1
|
Deng BL, Lin DX, Li ZP, Li K, Wei PY, Luo CC, Zhang MY, Zhou Q, Yang ZL, Chen Z. High Hydrostatic Pressure Exacerbates Bladder Fibrosis through Activating Piezo1. Curr Med Sci 2024; 44:718-725. [PMID: 38926331 DOI: 10.1007/s11596-024-2881-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/08/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE Bladder outlet obstruction (BOO) results in significant fibrosis in the chronic stage and elevated bladder pressure. Piezo1 is a type of mechanosensitive (MS) channel that directly responds to mechanical stimuli. To identify new targets for intervention in the treatment of BOO-induced fibrosis, this study investigated the impact of high hydrostatic pressure (HHP) on Piezo1 activity and the progression of bladder fibrosis. METHODS Immunofluorescence staining was conducted to assess the protein abundance of Piezo1 in fibroblasts from obstructed rat bladders. Bladder fibroblasts were cultured under normal atmospheric conditions (0 cmH2O) or exposed to HHP (50 cmH2O or 100 cmH2O). Agonists or inhibitors of Piezo1, YAP1, and ROCK1 were used to determine the underlying mechanism. RESULTS The Piezo1 protein levels in fibroblasts from the obstructed bladder exhibited an elevation compared to the control group. HHP significantly promoted the expression of various pro-fibrotic factors and induced proliferation of fibroblasts. Additionally, the protein expression levels of Piezo1, YAP1, ROCK1 were elevated, and calcium influx was increased as the pressure increased. These effects were attenuated by the Piezo1 inhibitor Dooku1. The Piezo1 activator Yoda1 induced the expression of pro-fibrotic factors and the proliferation of fibroblasts, and elevated the protein levels of YAP1 and ROCK1 under normal atmospheric conditions in vitro. However, these effects could be partially inhibited by YAP1 or ROCK inhibitors. CONCLUSION The study suggests that HHP may exacerbate bladder fibrosis through activating Piezo1.
Collapse
Affiliation(s)
- Bo-Lang Deng
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dong-Xu Lin
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhi-Peng Li
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kang Li
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Peng-Yu Wei
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chang-Cheng Luo
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meng-Yang Zhang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Quan Zhou
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zheng-Long Yang
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhong Chen
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Long J, Yang Y, Yang J, Chen L, Wang S, Zhou X, Su Y, Liu C. Targeting Thbs1 reduces bladder remodeling caused by partial bladder outlet obstruction via the FGFR3/p-FGFR3 pathway. Neurourol Urodyn 2024; 43:516-526. [PMID: 38108523 DOI: 10.1002/nau.25366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Partial bladder outlet obstruction (pBOO) may lead to bladder remodeling, including fibrosis and extracellular matrix (ECM) deposition. Despite the extensive research on the mechanisms underlying pBOO, potential therapeutic targets for the treatment of pBOO require further research. Dysregulated expression of thrombospondin-1 (Thbs1) has been reported in various human fibrotic diseases; however, its relationship with pBOO remains unclear. AIMS Investigate the effects of Thbs1 on bladder remodeling caused by pBOO. METHODS We established a pBOO model in Sprague-Dawley rats and performed urodynamic analyses to estimate functional changes in the bladder, validated the histopathological changes in the bladder by using haematoxylin-eosin and Masson's trichrome staining, identified key target genes by integrating RNA sequencing (RNA-seq) and bioinformatics analyses, validated the expression of related factors using Western blot analysis and RT-qPCR, and used immunofluorescence staining to probe the potential interaction factors of Thbs1. RESULTS Urodynamic results showed that pressure-related parameters were significantly increased in rats with pBOO. Compared with the sham group, the pBOO group demonstrated significant increases in bladder morphology, bladder weight, and collagen deposition. Thbs1 was significantly upregulated in the bladder tissues of rats with pBOO, consistent with the RNA-seq data. Thbs1 upregulation led to increased expression of matrix metalloproteinase (MMP) 2, MMP9, and fibronectin (Fn) in normal human urinary tract epithelial cells (SV-HUC-1), whereas anti-Thbs1 treatment inhibited the production of these cytokines in TGF-β1-treated SV-HUC-1. Further experiments indicated that Thbs1 affected bladder remodeling in pBOO via the fibroblast growth factor receptor 3 (FGFR3) pathway. CONCLUSIONS Thbs1 plays a crucial role in bladder remodeling caused by pBOO. Targeting Thbs1 might alleviate ECM damage. Mechanistically, Thbs1 may function via the FGFR signaling pathway by regulating the FGFR3 receptor, identified as the most relevant disease target of pBOO, and FGF2 may be a mediator. These findings suggest that Thbs1 plays a role in BOO development and is a therapeutic target for this condition.
Collapse
Affiliation(s)
- Jun Long
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
- Graduate School, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yafei Yang
- Department of Urology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jin Yang
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
| | - Lin Chen
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
| | - Song Wang
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
- Graduate School, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xin Zhou
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
- Graduate School, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yao Su
- College of Pharmacy, Chengdu University, Chengdu, China
| | - Chenhuan Liu
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
- Graduate School, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
3
|
Di X, Gao X, Peng L, Ai J, Jin X, Qi S, Li H, Wang K, Luo D. Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal Transduct Target Ther 2023; 8:282. [PMID: 37518181 PMCID: PMC10387486 DOI: 10.1038/s41392-023-01501-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 08/01/2023] Open
Abstract
Cellular mechanotransduction, a critical regulator of numerous biological processes, is the conversion from mechanical signals to biochemical signals regarding cell activities and metabolism. Typical mechanical cues in organisms include hydrostatic pressure, fluid shear stress, tensile force, extracellular matrix stiffness or tissue elasticity, and extracellular fluid viscosity. Mechanotransduction has been expected to trigger multiple biological processes, such as embryonic development, tissue repair and regeneration. However, prolonged excessive mechanical stimulation can result in pathological processes, such as multi-organ fibrosis, tumorigenesis, and cancer immunotherapy resistance. Although the associations between mechanical cues and normal tissue homeostasis or diseases have been identified, the regulatory mechanisms among different mechanical cues are not yet comprehensively illustrated, and no effective therapies are currently available targeting mechanical cue-related signaling. This review systematically summarizes the characteristics and regulatory mechanisms of typical mechanical cues in normal conditions and diseases with the updated evidence. The key effectors responding to mechanical stimulations are listed, such as Piezo channels, integrins, Yes-associated protein (YAP) /transcriptional coactivator with PDZ-binding motif (TAZ), and transient receptor potential vanilloid 4 (TRPV4). We also reviewed the key signaling pathways, therapeutic targets and cutting-edge clinical applications of diseases related to mechanical cues.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaoshuai Gao
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Liao Peng
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jianzhong Ai
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xi Jin
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Shiqian Qi
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hong Li
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Kunjie Wang
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| | - Deyi Luo
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| |
Collapse
|
4
|
