Chakraborty B, Bhat MP, Nagaraja SK, Airodagi D, Swamy PS, Rudrappa M, Hiremath H, Basavarajappa DS, Kanakannanavar B. Biosynthesis, characterization, and in vitro assessment on cytotoxicity of actinomycete-synthesized silver nanoparticles on Allium cepa root tip cells. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2020. [DOI: 10.1186/s43088-020-00074-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The industrial production of silver nanoparticles (AgNPs) and its commercial applications are being considerably increased in recent times, resulting in the release of AgNPs in the environment and enhanced probability of contaminations and their adverse effects on living systems. Based on this, the present study was conducted to evaluate the in vitro cytotoxicity of actinomycete-synthesized AgNPs on Allium cepa (A. cepa) root tip cells. A green synthesis method was employed for biosynthesis of AgNPs from Streptomyces sp. NS-33. However, morphological, physiological, biochemical, and molecular analysis were carried out to characterize the strain NS-33. Later, the synthesized AgNPs were characterized and antibacterial activity was also carried out against pathogenic bacteria. Finally, cytotoxic activity was evaluated on A. cepa root tip cells.
Results
Results showed the synthesis of spherical and polydispersed AgNPs with a characteristic UV-visible (UV-Vis.) spectral peak at 397 nm and average size was 32.40 nm. Energy dispersive spectroscopy (EDS) depicted the presence of silver, whereas Fourier transform infrared (FTIR) studies indicated the presence of various functional groups. The phylogenetic relatedness of Streptomyces sp. NS-33 was found with Streptomyces luteosporeus through gene sequencing. A good antibacterial potential of AgNPs was observed against two pathogenic bacteria. Concerning cytotoxicity, a gradually decreased mitotic index (MI) and increased chromosomal aberrations were observed along with the successive increase of AgNPs concentration.
Conclusions
Therefore, the release of AgNPs into the environment must be prevented, so that it cannot harm plants and other beneficial microorganisms.
Collapse
|
10
|
Multifunctional titanium dioxide nanoparticles biofabricated via phytosynthetic route using extracts of Cola nitida: antimicrobial, dye degradation, antioxidant and anticoagulant activities. Heliyon 2020; 6:e04610. [PMID: 32775756 PMCID: PMC7404533 DOI: 10.1016/j.heliyon.2020.e04610] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/18/2020] [Accepted: 07/28/2020] [Indexed: 12/01/2022] Open
Abstract
First study of phytosynthesis of TiO2 NPs using the leaf (KL), pod (KP), seed (KS) and seed shell (KSS) extracts of kola nut tree (Cola nitida) is herein reported. The TiO2 NPs were characterized and evaluated for their antimicrobial, dye degradation, antioxidant and anticoagulant activities. The nearly spherical-shaped particles had λmax of 272.5–275.0 nm with size range of 25.00–191.41 nm. FTIR analysis displayed prominent peaks at 3446.79, 1639.49 and 1382.96 cm−1, indicating the involvement of phenolic compounds and proteins in the phytosynthesis of TiO2 NPs. Both SAED and XRD showed bioformation of crystalline anatase TiO2 NPs which inhibited multidrug-drug resistant bacteria and toxigenic fungi. The catalytic activities of the particles were profound, with degradation of malachite green by 83.48–86.28 % without exposure to UV-irradiation, scavenging of DPPH and H2O2by 51.19–60.08 %, and 78.45–99.23 % respectively. The particles as well prevented the coagulation of human blood. In addition to the antimicrobial and dye-degrading activities, we report for the first time the H2O2 scavenging and anticoagulant activities of TiO2 NPs, showing that the particles can be useful for catalytic and biomedical applications.
