1
|
Ma M, Xie Y, Liu J, Wu L, Liu Y, Qin X. Biological effects of IL-21 on immune cells and its potential for cancer treatment. Int Immunopharmacol 2024; 126:111154. [PMID: 37977064 DOI: 10.1016/j.intimp.2023.111154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/28/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023]
Abstract
Interleukin-21 (IL-21), a member of the IL-2 cytokine family, is one of the most important effector and messenger molecules in the immune system. Produced by various immune cells, IL-21 has pleiotropic effects on innate and adaptive immune responses via regulation of natural killer, T, and B cells. An anti-tumor role of IL-21 has also been reported in the literature, as it may support cell proliferation or on the contrary induce growth arrest or apoptosis of the tumor cell. Anti-tumor effect of IL-21 enhances when combined with other agents that target tumor cells, immune regulatory circuits, or other immune-enhancing molecules. Therefore, understanding the biology of IL-21 in the tumor microenvironment (TME) and reducing its systemic toxic and side effects is crucial to ensure the maximum benefits of anti-tumor treatment strategies. In this review, we provide a comprehensive overview on the biological functions, roles in tumors, and the recent advances in preclinical and clinical research of IL-21 in tumor immunotherapy.
Collapse
Affiliation(s)
- Meichen Ma
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Xie
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lina Wu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yong Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
The past, present, and future of immunotherapy for bladder tumors. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:236. [PMID: 36175715 DOI: 10.1007/s12032-022-01828-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/17/2022] [Indexed: 10/14/2022]
Abstract
Bladder cancer is a prominent cancer worldwide with a relatively low survival rate for patients with increased stage and metastasis. Current treatments are based on surgical removal, bacillus Calmette-Guerin (BCG) Immunotherapy, and platinum-based chemotherapy. However, treatment resistance due to genetic instability of bladder tumors, as well as intolerance to treatment adverse effects leads to the necessity to further treatment options. New advancements in immunotherapy are on the rise for treatment of various cancers and specifically has shown promise in the treatment of bladder cancer. This review summarizes these new advancements in treatment options involving cytokines and cytokine blockade. Such a study might be helpful for urologists to manage patients with bladder cancer more effectively.
Collapse
|
3
|
Zheng X, Zhou Y, Yi X, Chen C, Wen C, Ye G, Li X, Tang L, Zhang X, Yang F, Liu G, Li Y, Hou J. IL-21 receptor signaling is essential for control of hepatocellular carcinoma growth and immunological memory for tumor challenge. Oncoimmunology 2018; 7:e1500673. [PMID: 30524894 DOI: 10.1080/2162402x.2018.1500673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/25/2018] [Accepted: 07/10/2018] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a typical inflammation-associated cancer. IL-21 regulates both innate and adaptive immune responses and has key roles in antitumor and antiviral responses. However, the role of IL-21 in HCC development is poorly defined. In the current study, we explored the role of IL-21R signaling in HCC growth by using IL-21R knockout mice and HCC mouse models. We discovered that IL-21R signaling deficiency promoted HCC growth in tumor-bearing mice. We showed that IL-21R deletion reduced T cells infiltration and activation as well as their function but increased the accumulation of myeloid-derived suppressor cells in tumor tissues to enhance HCC growth. Furthermore, loss of IL-21R signaling in tumor-bearing mice resulted in an imbalance of the systemic immune system characterized by decreased antitumor immune cells and increased immunosuppressive cells in the spleen and lymph nodes. In addition, we revealed that IL-21R signaling is critical for the expansion of antitumor immune cells in the memory immune response to tumor rechallenge. Finally, we showed that the transcriptional levels of IL-21 in the peritumoral region and IL-21R within the tumor are associated with survival and recurrence of HCC patients. In conclusion, our study demonstrates that IL-21R signaling is essential for controlling the development of HCC and immunological memory response to tumor challenge.