Fu Z, Xiao S, Wang P, Zhao J, Ling Z, An Z, Shao J, Fu W. Injectable, stretchable, toughened, bioadhesive composite hydrogel for bladder injury repair †. RSC Adv 2023; 13:10903-10913. [PMID: 37033438 PMCID: PMC10076968 DOI: 10.1039/d3ra00402c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
The bladder is exposed to constant internal and external mechanical forces due to its deformation and the dynamic environment in which it is placed, which can hamper its repair after an injury. Traditional hydrogel materials have limitations regarding their use in the bladder owing to their poor mechanical and tissue adhesion properties. In this study, a composite hydrogel composed of methacrylate gelatine, methacrylated silk fibroin, and Pluronic F127 diacrylate was developed, which combines the characteristics of natural and synthetic polymers. The mechanical properties of the novel hydrogel, such as stretchability, viscoelasticity, and toughness, were improved by virtue of a particular molecular design strategy whereby covalent and non-covalent bond interactions create a cross-linking effect. In addition, the composite hydrogel has important usability properties; it can be injected in liquid format and rapidly transformed into a gel via photo-initiated crosslinking. This was demonstrated on an isolated porcine bladder where the hydrogel closed arbitrarily-shaped tissue defects within 90 s of its application, verifying its effective bioadhesive and sealing properties. This composite hydrogel has great potential for application in bladder injury repair as a tissue-engineering scaffold. An injectable, stretchable, toughened, bioadhesive composite hydrogel offers a new application strategy for sutureless repair and tissue regeneration of injured bladders.![]()
Collapse
Affiliation(s)
- Zhouyang Fu
- Department of Urology, The Third Medical Centre, Chinese PLA General HospitalBeijing100853China
- Medical School of Chinese PLABeijing100853China
| | - Shuwei Xiao
- Department of Urology, The Third Medical Centre, Chinese PLA General HospitalBeijing100853China
- Department of Urology, Air Force Medical CenterBeijing100142China
| | - Pengchao Wang
- Medical School of Chinese PLABeijing100853China
- Department of Urology, Hainan Hospital of PLA General HospitalHainan572013China
| | - Jian Zhao
- Department of Urology, The Third Medical Centre, Chinese PLA General HospitalBeijing100853China
- Medical School of Chinese PLABeijing100853China
| | - Zhengyun Ling
- Department of Urology, The Third Medical Centre, Chinese PLA General HospitalBeijing100853China
- Medical School of Chinese PLABeijing100853China
| | - Ziyan An
- Department of Urology, The Third Medical Centre, Chinese PLA General HospitalBeijing100853China
- Medical School of Chinese PLABeijing100853China
| | - Jinpeng Shao
- Department of Urology, The Third Medical Centre, Chinese PLA General HospitalBeijing100853China
- Medical School of Chinese PLABeijing100853China
| | - Weijun Fu
- Department of Urology, The Third Medical Centre, Chinese PLA General HospitalBeijing100853China
| |
Collapse
|
5
|
Di X, Jin X, Ai J, Xiang L, Gao X, Xiao K, Li H, Luo D, Wang K. YAP/Smad3 promotes pathological extracellular matrix microenviroment-induced bladder smooth muscle proliferation in bladder fibrosis progression. MedComm (Beijing) 2022; 3:e169. [PMID: 36176734 PMCID: PMC9477793 DOI: 10.1002/mco2.169] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 11/06/2022] Open
Abstract
Fibrosis is a chronic inflammation process with excess extracellular matrix (ECM) deposition that cannot be reversed. Patients suffer from bladder dysfunction caused by bladder fibrosis. Moreover, the interactive mechanisms between ECM and bladder fibrosis are still obscure. Hence, we assessed the pivotal effect of Yes-associated protein (YAP) on the proliferation of bladder smooth muscle in fibrosis process. We identified that stiff ECM increased the expression and translocation of YAP in the nucleus of human bladder smooth muscle cell (hBdSMC). Sequencings and proteomics revealed that YAP bound to Smad3 and promoted the proliferation of hBdSMC via MAPK/ERK signaling pathway in stiff ECM. Moreover, CUT and TAG sequencing and dual-luciferase assays demonstrated that Smad3 inhibited the transcription of JUN. The YAP inhibitor CA3 was used in a partial bladder outlet obstruction (pBOO) rat model. The results showed that CA3 attenuated bladder smooth muscle proliferation. Collectively, YAP binding with Smad3 in the nucleus inhibited the transcription of JUN, and promoted the proliferation of bladder smooth muscle through the MAPK/ERK signaling pathway. The current study identified a novel mechanism of mechanical force induced bladder fibrosis that provided insights in YAP-associated organ fibrosis.
Collapse
Affiliation(s)
- Xing‐Peng Di
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology)West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xi Jin
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology)West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Jian‐Zhong Ai
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology)West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Li‐Yuan Xiang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology)West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xiao‐Shuai Gao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology)West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Kai‐Wen Xiao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology)West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Hong Li
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology)West China Hospital, Sichuan UniversityChengduSichuanChina
| | - De‐Yi Luo
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology)West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Kun‐Jie Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology)West China Hospital, Sichuan UniversityChengduSichuanChina
| |
Collapse
|
6
|
Chen G, Chen S, Di X, He S, Liu Y, Qu R, Luo Y, Liu Y, Yang L. Survivin knockdown alleviates pathological hydrostatic pressure-induced bladder smooth muscle cell dysfunction and BOO-induced bladder remodeling via autophagy. Front Cell Dev Biol 2022; 10:999547. [PMID: 36393846 PMCID: PMC9649584 DOI: 10.3389/fcell.2022.999547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/10/2022] [Indexed: 09/05/2023] Open
Abstract
Aim: Bladder outlet obstruction (BOO) leads to bladder wall remodeling accompanying the progression from inflammation to fibrosis where pathological hydrostatic pressure (HP)-induced alteration of bladder smooth muscle cells (BSMCs) hypertrophic and excessive extracellular matrix (ECM) deposition play a pivotal role. Recently, we have predicted survivin (BIRC5) as a potential hub gene that might be critical during bladder fibrosis by bioinformatics analyses from rat BOO bladder, but its function during BOO progression remains unknown. Here, we investigated the role of survivin protein on bladder dysfunction of BOO both in vitro and in vivo. Methods: Sprague-Dawley female rats were divided into three groups: control group, BOO group, and BOO followed by the treatment with YM155 group. Bladder morphology and function were evaluated by Masson staining and urodynamic testing. To elucidate the underlying mechanism, hBSMCs were subjected to pathological HP of 200 cm H2O and co-cultured with the presence or absence of survivin siRNA and/or autophagy inhibitor 3-MA. Autophagy was evaluated by the detection of Beclin1 and LC3B-II expression, proliferation was conducted by the EdU analysis and PCNA expression, and fibrosis was assessed by the examination of Col 1 and Fn expression. Results: BOO led to a gradual alteration of hypertrophy and fibrosis of the bladder, and subsequently induced bladder dysfunction accompanied by increased survivin expression, while these histological and function changes were attenuated by the treatment with YM155. HP significantly increased survivin expression, upregulated Col1 and Fn expression, enhanced proliferation, and downregulated autophagy markers, but these changes were partially abolished by survivin siRNA treatment, which was consistent with the results of the BOO rat experiment. In addition, the anti-fibrotic and anti-proliferative effects of the survivin siRNA treatment on hBSMCs were diminished after the inhibition of autophagy by the treatment with 3-MA. Conclusion: In summary, the upregulation of survivin increased cell proliferation and fibrotic protein expression of hBSMC and drove the onset of bladder remodeling through autophagy during BOO. Targeting survivin in pathological hBSMCs could be a promising way to anti-fibrotic therapeutic approach in bladder remodeling secondary to BOO.