Collapse
|
11
|
Casillas-Figueroa F, Arellano-García ME, Leyva-Aguilera C, Ruíz-Ruíz B, Luna Vázquez-Gómez R, Radilla-Chávez P, Chávez-Santoscoy RA, Pestryakov A, Toledano-Magaña Y, García-Ramos JC, Bogdanchikova N. Argovit™ Silver Nanoparticles Effects on Allium cepa: Plant Growth Promotion without Cyto Genotoxic Damage. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1386. [PMID: 32708646 PMCID: PMC7408422 DOI: 10.3390/nano10071386] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022]
Abstract
Due to their antibacterial and antiviral effects, silver nanoparticles (AgNP) are one of the most widely used nanomaterials worldwide in various industries, e.g., in textiles, cosmetics and biomedical-related products. Unfortunately, the lack of complete physicochemical characterization and the variety of models used to evaluate its cytotoxic/genotoxic effect make comparison and decision-making regarding their safe use difficult. In this work, we present a systematic study of the cytotoxic and genotoxic activity of the commercially available AgNPs formulation Argovit™ in Allium cepa. The evaluated concentration range, 5-100 µg/mL of metallic silver content (85-1666 µg/mL of complete formulation), is 10-17 times higher than the used for other previously reported polyvinylpyrrolidone (PVP)-AgNP formulations and showed no cytotoxic or genotoxic damage in Allium cepa. Conversely, low concentrations (5 and 10 µg/mL) promote growth without damage to roots or bulbs. Until this work, all the formulations of PVP-AgNP evaluated in Allium cepa regardless of their size, concentration, or the exposure time had shown phytotoxicity. The biological response observed in Allium cepa exposed to Argovit™ is caused by nanoparticles and not by silver ions. The metal/coating agent ratio plays a fundamental role in this response and must be considered within the key physicochemical parameters for the design and manufacture of safer nanomaterials.
Collapse
Affiliation(s)
- Francisco Casillas-Figueroa
- Escuela de Ciencias de la Salud, UABC, Blvd. Zertuche y Blvd., De los Lagos S/N Fracc, Valle Dorado, 22890 Ensenada, Baja California, Mexico; (F.C.-F.); (R.L.V.-G.); (P.R.-C.); (Y.T.-M.)
| | - María Evarista Arellano-García
- Facultad de Ciencias, UABC, Carretera Transpeninsular Ensenada-Tijuana No. 3917 Col. Playitas, 22860 Ensenada, Baja California, Mexico;
| | - Claudia Leyva-Aguilera
- Facultad de Ciencias, UABC, Carretera Transpeninsular Ensenada-Tijuana No. 3917 Col. Playitas, 22860 Ensenada, Baja California, Mexico;
| | - Balam Ruíz-Ruíz
- Facultad de Medicina extensión los Mochis, Universidad Autónoma de Sinaloa, Av. Ángel Flores s/n, Ciudad Universitaria, 81223 Los Mochis, Sinaloa, Mexico;
| | - Roberto Luna Vázquez-Gómez
- Escuela de Ciencias de la Salud, UABC, Blvd. Zertuche y Blvd., De los Lagos S/N Fracc, Valle Dorado, 22890 Ensenada, Baja California, Mexico; (F.C.-F.); (R.L.V.-G.); (P.R.-C.); (Y.T.-M.)
| | - Patricia Radilla-Chávez
- Escuela de Ciencias de la Salud, UABC, Blvd. Zertuche y Blvd., De los Lagos S/N Fracc, Valle Dorado, 22890 Ensenada, Baja California, Mexico; (F.C.-F.); (R.L.V.-G.); (P.R.-C.); (Y.T.-M.)
| | - Rocío Alejandra Chávez-Santoscoy
- Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, ITESM, Monterrey, Eugenio Garza Sada, 2501 Sur, 64849 Monterrey, Nuevo León, Mexico;
| | - Alexey Pestryakov
- Department of Technology of Organic Substances and Polymer Materials, Tomsk Polytechnic University, 634050 Tomsk, Russia;
| | - Yanis Toledano-Magaña
- Escuela de Ciencias de la Salud, UABC, Blvd. Zertuche y Blvd., De los Lagos S/N Fracc, Valle Dorado, 22890 Ensenada, Baja California, Mexico; (F.C.-F.); (R.L.V.-G.); (P.R.-C.); (Y.T.-M.)
| | - Juan Carlos García-Ramos
- Escuela de Ciencias de la Salud, UABC, Blvd. Zertuche y Blvd., De los Lagos S/N Fracc, Valle Dorado, 22890 Ensenada, Baja California, Mexico; (F.C.-F.); (R.L.V.-G.); (P.R.-C.); (Y.T.-M.)