Collapse
Affiliation(s)
- Xinchun Zheng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Yi
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chengcong Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunhua Wen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guofu Ye
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyi Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Libo Tang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fuqiang Yang
- Liver Disease Research Center, The 458th Hospital of PLA, Guangzhou, China
| | - Guangze Liu
- Liver Disease Research Center, The 458th Hospital of PLA, Guangzhou, China
| | - Yongyin Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Kim N, Nam YS, Im KI, Lim JY, Lee ES, Jeon YW, Cho SG. IL-21-Expressing Mesenchymal Stem Cells Prevent Lethal B-Cell Lymphoma Through Efficient Delivery of IL-21, Which Redirects the Immune System to Target the Tumor. Stem Cells Dev 2015; 24:2808-21. [PMID: 26415081 DOI: 10.1089/scd.2015.0103] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Interleukin (IL)-21, a proinflammatory cytokine, has been developed as an immunotherapeutic approach due to its effects on various lymphocytes, including natural killer (NK) cells and T cells; however, the clinical success in cancer patients has been limited. Recently, mesenchymal stem cells (MSCs) have emerged as vehicles for cancer gene therapy due to their inherent migratory abilities toward tumors. In the present study, we hypothesized that MSCs, genetically modified to express high levels of IL-21 (IL-21/MSCs), can enhance antitumor responses through localized delivery of IL-21. For tumor induction, BALB/c mice were injected intravenously with syngeneic A20 B-cell lymphoma cells to develop a disseminated B-cell lymphoma model. Then, 6 days following tumor induction, the tumor-bearing mice were treated with IL-21/MSCs weekly, four times. Systemic infusion of A20 cells led to hind-leg paralysis as well as severe liver metastasis in the control group. The IL-21/MSC-treated group showed delayed tumor incidence as well as improved survival, whereas the MSC- and recombinant adenovirus-expressing IL-21 (rAD/IL-21)-treated groups did not show significant differences from the untreated mice. These therapeutic effects were associated with high levels of IL-21 delivered to the liver, which prevented the formation of tumor nodules. Furthermore, the infusion of IL-21/MSCs led to induction of effector T and NK cells, while potently inhibiting immune suppressor cells. Our findings demonstrate that IL-21-expressing MSCs have the therapeutic potential to induce potent antitumor effects against disseminated B-cell lymphoma through localized IL-21 delivery and induction of systemic antitumor immunity.
Collapse
Affiliation(s)
- Nayoun Kim
- 1 Institute for Translational Research and Molecular Imaging, The Catholic University of Korea College of Medicine , Seoul, Korea.,2 Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease , Seoul, Korea
| | - Young-Sun Nam
- 1 Institute for Translational Research and Molecular Imaging, The Catholic University of Korea College of Medicine , Seoul, Korea.,2 Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease , Seoul, Korea
| | - Keon-Il Im
- 1 Institute for Translational Research and Molecular Imaging, The Catholic University of Korea College of Medicine , Seoul, Korea.,2 Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease , Seoul, Korea
| | - Jung-Yeon Lim
- 1 Institute for Translational Research and Molecular Imaging, The Catholic University of Korea College of Medicine , Seoul, Korea.,2 Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease , Seoul, Korea
| | - Eun-Sol Lee
- 1 Institute for Translational Research and Molecular Imaging, The Catholic University of Korea College of Medicine , Seoul, Korea.,2 Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease , Seoul, Korea
| | - Young-Woo Jeon
- 1 Institute for Translational Research and Molecular Imaging, The Catholic University of Korea College of Medicine , Seoul, Korea.,3 Department of Hematology, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine , Seoul, Korea
| | - Seok-Goo Cho
- 1 Institute for Translational Research and Molecular Imaging, The Catholic University of Korea College of Medicine , Seoul, Korea.,2 Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease , Seoul, Korea.,3 Department of Hematology, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine , Seoul, Korea
| |
Collapse
|
5
|
IL-21: a pleiotropic cytokine with potential applications in oncology. J Immunol Res 2015; 2015:696578. [PMID: 25961061 PMCID: PMC4413888 DOI: 10.1155/2015/696578] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/19/2015] [Accepted: 03/25/2015] [Indexed: 12/29/2022] Open
Abstract
Interleukin- (IL-) 21 is a pleiotropic cytokine that regulates the activity of both innate and specific immunity. Indeed, it costimulates T and natural killer (NK) cell proliferation and function and regulates B cell survival and differentiation and the function of dendritic cells. In addition, IL-21 exerts divergent effects on different lymphoid cell leukemia and lymphomas, as it may support cell proliferation or on the contrary induce growth arrest or apoptosis of the neoplastic lymphoid cells. Several preclinical studies showed that IL-21 has antitumor activity in different tumor models, through mechanism involving the activation of NK and T or B cell responses. Moreover, IL-21's antitumor activity can be potentiated by its combination with other immune-enhancing molecules, monoclonal antibodies recognizing tumor antigens, chemotherapy, or molecular targeted agents. Clinical phase I-II studies of IL-21 in cancer patients showed immune stimulatory properties, acceptable toxicity profile, and antitumor effects in a fraction of patients. In view of its tolerability, IL-21 is also suitable for combinational therapeutic regimens with other agents. This review will summarize the biological functions of IL-21, and address its role in lymphoid malignancies and preclinical and clinical studies of cancer immunotherapy.