Collapse
Affiliation(s)
- Guo Chen
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Laboratory of Reconstructive Urology, West China Hospital, Institute of Urology, Sichuan University, Chengdu, China
| | - Shuang Chen
- Laboratory of Reconstructive Urology, West China Hospital, Institute of Urology, Sichuan University, Chengdu, China
| | - Xingpeng Di
- Laboratory of Reconstructive Urology, West China Hospital, Institute of Urology, Sichuan University, Chengdu, China
| | - Shengyin He
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yugao Liu
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Rui Qu
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yi Luo
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuebai Liu
- Department of Education and Training, Sichuan Cancer Hospital, Chengdu, China
| | - Luo Yang
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Cicenas J, Meskinyte-Kausiliene E, Jukna V, Rimkus A, Simkus J, Soderholm D. SGK1 in Cancer: Biomarker and Drug Target. Cancers (Basel) 2022; 14:2385. [PMID: 35625991 PMCID: PMC9139822 DOI: 10.3390/cancers14102385] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/29/2022] Open
Abstract
Serum- and glucocorticoid-regulated kinases (SGKs) are members of the AGC family of serine/threonine kinases, consisting of three isoforms: SGK1, SGK2, and SGK3. SGK1 was initially cloned as a gene transcriptionally stimulated by serum and glucocorticoids in rat mammary tumor cells. It is upregulated in some cancers and downregulated in others. SGK1 increases tumor cell survival, adhesiveness, invasiveness, motility, and epithelial to mesenchymal transition. It stimulates tumor growth by mechanisms such as activation of K+ channels and Ca2+ channels, Na+/H+ exchanger, amino acid and glucose transporters, downregulation of Foxo3a and p53, and upregulation of β-catenin and NFκB. This chapter focuses on major aspects of SGK1 involvement in cancer, its use as biomarker as well as potential therapeutic target.
Collapse
Affiliation(s)
- Jonas Cicenas
- Proteomics Centre, Institute of Biochemistry, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
- MAP Kinase Resource, Bioinformatics, Melchiorstrasse 9, CH-3027 Bern, Switzerland; (A.R.); (J.S.)
- Center of Animal Husbandry Selections, Breeding Values and Dissemination, Agriculture Academy, Vytautas Magnus University, Studentų g. 11, LT-53361 Akademija, Lithuania; (E.M.-K.); (V.J.)
| | - Edita Meskinyte-Kausiliene
- Center of Animal Husbandry Selections, Breeding Values and Dissemination, Agriculture Academy, Vytautas Magnus University, Studentų g. 11, LT-53361 Akademija, Lithuania; (E.M.-K.); (V.J.)
| | - Vigilijus Jukna
- Center of Animal Husbandry Selections, Breeding Values and Dissemination, Agriculture Academy, Vytautas Magnus University, Studentų g. 11, LT-53361 Akademija, Lithuania; (E.M.-K.); (V.J.)
| | - Arnas Rimkus
- MAP Kinase Resource, Bioinformatics, Melchiorstrasse 9, CH-3027 Bern, Switzerland; (A.R.); (J.S.)
| | - Jokubas Simkus
- MAP Kinase Resource, Bioinformatics, Melchiorstrasse 9, CH-3027 Bern, Switzerland; (A.R.); (J.S.)
| | - Diana Soderholm
- Walker Art Center, 752 Vineland PI, Mineapolis, MN 55403, USA;
| |
Collapse
|
8
|
He J, Yang J, Chen L, He P, Liu X, Wang K, Dong T, Li J, Ma X, Bastian A, Arnulf S. SGK1-targeted TRPV1 regulates bladder smooth muscle cell proliferation due to BOO in mice via NFAT2. IUBMB Life 2022; 74:463-473. [PMID: 35148462 PMCID: PMC9303793 DOI: 10.1002/iub.2605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/03/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Bladder outlet obstruction (BOO) is a type of chronic disease that is mainly caused by benign prostatic hyperplasia. Previous studies discovered the involvements of both SGK1 and NFAT2 in the proliferation of smooth muscle cells after BOO. However, the relationship between these two molecules is yet to be explored. Thus, this study explored the specific mechanism of the SGK1-NFAT2 signaling pathway in mouse BOO-mediated BSMC proliferation in vivo and in vitro. MATERIALS AND METHODS In vivo experiments were performed by suturing 1/2 of the external urethra of female BALB/C mice to cause BOO for 2 weeks. In vitro, MBSMCs were treated with dexamethasone (Dex) or dexamethasone + SB705498 for 12 hours and were transfected with SGK1 siRNA for 48 hours. The expression and distribution of SGK1, TRPV1, NFAT2, and PCNA were measured by Western blotting, polymerase chain reaction and immunohistochemistry. The relationship between SGK1 and TRPV1 was analyzed by immunoprecipitation. The proliferation of MBSMCs was examined by EdU and CCK-8 assays. Bladder weight, smooth muscle thickness and collagen deposition in mice after 2 weeks of BOO were examined. RESULTS Bladder weight, smooth muscle thickness, the collagen deposition ratio and the expression of SGK1, TRPV1, NFAT2, and PCNA were significantly increased in mice after 2 weeks of BOO. Compared with the control, 10 μM Dex promoted the expression of these four molecules and the proliferation of MBSMCs. After inhibiting TRPV1, only the expression of SGK1 was not affected, and the proliferation of MBSMCs was inhibited. After silencing SGK1, the expression of these four molecules and the proliferation of MBSMCs decreased. CoIP suggested that SGK1 acted directly on TRPV1. CONCLUSION In this study, SGK1 targeted TRPV1 to regulate the proliferation of MBSMCs mediated by BOO in mice through NFAT2 and then affected the process of bladder remodeling after BOO. This finding may provide a strategy for BOO drug target screening. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jiangshu He
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China.,Department of Urology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jin Yang
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China.,Department of Urology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Lin Chen
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China.,Department of Urology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Pinglin He
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Xun Liu
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Kai Wang
- Department of Urology, Xichang People's Hospital, Xichang, Sichuan, China
| | - Taotao Dong
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China.,Department of Urology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jia Li
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China.,Department of Urology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xudong Ma