| | - Nina Bogdanchikova
- Centro de Nanociencias y Nanotecnología, UNAM, Carretera Tijuana-Ensenada Km 107, 22860 Ensenada, Baja California, Mexico;
| |
Collapse
|
12
|
Aina AD, Owolo O, Adeoye-Isijola M, Olukanni OD, Lateef A, Egbe T, Aina FO, Asafa TB, Abbas SH. Ecofriendly production of silver nanoparticles from the seeds of Carica papaya and its larvicidal and antibacterial efficacy against some selected bacterial pathogens. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/1757-899x/805/1/012038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Akintayo GO, Lateef A, Azeez MA, Asafa TB, Oladipo IC, Badmus JA, Ojo SA, Elegbede JA, Gueguim-Kana EB, Beukes LS, Yekeen TA. Synthesis, bioactivities and cytogenotoxicity of animal fur-mediated silver nanoparticles. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/1757-899x/805/1/012041] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Boros BV, Ostafe V. Evaluation of Ecotoxicology Assessment Methods of Nanomaterials and Their Effects. NANOMATERIALS 2020; 10:nano10040610. [PMID: 32224954 PMCID: PMC7221575 DOI: 10.3390/nano10040610] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022]
Abstract
This paper describes the ecotoxicological effects of nanomaterials (NMs) as well as their testing methods. Standard ecotoxicity testing methods are applicable to nanomaterials as well but require some adaptation. We have taken into account methods that meet several conditions. They must be properly researched by a minimum of ten scientific articles where adaptation of the method to the NMs is also presented; use organisms suitable for simple and rapid ecotoxicity testing (SSRET); have a test period shorter than 30 days; require no special equipment; have low costs and have the possibility of optimization for high-throughput screening. From the standard assays described in guidelines developed by organizations such as Organization for Economic Cooperation and Development and United States Environmental Protection Agency, which meet the required conditions, we selected as methods adaptable for NMs, some methods based on algae, duckweed, amphipods, daphnids, chironomids, terrestrial plants, nematodes and earthworms. By analyzing the effects of NMs on a wide range of organisms, it has been observed that these effects can be of several categories, such as behavioral, morphological, cellular, molecular or genetic effects. By comparing the EC50 values of some NMs it has been observed that such values are available mainly for aquatic ecotoxicity, with the most sensitive test being the algae assay. The most toxic NMs overall were the silver NMs.
Collapse
|
15
|
Daphedar A, Taranath TC. Characterization and cytotoxic effect of biogenic silver nanoparticles on mitotic chromosomes of Drimia polyantha (Blatt. & McCann) Stearn. Toxicol Rep 2018; 5:910-918. [PMID: 30211013 PMCID: PMC6129697 DOI: 10.1016/j.toxrep.2018.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/07/2018] [Accepted: 08/29/2018] [Indexed: 11/02/2022] Open
Abstract
Noble metal nanoparticles afford a tool for investigation and its application in biological systems has had the greatest impact in biology and biomedicine. The present work reports an ecofriendly approach for the synthesis of silver nanoparticles (AgNPs) using an aqueous leaf extract of Getonia floribunda. The silver nanoparticles were characterized by using following instruments viz. UV-vis spectrophotometer, FTIR, XRD AFM and HR-TEM. The UV-vis spectrum showed a characteristic absorption peak at 404 nm. FTIR data reveals the possible involvement of various functional groups for reduction and biocapping of AgNPs. XRD data confirmed the crystalline nature of silver nanoparticles. Morphology, size and distribution of the AgNPs were determined by using AFM and HR-TEM. The average size of AgNPs ranges between 10 and 25 nm and are spherical in shape. The silver nanoparticles were evaluated for their cytotoxic effect on mitotic chromosomes of root meristematic cells of D. polyantha using different concentrations viz. 4, 8, 12 and 16 μg/ml at the time interval of 6, 12, 18 and 24 h. It is evident from the results that the higher concentration of AgNPs found to inhibit mitotic index and caused chromosomal abnormalities such as chromosomal bridge, sticky chromosomes, laggard anaphase, diagonal anaphase, c-metaphase and chromosomal breaks. Therefore, it can be concluded that higher concentrations of silver nanoparticles may induce significant inhibition of root meristem activity and causing DNA damage.
Collapse
Affiliation(s)
- Azharuddin Daphedar
- Environmental Biology Laboratory, P. G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India
| | - Tarikere C Taranath
- Environmental Biology Laboratory, P. G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India
| |
Collapse
|