Collapse
|
6
|
Thompson DB, Siref LE, Feloney MP, Hauke RJ, Agrawal DK. Immunological basis in the pathogenesis and treatment of bladder cancer. Expert Rev Clin Immunol 2015; 11:265-79. [PMID: 25391391 PMCID: PMC4637163 DOI: 10.1586/1744666x.2015.983082] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The pathogenesis and transition of normal urothelium into bladder carcinoma are multifactorial processes. Chronic inflammation causes initiation and progression of the underlying pathophysiology of invasive and metastatic cancer. A dichotomy is observed in the role of immune cells in bladder cancer. While the immune response defends the host by suppressing neoplastic growth, several immune cells, including neutrophils, macrophages and T-lymphocytes, promote tumor development and progression. The levels of human neutrophil peptide-1, -2 and -3, produced by neutrophils, increase in bladder cancer and might promote tumor angiogenesis and growth. The effect of macrophages is primarily mediated by pro-inflammatory cytokines, IL-6 and TNF-α. In addition, the underlying immunological mechanisms of two treatments, BCG and cytokine gene-modified tumor vaccines, and future directions are critically discussed.
Collapse
Affiliation(s)
- David B Thompson
- Center for Clinical and Translational Science, Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza, Omaha, NE 68178, USA
| | | | | | | | | |
Collapse
|
7
|
Bunjhoo H, Wang ZY, Chen HL, Cheng S, Xiong WN, Xu YJ, Cao Y. Diagnostic value of interleukin 21 and carcinoembryonic antigen levels in malignant pleural effusions. Asian Pac J Cancer Prev 2013; 13:3495-9. [PMID: 22994784 DOI: 10.7314/apjcp.2012.13.7.3495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The aim of this study was to evaluate the diagnostic value of interleukin 21 (IL-21) and carcinoembryonic antigen (CEA) in tuberculous pleural effusions (TPEs) and malignant pleural effusions (MPEs). Pleural effusion samples from 103 patients were classified on the basis of diagnosis as TPE (n=51) and MPE (n=52). The concentration of IL-21 was determined by ELISA. Lactate dehydrogenase (LDH), adenosine dehydrogenase (ADA) and CEA levels were also determined in all patients. A significant difference was observed in the levels of ADA and CEA (P<0.01), but not in the levels of LDH (P>0.05) between TPE and MPE. The concentration of IL-21 in MPE was significantly higher compared to TPE (P<0.01). With a threshold value of 4.32 pg/ml, IL-21 had a sensitivity of 76.9% (40/52) and a specificity of 80.4% (41/51). Combined detection of IL-21 and CEA had a sensitivity of 69.2% (36/52) and a specificity of 92.2% (47/51). These two markers can contribute to the differential diagnosis of MPEs.
Collapse
Affiliation(s)
- Hansvin Bunjhoo
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Key Laboratory of Pulmonary Diseases of the Ministry of Health of China, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Inflammatory pathways as promising targets to increase chemotherapy response in bladder cancer. Mediators Inflamm 2012; 2012:528690. [PMID: 22811589 PMCID: PMC3395159 DOI: 10.1155/2012/528690] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/22/2012] [Accepted: 05/22/2012] [Indexed: 12/21/2022] Open
Abstract
While more and more physicians are choosing chemotherapy for patients with bladder cancer, the current treatment is still far from satisfactory due to low response rate and severe side effects. Emerging evidence indicates that inflammatory microenvironment is involved in the pathogenesis of bladder cancer. Recent studies have also provided ample evidence that chemotherapy response is influenced by activation of major inflammatory mediators, including transcription factors, cytokines, chemokines, and COX-2. We reviewed all published literature addressing the roles of inflammatory microenvironment in bladder cancer and evaluating emerging evidence that inflammatory pathways represent potential therapeutic targets to enhance chemotherapy of bladder cancer.