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China.,Department of Urology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Amend Bastian
- Department of Urology, University of Tübingen, D- 72070 Tübingen, Baden-W¨1rttemberg, Germany
| | - Stenzl Arnulf
- Department of Urology, University of Tübingen, D- 72070 Tübingen, Baden-W¨1rttemberg, Germany
| |
Collapse
|
9
|
Sharma S, Basu B. Biomaterials assisted reconstructive urology: The pursuit of an implantable bioengineered neo-urinary bladder. Biomaterials 2021; 281:121331. [PMID: 35016066 DOI: 10.1016/j.biomaterials.2021.121331] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022]
Abstract
Urinary bladder is a dynamic organ performing complex physiological activities. Together with ureters and urethra, it forms the lower urinary tract that facilitates urine collection, low-pressure storage, and volitional voiding. However, pathological disorders are often liable to cause irreversible damage and compromise the normal functionality of the bladder, necessitating surgical intervention for a reconstructive procedure. Non-urinary autologous grafts, primarily derived from gastrointestinal tract, have long been the gold standard in clinics to augment or to replace the diseased bladder tissue. Unfortunately, such treatment strategy is commonly associated with several clinical complications. In absence of an optimal autologous therapy, a biomaterial based bioengineered platform is an attractive prospect revolutionizing the modern urology. Predictably, extensive investigative research has been carried out in pursuit of better urological biomaterials, that overcome the limitations of conventional gastrointestinal graft. Against the above backdrop, this review aims to provide a comprehensive and one-stop update on different biomaterial-based strategies that have been proposed and explored over the past 60 years to restore the dynamic function of the otherwise dysfunctional bladder tissue. Broadly, two unique perspectives of bladder tissue engineering and total alloplastic bladder replacement are critically discussed in terms of their status and progress. While the former is pivoted on scaffold mediated regenerative medicine; in contrast, the latter is directed towards the development of a biostable bladder prosthesis. Together, these routes share a common aspiration of designing and creating a functional equivalent of the bladder wall, albeit, using fundamentally different aspects of biocompatibility and clinical needs. Therefore, an attempt has been made to systematically analyze and summarize the evolution of various classes as well as generations of polymeric biomaterials in urology. Considerable emphasis has been laid on explaining the bioengineering methodologies, pre-clinical and clinical outcomes. Some of the unaddressed challenges, including vascularization, innervation, hollow 3D prototype fabrication and urinary encrustation, have been highlighted that currently delay the successful commercial translation. More importantly, the rapidly evolving and expanding concepts of bioelectronic medicine are discussed to inspire future research efforts towards the further advancement of the field. At the closure, crucial insights are provided to forge the biomaterial assisted reconstruction as a long-term therapeutic strategy in urological practice for patients' care.
Collapse
Affiliation(s)
- Swati Sharma
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India; Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
10
|
Abstract
BACKGROUND The serum and glucocorticoid-induced kinase-1 (SGK1) belonging to the AGC protein kinase family phosphorylates serine and threonine residues of target proteins. It regulates numerous ion channels and transporters and promotes survival under cellular stress. Unique to SGK1 is a tight control at transcriptional and post-transcriptional levels. SGK1 regulates multiple signal transduction pathways related to tumor development. Several studies have reported that SGK1 is upregulated in different types of human malignancies and induces resistance against inhibitors, drugs, and targeted therapies. RESULTS AND CONCLUSION This review highlights the cellular functions of SGK1, its crucial role in cancer development, and clinical insights for SGK1 targeted therapies. Furthermore, the role of SGK1-mediated autophagy as a potential therapeutic target for cancer has been discussed.
Collapse
|
11
|
Chen G, Jin X, Luo D, Ai J, Xiao K, Lai J, He Q, Li H, Wang K. β-Adrenoceptor regulates contraction and inflammatory cytokine expression of human bladder smooth muscle cells via autophagy under pathological hydrostatic pressure. Neurourol Urodyn 2020; 39:2128-2138. [PMID: 32949194 DOI: 10.1002/nau.24517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/30/2020] [Accepted: 09/08/2020] [Indexed: 02/05/2023]
Abstract
AIMS Abnormal intravesical pressure created by partial bladder outlet obstruction (PBOO) triggered the progression from chronic inflammation to fibrosis, initiating structural and functional alterations of bladder. To elucidate the underlying mechanisms of contraction and inflammatory response, we investigated the isolated human bladder smooth muscle cells (hBSMC) under pathological hydrostatic pressure (HP) mimicking the in vivo PBOO condition. METHODS hBSMCs were subjected to HP of 200 cm H2 O to explore the contraction and inflammatory cytokine expression of hBSMC treated with β-adrenoceptors (ADRBs) and/or autophagy signaling pathway agonists and/or antagonists. RESULTS We showed that pathological HP induced the release of the proinflammatory cytokines, including monocyte chemotactic protein-1, regulated upon activation normal T cell expressed and secreted factor, and interleukin-6. HP downregulated ADRB2 and ADRB3 expression, which was consistent with the results of the PBOO rat model. ADRB2 or autophagy activation repressed pathological HP-induced proinflammatory cytokine production. ADRB2, ADRB3 or autophagy activation ameliorated the HP-enhanced contraction. The increased contraction and autophagy activity by ADRB2 agonist under HP conditions were reversed by pretreatment with antagonists of adenosine monophosphate-activated protein kinase (AMPK). CONCLUSION The present study provides evidence that the ADRB3 agonist suppresses hBSMC contraction under pathological HP conditions. Moreover, the ADRB2 agonist negatively regulates the contraction and inflammatory response of hBSMCs through AMPK/mTOR-mediated autophagy under pathological HP. These findings provide a theoretical basis for potential therapeutic strategies for patients with PBOO.
Collapse
Affiliation(s)
- Guo Chen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Department of Surgery, Division of Urology, No.4 West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xi Jin
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | - Jianzhong Ai
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kaiwen Xiao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junyu Lai
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qin He
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Li
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kunjie Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Chen G, Jin X, Gao X, Ai J, Luo D, Zhou L, Xiao K, Li Z, Li H, Wang K. Monocyte Chemotactic Protein-1 Regulates Proliferation and Contractility of Human Bladder Smooth Muscle Cells Under Hydrostatic Pressure. J Interferon Cytokine Res 2020; 40:245-253. [PMID: 32091964 DOI: 10.1089/jir.2019.0186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Guo Chen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), Sichuan University, West China Hospital, Chengdu, Sichuan, P.R. China
| | - Xi Jin
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), Sichuan University, West China Hospital, Chengdu, Sichuan, P.R. China
| | - Xiaoshuai Gao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), Sichuan University, West China Hospital, Chengdu, Sichuan, P.R. China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), Sichuan University, West China Hospital, Chengdu, Sichuan, P.R. China
| | - Deyi Luo
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), Sichuan University, West China Hospital, Chengdu, Sichuan, P.R. China
| | - Liang Zhou
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), Sichuan University, West China Hospital, Chengdu, Sichuan, P.R. China
| | - Kaiwen Xiao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), Sichuan University, West China Hospital, Chengdu, Sichuan, P.R. China
| | - Zirui Li
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), Sichuan University, West China Hospital, Chengdu, Sichuan, P.R. China
| | - Hong Li
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), Sichuan University, West China Hospital, Chengdu, Sichuan, P.R. China
| | - Kunjie Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), Sichuan University, West China Hospital, Chengdu, Sichuan, P.R. China
| |
Collapse
|
13
|
Lan J, Jin T, Ai J, Wei X, Huang Z, Chen H, Jin X, Luo Z, Wang K. β-Adrenoceptors regulate matrix metalloproteinase expression in human urothelial cells under hydrostatic pressure. Neurourol Urodyn 2020; 39:1292-1303. [PMID: 32330364 DOI: 10.1002/nau.24362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/11/2020] [Accepted: 03/28/2020] [Indexed: 02/05/2023]
Abstract
The bladder wall is constantly subjected to intravesical pressure during the filling and voiding cycles. An imbalance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) under elevated intravesical pressure contributes to pathological changes in the bladder. To investigate the changes in human urothelial cells (HUCs) under elevated intravesical pressure, this study analyzed the effect of β-adrenoceptor signaling on the expression of MMPs and TIMPs in HUCs exposed to pathological hydrostatic pressure (HP) (70 cm H2 O) for 6 hours. Quantitative polymerase chain reaction, Western blot analysis, and cell fluorescence staining were used to explore the effect of β-adrenoceptor signaling on the expression of MMPs and TIMPs in HUCs after agonist and/or antagonist treatment. The expression levels of β2 - and β3 -adrenoceptor, MMP1, and MMP2 were greatly downregulated, while the expression of TIMP1 was greatly upregulated. Formoterol and BRL 37344, which are agonists of β2 - and β3 -adrenoceptor, respectively, significantly increased MMP1 and MMP2 expression under 70 cm H2 O. As a classic downstream pathway of β2 - and β3 -adrenoceptor, protein kinase A (PKA) signaling inhibited MMP1 and MMP2 expression by regulating cAMP response element binding protein (CREB) activity. MMP1 and MMP2 expression in HUCs under 70 cm H2 O was modified by β2 - and β3 -adrenoceptor via the PKA/CREB pathway. This outcome suggests that MMPs likely participate in the pathological effects of elevated intravesical pressure. The underlying mechanism of β2 - and β3 -adrenoceptor in elevated intravesical pressure was also revealed; this mechanism constitutes a new potential therapeutic target for partial bladder outlet obstruction.
Collapse
Affiliation(s)
- Jianhua Lan
- Department and Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.,Department of Urology, People's Hospital of Guang'an City, Chengdu, China
| | - Tao Jin
- Department and Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jianzhong Ai
- Department and Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Wei
- Department and Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihui Huang
- Department and Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Hua Chen
- Department of Urology, People's Hospital of Guang'an City, Chengdu, China
| | - Xi Jin
- Department and Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhumei Luo
- Department of Oncology, Chengdu Third People's Hospital, Chengdu, China
| | - Kunjie Wang
- Department and Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Kai W, Lin C, Jin Y, Ping-Lin H, Xun L, Bastian A, Arnulf S, Sha-Sha X, Xu L, Shu C. Urethral meatus stricture BOO stimulates bladder smooth muscle cell proliferation and pyroptosis via IL‑1β and the SGK1‑NFAT2 signaling pathway. Mol Med Rep 2020; 22:219-226. [PMID: 32468047 PMCID: PMC7248470 DOI: 10.3892/mmr.2020.11092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 03/25/2020] [Indexed: 11/29/2022] Open
Abstract
Bladder outlet obstruction (BOO), which is primarily caused by benign prostatic hyperplasia, is a common chronic disease. However, previous studies have most commonly investigated BOO using the acute obstruction model. In the present study, a chronic obstruction model was established to investigate the different pathological alterations in the bladder between acute and chronic obstruction. Compared with chronic obstruction, acute obstruction led to increased expression of proliferating cell nuclear antigen and interleukin-1β, which are markers of proliferation and inflammation, respectively. Furthermore, increased fibrosis in the bladder at week 2 was observed. Low pressure promoted mice bladder smooth muscle cell (MBSMC) proliferation, and pressure overload inhibited cell proliferation and increased the proportion of dead MBSMCs. Further investigation using serum/glucocorticoid regulated kinase 1 (SGK1) small interfering RNAs indicated that low pressure may promote MBSMC proliferation by upregulating SGK1 and nuclear factor of activated T-cell expression levels. Therefore, the present study suggested that acute obstruction led to faster decompensation of bladder function and chronic bladder obstruction displayed an enhanced ability to progress to BOO.
Collapse
Affiliation(s)
- Wang Kai
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan 610041, P.R. China
| | - Chen Lin
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan 610041, P.R. China
| | - Yang Jin
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan 610041, P.R. China
| | - He Ping-Lin
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan 610041, P.R. China
| | - Liu Xun
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan 610041, P.R. China
| | - Amend Bastian
- Department of Urology, University of Tübingen, D‑72070 Tübingen, Baden‑Württemberg, Germany
| | - Stenzl Arnulf
- Department of Urology, University of Tübingen, D‑72070 Tübingen, Baden‑Württemberg, Germany
| | - Xing Sha-Sha
- Central Laboratory, Affiliated Hospital of Chengdu University, Chengdu, Sichuan 610000, P.R. China
| | - Luo Xu
- Department of Urology, Zunyi Medical University, Guiyang, Guizhou 563000, P.R. China
| | - Cui Shu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
15
|
Liu S, Tao R, Wang M, Tian J, Genin GM, Lu TJ, Xu F. Regulation of Cell Behavior by Hydrostatic Pressure. APPLIED MECHANICS REVIEWS 2019; 71:0408031-4080313. [PMID: 31700195 PMCID: PMC6808007 DOI: 10.1115/1.4043947] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 05/18/2019] [Indexed: 06/10/2023]
Abstract
Hydrostatic pressure (HP) regulates diverse cell behaviors including differentiation, migration, apoptosis, and proliferation. Abnormal HP is associated with pathologies including glaucoma and hypertensive fibrotic remodeling. In this review, recent advances in quantifying and predicting how cells respond to HP across several tissue systems are presented, including tissues of the brain, eye, vasculature and bladder, as well as articular cartilage. Finally, some promising directions on the study of cell behaviors regulated by HP are proposed.