Collapse
|
9
|
Stolfi C, Rizzo A, Franzè E, Rotondi A, Fantini MC, Sarra M, Caruso R, Monteleone I, Sileri P, Franceschilli L, Caprioli F, Ferrero S, MacDonald TT, Pallone F, Monteleone G. Involvement of interleukin-21 in the regulation of colitis-associated colon cancer. ACTA ACUST UNITED AC 2011; 208:2279-90. [PMID: 21987656 PMCID: PMC3201207 DOI: 10.1084/jem.20111106] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
IL-21 expression is increased in the gut of patients with colitis-associated colon cancer, and genetic ablation or antibody neutralization of IL-21 reduces tumor size and inflammation in mice treated with dextran sulfate sodium and azoxymethane. Chronic inflammation is a major driving force in the development of cancer in many tissues, but the array of factors involved in this neoplastic transformation are not well understood. We have investigated the role of interleukin (IL)-21 in colitis-associated colon cancer (CAC), as this cytokine is overexpressed in the gut mucosa of patients with ulcerative colitis (UC), a chronic inflammatory disease associated with colon cancer. IL-21 was increased in the gut of patients with UC-associated colon cancer, and in mice with CAC induced by azoxymethane (AOM) and dextran sulfate sodium (DSS). After AOM+DSS treatment, IL-21 KO mice showed reduced mucosal damage, reduced infiltration of T cells, and diminished production of IL-6 and IL-17A. IL-21–deficient mice also developed fewer and smaller tumors compared with wild-type (WT) mice. Absence of IL-21 reduced signal transducer and activator of transcription 3 activation in tumor and stromal cells. Administration of a neutralizing IL-21 antibody to WT mice after the last DSS cycle decreased the colonic T cell infiltrate and the production of IL-6 and IL-17A and reduced the number of tumors. These observations indicate that IL-21 amplifies an inflammatory milieu that promotes CAC, and suggest that IL-21 blockade may be useful in reducing the risk of UC-associated colon cancer.
Collapse
Affiliation(s)
- Carmine Stolfi
- Gastroenterology Unit, Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kuramoto T, Fujii R, Nagai H, Belladonna ML, Yoshimoto T, Kohjimoto Y, Inagaki T, Hara I. IL-23 gene therapy for mouse bladder tumour cell lines. BJU Int 2011; 108:914-21. [PMID: 21435151 DOI: 10.1111/j.1464-410x.2010.10025.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES • To evaluate the antitumour effects of IL-23 gene transfer into mouse bladder carcinoma (MBT2) cells. • To investigate the mechanisms underlying the subsequent constitutive secrection of IL-23 by the MBT2 cells MATERIALS AND METHODS • An expression vector containing IL-23 gene was introduced into MBT2 cells by liposome-mediated gene transfer, and secretion of IL-23 was confirmed by ELISA. • The in vivo antitumour effect of IL-23-secreting MBT2 cells (MBT2/IL-23) was examined by injecting the cells into syngeneic C3H mice. • A tumour vaccination study using mitomycin C (MMC)-treated IL-23-secreting MBT2 cells was carried out, and the usefulness of in vivo CD25 depletion for an additional vaccine effect was also investigated. • The mechanisms underlying the antitumour effects were investigated by antibody depletion of CD8 or CD4 T cells, or natural killer cells, and cells infiltrating the tumour sites in vivo were assessed using immunohistochemistry. RESULTS • Stable transformants transduced with MBT2/IL-23 secreted IL-23 into the culture supernatant. • Genetically engineered IL-23-secreting MBT2 cells were rejected in syngeneic mice. • MBT2/IL-23-vaccinated mice inhibited the tumour growth of parental MBT2 cells injected at a distant site and this vaccine effect was enhanced by combination with in vivo CD25 depletion by an antibody. • The main effector cells for the direct antitumour effect of MBT2/IL-23 were CD8 T cells, which was shown by in vivo depletion and immunohistochemical study. CONCLUSIONS • IL-23-secreting MBT2 cells were rejected in syngeneic mice by the activation of CD8 T cells. • MMC-treated MBT2/IL-23 can have a tumour vaccine effect for parental MBT2 cells, and this effect was enhanced by combination with in vivo CD25 depletion.
Collapse
Affiliation(s)
- Tomomi Kuramoto
- Department of Urology, Wakayama Medical University, Wakayama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Yoshimoto T, Morishima N, Okumura M, Chiba Y, Xu M, Mizuguchi J. Interleukins and cancer immunotherapy. Immunotherapy 2011; 1:825-44. [PMID: 20636026 DOI: 10.2217/imt.09.46] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cancer is a complex disease with interactions between normal and neoplastic cells. Since current therapies for cancer largely rely on drugs or radiation that kill dividing cells or block cell division, these treatments may have severe side effects on normal proliferating cells in patients with cancer. Therefore, the potential for treatment of cancer patients by immunologic approaches, which may be specific for tumors and will not injure most normal cells, has great promise. Cancer immunotherapy aims to augment the weak host immune response to developing tumors. One strategy is to utilize cytokines such as IL-2. More recently, several exciting new interleukins have been characterized that have considerable promise for future immunotherapy. The promise of cancer immunotherapy largely depends upon the identification of these novel interleukins. This review provides an overview of the antitumor effects of relatively new interleukins as potential therapeutic agents applicable for cancer immunotherapy.
Collapse
Affiliation(s)
- Takayuki Yoshimoto
- Intractable Disease Research Center, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan.
| | | | | | | | | | | |
Collapse
|
12
|
Intratumoral interleukin-21 increases antitumor immunity, tumor-infiltrating CD8+ T-cell density and activity, and enlarges draining lymph nodes. J Immunother 2010; 33:236-49. [PMID: 20445344 DOI: 10.1097/cji.0b013e3181c0c1cb] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interleukin (IL)-21 is a novel cytokine in clinical development for the treatment of cancer. In this study, we have compared the efficacy of subcutaneous and intratumoral (IT) administration of IL-21 protein in two syngeneic mouse tumor models, RenCa renal cell carcinoma and B16 melanoma, and investigated the mechanisms by which IL-21 enhances CD8 T-cell-mediated antitumor immunity. We found that in comparison to subcutaneous administration, IT administration of IL-21 more potently inhibited tumor growth and increased survival. This correlated with increased densities of tumor-infiltrating CD8 and CD4CD25 T cells, but not CD4CD25FoxP3 T cells. Furthermore, IT administration of IL-21 increased degranulation, and expression of interferon-gamma and granzyme B in tumor-infiltrating CD8 T cells. Tumors injected with IL-21 grew slower than contralateral tumors, suggesting that the increased efficacy of IT administration of IL-21 was due to a local rather than systemic effect. IT administration of IL-21 led to enlarged tumor-draining lymph nodes (LNs), with increased naive lymphocyte numbers and proliferation of activated lymphocytes, suggesting that local administration of IL-21 generally benefits the tumor microenvironment and activates tumor-draining LNs. Overall, our data suggest that IL-21 augments CD8 T-cell-mediated antitumor immunity through increased proliferation and effector function and acts both on tumor-infiltrating CD8 T cells as well as on the draining LNs. IT administration led to superior CD8 T-cell proliferation, effector function, and antitumor efficacy, suggesting that IT administration of IL-21 may be clinically useful in patients with unresectable tumors.