Collapse
Affiliation(s)
- Shaobao Liu
- State Key Laboratory of Mechanics andControl of Mechanical Structures,
Nanjing University of Aeronautics and Astronautics,
Nanjing 210016, China
- The Key Laboratory of Biomedical InformationEngineering of Ministry of Education,
School of Life Science and Technology,
Xi'an Jiaotong University,
Xi'an 710049, China
- Department of Biomedical Engineering,Bioinspired Engineering and Biomechanics Center (BEBC),
Xi'an Jiaotong University,
Xi'an 710049, China
| | - Ru Tao
- The Key Laboratory of Biomedical InformationEngineering of Ministry of Education,
School of Life Science and Technology,
Xi'an Jiaotong University,
Xi'an 710049, China
- Department of Biomedical Engineering,Bioinspired Engineering and Biomechanics Center (BEBC),
Xi'an Jiaotong University,
Xi'an 710049, China
| | - Ming Wang
- The Key Laboratory of Biomedical InformationEngineering of Ministry of Education,
School of Life Science and Technology,
Xi'an Jiaotong University,
Xi'an 710049, China
- Department of Biomedical Engineering,Bioinspired Engineering and Biomechanics Center (BEBC),
Xi'an Jiaotong University,
Xi'an 710049, China
| | - Jin Tian
- Department of Biomedical Engineering,Bioinspired Engineering and Biomechanics Center (BEBC),
Xi'an Jiaotong University,
Xi'an 710049, China
- State Key Laboratory for Strength andVibration of Mechanical Structures,
Xi'an Jiaotong University,
Xi'an 710049, China
| | - Guy M. Genin
- The Key Laboratory of Biomedical Information
Engineering of Ministry of Education,
School of Life Science and Technology,
Xi'an Jiaotong University,
Xi'an 710049, China
- Department of Biomedical Engineering,Bioinspired Engineering and Biomechanics Center (BEBC),
Xi'an Jiaotong University,
Xi'an 710049, China
- Department of Mechanical Engineering &
Materials Science,
National Science Foundation Science and
Technology Center for Engineering Mechanobiology,
Washington University,
St. Louis, MO 63130
| | - Tian Jian Lu
- State Key Laboratory of Mechanics andControl of Mechanical Structures,
Nanjing University of Aeronautics and Astronautics,
Nanjing 210016, China
- Department of Structural Engineering & Mechanics,
Nanjing Center for Multifunctional LightweightMaterials and Structures,
Nanjing University of Aeronautics and Astronautics,
Nanjing 21006, China;
State Key Laboratory for Strength andVibration of Mechanical Structures,
Xi'an Jiaotong University,
Xi'an 710049, China
| | - Feng Xu
- The Key Laboratory of Biomedical InformationEngineering of Ministry of Education,
School of Life Science and Technology,
Xi'an Jiaotong University,
Xi'an 710049, China
- Department of Biomedical Engineering,Bioinspired Engineering and Biomechanics Center (BEBC),
Xi'an Jiaotong University,
Xi'an 710049, China
e-mail:
| |
Collapse
|
16
|
Pingyu Z, Binglei J, Qilong J, Tao W, Wei T. Cyclic Stretch Promotes Proliferation and Contraction of Human Bladder Smooth Muscle Cells by Cajal-Mediated c-kit Expression in Interstitial Cells. Med Sci Monit 2019; 25:4784-4792. [PMID: 31249285 PMCID: PMC6612242 DOI: 10.12659/msm.917549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background The present study was performed to assess the effect of mechanical stretch on the proliferation and contractile function of hBSMCs. Material/Methods hBSMCs and ICCs were seeded at 8×104 cells/well in 6-well silicone elastomer-bottomed culture plates coated with type I collagen, and grown to 80% confluence in DMEM/10% FBS and a 5% CO2 humidified atmosphere at 37°C. Cells of hBSMCs and hBSMCs/ICCs of co-culture were then subjected to continuous cycles of stretch-relaxation using a computer-driven, stretch-inducing device. The treated concentration of imatinib was 10 μM. Mechanisms underlying observed hBSMCs contraction were examined using Western blotting and RT-PCR. The 0.1 μM carbachol was separately added to the experimental groups, and 300 s was recorded by laser scanning confocal microscope. Results We found that mechanical stretch increased contraction and proliferation of hBSMCs. Calcium ion activity increased significantly after mechanical stretch. The number of hBSMCs was significantly increased after the combination mechanical stretch with ICCs treatment. After combination mechanical stretch with hBSMCs/ICCs treatment, the mRNA and protein level of M2, M3, and c-kit were significantly increased. After combination of mechanical stretch with no imatinib treatment, the proliferation of hBSMCs was higher than others, and the mRNA and protein level of M2 and M3 were significantly increased. Conclusions We revealed that ICCs could promote hBSMC proliferation and contraction, and cyclic stretch could promote acetylcholine receptor M2 and M3 caused by c-kit in the ICCs, which promoted the contraction of hBSMCs.
Collapse
Affiliation(s)
- Zhu Pingyu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland).,Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China (mainland)
| | - Jiang Binglei
- Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China (mainland)
| | - Jiang Qilong
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Wu Tao
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China (mainland)
| | - Tang Wei
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| |
Collapse
|
17
|
Wang N, Duan L, Ding J, Cao Q, Qian S, Shen H, Qi J. MicroRNA-101 protects bladder of BOO from hypoxia-induced fibrosis by attenuating TGF-β-smad2/3 signaling. IUBMB Life 2018; 71:235-243. [PMID: 30549198 DOI: 10.1002/iub.1968] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/01/2018] [Indexed: 11/07/2022]
Abstract
Bladder outlet obstruction is a common disease, which always evokes urinary bladder wall remodeling significantly. It has been suggested that bladder outlet obstruction can make the bladder progression from inflammation to fibrosis, and hypoxia may play a vital role. It has been found the expression of microRNA-101 varied in bladder after BOO. But what role microRNA-101 and hypoxia play in bladder is not well known. This study is to investigate the mechanism of microRNA-101 and hypoxia in fibrosis of bladder after BOO. We found the expression of microRNA-101 and hif-1α increased in bladder after BOO. Hypoxia could promote the expression of extracellular matrix subtypes and microRNA-101 in BSMCs. When microRNA-101b was translated into BSMCs, the smad2/3 signaling pathway was found to repress. Dual luciferase reporter detected that microRNA-101b attenuated the TGF-β signaling pathway by inhibiting the expression of TGFβR1. Then, we conclude microRNA-101b is induced by hypoxia and represses fibrosis of BSMCs by inhibiting the expression of TGFβR1 through TGF-β signaling pathway, and it may be an anti-fibrotic miRNA for therapy. © 2018 IUBMB Life, 71(1):235-243, 2019.
Collapse
Affiliation(s)
- Ning Wang
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liujian Duan
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Ding
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qifeng Cao
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Subo Qian
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Shen
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Qi
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Lang F, Stournaras C, Zacharopoulou N, Voelkl J, Alesutan I. Serum- and glucocorticoid-inducible kinase 1 and the response to cell stress. Cell Stress 2018; 3:1-8. [PMID: 31225494 PMCID: PMC6551677 DOI: 10.15698/cst2019.01.170] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Expression of the serum- and glucocorticoid-inducible kinase 1 (SGK1) is up-regulated by several types of cell stress, such as ischemia, radiation and hyperosmotic shock. The SGK1 protein is activated by a signaling cascade involving phosphatidylinositide-3-kinase (PI3K), 3-phosphoinositide-dependent kinase 1 (PDK1) and mammalian target of rapamycin (mTOR). SGK1 up-regulates Na+/K+-ATPase, a variety of carriers including Na+-,K+-,2Cl−- cotransporter (NKCC), NaCl cotransporter (NCC), Na+/H+ exchangers, diverse amino acid transporters and several glucose carriers such as Na+-coupled glucose transporter SGLT1. SGK1 further up-regulates a large number of ion channels including epithelial Na+ channel ENaC, voltagegated Na+ channel SCN5A, Ca2+ release-activated Ca2+ channel (ORAI1) with its stimulator STIM1, epithelial Ca2+ channels TRPV5 and TRPV6 and diverse K+ channels. Furthermore, SGK1 influences transcription factors such as nuclear factor kappa-B (NF-κB), p53 tumor suppressor protein, cAMP responsive element-binding protein (CREB), activator protein-1 (AP-1) and forkhead box O3 protein (FOXO3a). Thus, SGK1 supports cellular glucose uptake and glycolysis, angiogenesis, cell survival, cell migration, and wound healing. Presumably as last line of defense against tissue injury, SGK1 fosters tissue fibrosis and tissue calcification replacing energy consuming cells.