Collapse
|
13
|
Capitini CM, Fry TJ, Mackall CL. Cytokines as Adjuvants for Vaccine and Cellular Therapies for Cancer. AMERICAN JOURNAL OF IMMUNOLOGY 2009; 5:65-83. [PMID: 20182648 PMCID: PMC2826803 DOI: 10.3844/ajisp.2009.65.83] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PROBLEM STATEMENT: The development of a potent vaccine that can help treat tumors resistant to conventional cytotoxic therapies remains elusive. While part of the problem may be that trials have focused on patients with bulky residual disease, the desire to maximize responses to the vaccine remains. APPROACH: The gamma(c) family of cytokines offer a unique opportunity to support the expansion and effector potential of vaccine-responding T-cells, as well as stimulate other effectors, such as natural killer (NK) cells, to become activated. RESULTS: Combining vaccines with cytokines seems logical but can bring unwanted toxicity, as has been observed with interleukin (IL)-2. In addition, the nonspecific activation or expansion of unwanted cell subsets, such as regulatory T-cells, can contribute to global immunosuppression and limit vaccine responses. The development of IL-7 and IL-21 for the clinic offers the promise of enhancing anti-tumor responses but with far less systemic toxicity and no expansion of regulatory T cells. Preclinical studies demonstrate that IL-15 could also improve T-cell, and especially NK-cell, responses as well. CONCLUSIONS/RECOMMENDATIONS: Future work should expand the use of vaccines with IL-7, IL-21 and hopefully IL-15 in high-risk patients, and consider treatment while in a state of minimal residual disease to maximize benefit. Identifying tumors that can signal through gamma(c) cytokines will also be essential so that induction of relapse will be avoided.
Collapse
Affiliation(s)
- Christian M. Capitini
- Immunology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Terry J. Fry
- Immunology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
- Center for Cancer and Blood Disorders, Children’s National Medical Center, Washington, DC 20010
| | - Crystal L. Mackall
- Immunology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
14
|
Fuqua CF, Akomeah R, Price JO, Adunyah SE. Involvement of ERK-1/2 in IL-21-induced cytokine production in leukemia cells and human monocytes. Cytokine 2008; 44:101-7. [PMID: 18707899 PMCID: PMC2626183 DOI: 10.1016/j.cyto.2008.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 06/06/2008] [Accepted: 06/27/2008] [Indexed: 01/15/2023]
Abstract
Cytokines play an important role in the immune system, and abnormalities in their production have been found in many human diseases. Interleukin-21 (IL-21), a type I cytokine produced by activated T cells, has diverse effects on the immune system, but its ability to induce production of other cytokines is not well delineated. Furthermore, the signaling pathway underlying its action is poorly understood. Here, we have evaluated IL-21-induced cytokine production in human monocytes and U937 leukemia cells. We found that IL-21 induces upregulation of a variety of cytokines from multiple cytokine families. We also found that IL-21 triggers rapid activation of ERK1/2. Neutralizing antibody to the IL-21R prevented both IL-21-induced cytokine production and IL-21-induced activation of ERK1/2. Inhibition of ERK1/2 activity by the ERK-selective inhibitor U0126 reverses the ability of IL-21 to upregulate cytokine production, suggesting that IL-21-induced cytokine production is dependent on ERK1/2 activation.
Collapse
Affiliation(s)
- C F Fuqua
- Department of Cancer Biology, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Boulevard, Nashville, TN 37208, USA
| | | | | | | |
Collapse
|
15
|
Andorsky DJ, Timmerman JM. Interleukin-21: biology and application to cancer therapy. Expert Opin Biol Ther 2008; 8:1295-307. [DOI: 10.1517/14712598.8.9.1295] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Davis ID, Skak K, Smyth MJ, Kristjansen PEG, Miller DM, Sivakumar PV. Interleukin-21 signaling: functions in cancer and autoimmunity. Clin Cancer Res 2008; 13:6926-32. [PMID: 18056166 DOI: 10.1158/1078-0432.ccr-07-1238] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Interleukin-21 (IL-21) is a cytokine with structural and sequence homology to IL-2 and IL-15, yet possesses several biological properties distinct from these cytokines. IL-21 is produced mainly by activated CD4(+) T cells and natural killer T cells and mediates its activity by binding to the IL-21 receptor (IL-21R), consisting of an IL-21-specific alpha chain (IL-21Ralpha; JAK/STAT) that heterodimerizes with the common gamma chain (CD132). Intracellular signaling occurs through the Janus-activated kinase/signal transducer and activator of transcription pathways. Physiologic expression of IL-21R is restricted to lymphoid tissues and peripheral blood mononuclear cells; however, other tissues such as epithelium, synovium, or transformed cells can acquire expression of both components of IL-21R heterodimer. IL-21 has complex activities on a wide variety of cell types, leading to enhancement of adaptive T-cell immunity, antibody production, activation of natural killer cell subtypes, and opposition to suppressive effects mediated by regulatory T cells. Functionally, these activities promote immune responses and point to a physiologic role of IL-21 in autoimmunity and immune enhancement. Therapeutic manipulation of IL-21 activity may allow improved immunotherapy for cancer as well as insights into autoimmune disease. Recently conducted phase 1 trials in metastatic melanoma and renal cell carcinoma have shown that recombinant IL-21 has a favorable safety profile and support its continued investigation as a potential anticancer drug.