Collapse
Affiliation(s)
- Florian Lang
- Department of Vegetative and Clinical Physiology, Eberhard-Karls-University, Tübingen, Germany
| | - Christos Stournaras
- Department of Biochemistry, University of Crete Medical School, Voutes, Heraklion, Greece
| | - Nefeli Zacharopoulou
- Department of Biochemistry, University of Crete Medical School, Voutes, Heraklion, Greece
| | - Jakob Voelkl
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Ioana Alesutan
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
19
|
Gao X, Wei T, Liao B, Ai J, Zhou L, Gong L, Chen Y, He Q, Cheng L, Wang K. Physiological stretch induced proliferation of human urothelial cells via integrin α6-FAK signaling pathway. Neurourol Urodyn 2018; 37:2114-2120. [PMID: 29953644 DOI: 10.1002/nau.23572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/27/2018] [Indexed: 02/05/2023]
Abstract
AIMS To test a kind of stretch pattern which is the optimum stress parameter to promote human urothelial cells (HUCs) proliferation, and to investigate the roles of integrin subunits and their pathway in the HUCs proliferation induced by physiological stretch. METHODS HUCs were seeded on silicone membrane, and subjected to four kinds of stretch (0,5%,10%,15% elongation) for 24 h, as controlled by a BioDynamic® bioreactor. Cell proliferation, viability and cycle distribution were examined using Cell Counting Kit-8 and flow cytometry, respectively. The gene and protein expression of integrin subunits and focal adhesion kinase (FAK) in each group were assessed by Real-time PCR(RT-PCR) and western blot, respectively. Small interfering RNAs (siRNA) were applied to knockdown integrin α6 and FAK expression in HUCs, and FAK inhibitor was used to validate the role of α6 and FAK in cell proliferation under physiological stretch. RESULTS The proliferation of HUCs were highest in the 5% elongation group compared to static control, 10% and 15% elongation group. RT-PCR and western blot showed that 5% cyclic stretch significantly promoted the expression of integrin α6 and FAK. The stretch-induced cell proliferation and FAK expression was inhibited by siRNA of integrin α6. Further study with FAK inhibitor revealed that elongation promoted proliferation though integrin α6 and FAK signaling pathway. CONCLUSIONS Physiological stretch induced HUCs proliferation via integrin α6-FAK signaling pathway, and 5% elongation may be the optimal stress parameter to promote the cell proliferation.
Collapse
Affiliation(s)
- Xiaoshuai Gao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Tangqiang Wei
- Department of Urology, Nanchong Central Hospital, The Second School of Clinical Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, P.R. China
| | - Banghua Liao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Liang Zhou
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Lina Gong
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yuntian Chen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Qing He
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Liang Cheng
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Kunjie Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
20
|
Bioengineering Approaches for Bladder Regeneration. Int J Mol Sci 2018; 19:ijms19061796. [PMID: 29914213 PMCID: PMC6032229 DOI: 10.3390/ijms19061796] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/06/2018] [Accepted: 06/10/2018] [Indexed: 12/25/2022] Open
Abstract
Current clinical strategies for bladder reconstruction or substitution are associated to serious problems. Therefore, new alternative approaches are becoming more and more necessary. The purpose of this work is to review the state of the art of the current bioengineering advances and obstacles reported in bladder regeneration. Tissue bladder engineering requires an ideal engineered bladder scaffold composed of a biocompatible material suitable to sustain the mechanical forces necessary for bladder filling and emptying. In addition, an engineered bladder needs to reconstruct a compliant muscular wall and a highly specialized urothelium, well-orchestrated under control of autonomic and sensory innervations. Bioreactors play a very important role allowing cell growth and specialization into a tissue-engineered vascular construct within a physiological environment. Bioprinting technology is rapidly progressing, achieving the generation of custom-made structural supports using an increasing number of different polymers as ink with a high capacity of reproducibility. Although many promising results have been achieved, few of them have been tested with clinical success. This lack of satisfactory applications is a good reason to discourage researchers in this field and explains, somehow, the limited high-impact scientific production in this area during the last decade, emphasizing that still much more progress is required before bioengineered bladders become a commonplace in the clinical setting.
Collapse
|
21
|
Fusco F, Creta M, De Nunzio C, Iacovelli V, Mangiapia F, Li Marzi V, Finazzi Agrò E. Progressive bladder remodeling due to bladder outlet obstruction: a systematic review of morphological and molecular evidences in humans. BMC Urol 2018; 18:15. [PMID: 29519236 PMCID: PMC5844070 DOI: 10.1186/s12894-018-0329-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/28/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Bladder outlet obstruction is a common urological condition. We aimed to summarize available evidences about bladder outlet obstruction-induced molecular and morphological alterations occurring in human bladder. METHODS We performed a literature search up to December 2017 including clinical and preclinical basic research studies on humans. The following search terms were combined: angiogenesis, apoptosis, bladder outlet obstruction, collagen, electron microscopy, extracellular matrix, fibrosis, hypoxia, histology, inflammation, innervation, ischemia, pressure, proliferation, remodeling, suburothelium, smooth muscle cells, stretch, urothelium. RESULTS We identified 36 relevant studies. A three-stages model of bladder wall remodeling can be hypothesized involving an initial hypertrophy phase, a subsequent compensation phase and a later decompensation. Histological and molecular alterations occur in the following compartments: urothelium, suburothelium, detrusor smooth muscle cells, detrusor extracellular matrix, nerves. Cyclic stretch, increased hydrostatic and cyclic hydrodynamic pressure and hypoxia are stimuli capable of modulating multiple signaling pathways involved in this remodeling process. CONCLUSIONS Bladder outlet obstruction leads to progressive bladder tissue remodeling in humans. Multiple signaling pathways are involved.