Collapse
Affiliation(s)
- Ian D Davis
- Ludwig-Austin Joint Medical Oncology Unit, Austin Health, Melbourne, Australia.
| | | | | | | | | | | |
Collapse
|
17
|
Smyth MJ, Teng MW, Sharkey J, Westwood JA, Haynes NM, Yagita H, Takeda K, Sivakumar PV, Kershaw MH. Interleukin 21 Enhances Antibody-Mediated Tumor Rejection. Cancer Res 2008; 68:3019-25. [DOI: 10.1158/0008-5472.can-07-6019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Skak K, Kragh M, Hausman D, Smyth MJ, Sivakumar PV. Interleukin 21: combination strategies for cancer therapy. Nat Rev Drug Discov 2008; 7:231-40. [DOI: 10.1038/nrd2482] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Kumano M, Hara I, Furukawa J, Oniki S, Nagai H, Miyake H, Fujisawa M. Interleukin-21 Activates Cytotoxic T Lymphocytes and Natural Killer Cells to Generate Antitumor Response in Mouse Renal Cell Carcinoma. J Urol 2007; 178:1504-9. [PMID: 17707061 DOI: 10.1016/j.juro.2007.05.115] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2006] [Indexed: 10/22/2022]
Abstract
PURPOSE We evaluated the antitumor effects of IL-21 gene transfer into mouse RenCa renal cell carcinoma cells, so that cells could spontaneously secrete IL-21. We also investigated the mechanisms underlying this antitumor effect. MATERIALS AND METHODS The IL-21 gene was introduced into RenCa cells by the liposome mediated method using Lipofectamine. The in vivo antitumor effect of IL-21 secreting RenCa cells was assessed by subcutaneous injection into syngeneic BALB/c mice. Mechanisms underlying the antitumor effects were investigated in syngeneic mice in which CD8 T, CD4 T or natural killer cells had been depleted using the corresponding antibody. The cytotoxic activity of splenocytes in mice injected with IL-21 secreting RenCa cells was determined using the CytoTox 96 nonradioactive cytotoxicity assay. Immunohistochemical examinations were performed to investigate infiltrating cells around tumor sites in vivo. Tumor vaccine study was also performed. RESULTS IL-21 secreting RenCa cells were almost all rejected following subcutaneous injection into syngeneic mice. The antitumor effect of IL-21 secreting RenCa cells remained in mice in which CD4 T cells had been depleted but it was totally abrogated in mice depleted of CD8 T cells or natural killer cells. Cytotoxic activities of splenocytes were higher in IL-21 secreting RenCa cell rejected mice than in parental RenCa mice. Immunohistochemical study also supported the involvement of CD8 T cells and natural killer cells in the antitumor effect of IL-21 secreting RenCa cells. Moreover, mitomycin C treated IL-21 secreting RenCa cells inhibited the growth of parental RenCa at distant site. CONCLUSIONS IL-21 secreting RenCa could be rejected in syngeneic mice by the activation of CD8 T cells and natural killer cells. Moreover, mitomycin C treated IL-21 secreting RenCa cells could work as a tumor vaccine for parental RenCa.
Collapse
Affiliation(s)
- Masafumi Kumano
- Division of Urology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | | | | | | | | | | | | |
Collapse
|
20
|
di Carlo E, de Totero D, Piazza T, Fabbi M, Ferrini S. Role of IL-21 in immune-regulation and tumor immunotherapy. Cancer Immunol Immunother 2007; 56:1323-34. [PMID: 17447063 PMCID: PMC11031117 DOI: 10.1007/s00262-007-0326-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 03/27/2007] [Indexed: 10/23/2022]
Abstract
IL-21, the most recently discovered member of the IL-2 cytokine family, is an attractive subject for research due to its involvement in experimental models of autoimmunity, its ability to down-regulate IgE production, and its anti-tumor properties. Its interest for cancer immunotherapy stems from its physiological immune-enhancing functions. These include regulation of T, B and NK cell proliferation, survival, differentiation, and effector functions. IL-21's functional activities partially overlap those of IL-2. Both cytokines display similar structural features and use the common gamma-chain receptor and its downstream signaling pathways. Besides its activities on normal lymphoid cells, IL-21 is an in vitro growth factor for myeloma and acute-T cell leukemia cells, whereas it induces the apoptosis of B-CLL (chronic lymphocytic leukemia) cells. These findings indicate that the IL-21/IL-21R system exerts opposite functions in different lymphoid neoplasias, and suggest its employment in B-CLL therapy. Since IL-2, but not IL-21, is specifically required for the development of regulatory T (Treg) cell immune-suppressive functions, IL-21 may be a new tool for cancer immunotherapy. It is, in fact, a powerful anti-tumor agent in a variety of murine experimental tumor models through its activation of specific or innate immune responses against neoplastic cells. The preliminary data from phase-I clinical studies suggest that the use of IL-21 is feasible and may result in immune-enhancing effects.
Collapse
Affiliation(s)
- Emma di Carlo
- Dipartimento di Oncologia e Neuroscienze, Sezione di Patologia Chirurgica, Ce.S.I. Aging Research Center, Fondazione Universitaria G. d'Annunzio, Chieti, Italy.
| | | | | | | | | |
Collapse
|
21
|
Søndergaard H, Frederiksen KS, Thygesen P, Galsgaard ED, Skak K, Kristjansen PEG, Odum N, Kragh M. Interleukin 21 therapy increases the density of tumor infiltrating CD8+ T cells and inhibits the growth of syngeneic tumors. Cancer Immunol Immunother 2007; 56:1417-28. [PMID: 17285290 PMCID: PMC11030032 DOI: 10.1007/s00262-007-0285-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 12/24/2006] [Indexed: 01/04/2023]
Abstract
Interleukin (IL)-21 is a recently discovered cytokine in early clinical development, which has shown anti-tumor activity in various animal models. In the present study, we examine the anti-tumor activity of IL-21 protein therapy in two syngeneic tumor models and its effect on the density of tumor infiltrating T cells. We treated mice bearing established subcutaneous B16 melanomas or RenCa renal cell carcinomas with intraperitoneal (i.p.) or subcutaneous (s.c.) IL-21 protein therapy and subsequently scored the densities of tumor infiltrating CD4(+) and CD8(+) T cells by immunohistochemistry. Whereas both routes of IL-21 administration significantly inhibited growth of small, established RenCa and B16 tumors, only s.c. therapy significantly inhibited the growth of large, established tumors. We found a greater bioavailability and significant drainage of IL-21 to regional lymph nodes following s.c. administration, which could account for the apparent increase in anti-tumor activity. Specific depletion of CD8(+) T cells with monoclonal antibodies completely abrogated the anti-tumor activity, whereas NK1.1(+) cell depletion did not affect tumor growth. In accordance, both routes of IL-21 administration significantly increased the density of tumor infiltrating CD8(+) T cells in both B16 and RenCa tumors; and in the RenCa model s.c. administration of IL-21 led to a significantly higher density of tumor infiltrating CD8(+) T cells compared to i.p. administration. The densities of CD4(+) T cells were unchanged following IL-21 treatments. Taken together, these data demonstrate that IL-21 protein has anti-tumor activity in established syngeneic tumors, and we show that IL-21 therapy markedly increases the density of tumor infiltrating CD8(+) T cells.
Collapse
Affiliation(s)
- Henrik Søndergaard
- Department of Cancer Pharmacology, Biopharmaceuticals Research Unit, Novo Nordisk A/S, Novo Nordisk Park F6.2.30, DK, Måløv, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|