Collapse
Affiliation(s)
- Ferdinando Fusco
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università Degli Studi Di Napoli Federico II, Via Pansini, 5, 80131 Naples, Italy
| | - Massimiliano Creta
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università Degli Studi Di Napoli Federico II, Via Pansini, 5, 80131 Naples, Italy
| | - Cosimo De Nunzio
- Dipartimento di Urologia, Ospedale Sant’Andrea, Università Degli Studi di Roma “La Sapienza”, Rota, Italy
| | - Valerio Iacovelli
- Dipartimento di Medicina Sperimentale e Chirurgia, Università Degli Studi di Roma “Tor Vergata”, Roma, Italy
| | - Francesco Mangiapia
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università Degli Studi Di Napoli Federico II, Via Pansini, 5, 80131 Naples, Italy
| | - Vincenzo Li Marzi
- Dipartimento di Urologia, Ospedale Careggi, Università Degli Studi di Firenze, Firenze, Italy
| | - Enrico Finazzi Agrò
- Dipartimento di Medicina Sperimentale e Chirurgia, Università Degli Studi di Roma “Tor Vergata”, Roma, Italy
| |
Collapse
|
22
|
Mesenchymal stem cells inhibit hypoxia-induced inflammatory and fibrotic pathways in bladder smooth muscle cells. World J Urol 2018; 36:1157-1165. [DOI: 10.1007/s00345-018-2247-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 02/20/2018] [Indexed: 12/18/2022] Open
|
23
|
Felsen D, Diaz BJ, Chen J, Gonzalez J, Kristensen MLV, Bohn AB, Roth BT, Poppas DP, Nørregaard R. Pressure and stretch differentially affect proliferation of renal proximal tubular cells. Physiol Rep 2017; 5:e13346. [PMID: 28904080 PMCID: PMC5599855 DOI: 10.14814/phy2.13346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/14/2017] [Indexed: 12/17/2022] Open
Abstract
Renal obstruction is frequently found in adults and children. Mechanical stimuli, including pressure and stretch in the obstructed kidney, contribute to damage; animal models of obstruction are characterized by increased cellular proliferation. We were interested in the direct effects of pressure and stretch on renal tubular cell proliferation. Human HKC-8 or rat NRK-52E proximal tubule cells were subjected to either pressure [0, 60 or 90 mmHg] or static stretch [0 or 20%] for 24 or 48 h. Cell proliferation was measured by cell counting, cell cycle analyzed by flow cytometry, and PCNA and Skp2 expression were determined by qPCR or western blot. Blood gases were determined in an iSTAT system. Proliferation was also assessed in vivo after 24 h of ureteral obstruction. There was a significant increase in HKC-8 cell number after 48 h of exposure to either 60 or 90 mmHg pressure. Western blot and qPCR confirmed increased expression of PCNA and Skp2 in pressurized cells. Cell cycle measurements demonstrated an increase in HKC-8 in S phase. Mechanical stretching increased PCNA protein expression in HKC-8 cells after 48 h while no effect was observed on Skp2 and cell cycle measurements. Increased PCNA expression was found at 24 h after ureteral obstruction. We demonstrate direct transduction of pressure into a proliferative response in HKC-8 and NRK-52E cells, measured by cell number, PCNA and Skp2 expression and increase in cells in S phase, whereas stretch had a less robust effect on proliferation.
Collapse
Affiliation(s)
- Diane Felsen
- Department of Urology, Institute for Pediatric Urology, Komansky Center for Children's Health Weill Cornell Medicine, New York, New York
| | - Bianca J Diaz
- Department of Urology, Institute for Pediatric Urology, Komansky Center for Children's Health Weill Cornell Medicine, New York, New York
| | - Jie Chen
- Department of Urology, Institute for Pediatric Urology, Komansky Center for Children's Health Weill Cornell Medicine, New York, New York
| | - Juana Gonzalez
- Center for Clinical and Translational Science Rockefeller University, New York, New York
| | | | - Anja B Bohn
- Department of Clinical Medicine, Aarhus University, Aarhus C., Denmark
| | - Brendan T Roth
- Department of Urology, Institute for Pediatric Urology, Komansky Center for Children's Health Weill Cornell Medicine, New York, New York
| | - Dix P Poppas
- Department of Urology, Institute for Pediatric Urology, Komansky Center for Children's Health Weill Cornell Medicine, New York, New York
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus C., Denmark
| |
Collapse
|
24
|
Lang F, Guelinckx I, Lemetais G, Melander O. Two Liters a Day Keep the Doctor Away? Considerations on the Pathophysiology of Suboptimal Fluid Intake in the Common Population. Kidney Blood Press Res 2017; 42:483-494. [PMID: 28787716 DOI: 10.1159/000479640] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/19/2017] [Indexed: 11/19/2022] Open
Abstract
Suboptimal fluid intake may require enhanced release of antidiuretic hormone (ADH) or vasopressin for the maintenance of adequate hydration. Enhanced copeptin levels (reflecting enhanced vasopressin levels) in 25% of the common population are associated with enhanced risk of metabolic syndrome with abdominal obesity, type 2 diabetes, hypertension, coronary artery disease, heart failure, vascular dementia, cognitive impairment, microalbuminuria, chronic kidney disease, inflammatory bowel disease, cancer, and premature mortality. Vasopressin stimulates the release of glucocorticoids which in turn up-regulate the serum- and glucocorticoid-inducible kinase 1 (SGK1). Moreover, dehydration upregulates the transcription factor NFAT5, which in turn stimulates SGK1 expression. SGK1 is activated by insulin, growth factors and oxidative stress via phosphatidylinositide-3-kinase, 3-phosphoinositide-dependent kinase PDK1 and mTOR. SGK1 is a powerful stimulator of Na+/K+-ATPase, carriers (e.g. the Na+,K+,2Cl- cotransporter NKCC, the NaCl cotransporter NCC, the Na+/H+ exchanger NHE3, and the Na+ coupled glucose transporter SGLT1), and ion channels (e.g. the epithelial Na+ channel ENaC, the Ca2+ release activated Ca2+ channel Orai1 with its stimulator STIM1, and diverse K+ channels). SGK1 further participates in the regulation of the transcription factors nuclear factor kappa-B NFκB, p53, cAMP responsive element binding protein (CREB), activator protein-1, and forkhead transcription factor FKHR-L1 (FOXO3a). Enhanced SGK1 activity fosters the development of hypertension, obesity, diabetes, thrombosis, stroke, inflammation including inflammatory bowel disease and autoimmune disease, cardiac fibrosis, proteinuria, renal failure as well as tumor growth. The present brief review makes the case that suboptimal fluid intake in the common population may enhance vasopressin and glucocorticoid levels thus up-regulating SGK1 expression and favouring the development of SGK1 related pathologies.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology I, University of Tuebingen, Tuebingen, Germany
| | | | | | - Olle Melander
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
25
|
Yang Y, Yang J, Chen L, Hu J, Xing S, Amend B, Stenzl A, Wei X, Hu H. Minimal Invasive Cystometry and Intra-Abdominal Pressure Assessments in Rodents: A Novel Animal Study. Med Sci Monit 2017; 23:2500-2507. [PMID: 28538709 PMCID: PMC5450855 DOI: 10.12659/msm.904760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The abdominal straining pattern can act as a novel parameter for improving the prediction of bladder outlet obstruction (BOO). To preserve detrusor function in the early stage of urinary system impairment, such as BOO, we establish a novel method for cystometry and Intra-abdominal pressure (IAP) assessments in rodents without cystostomy. MATERIAL AND METHODS Twenty mice and rats were divided into three groups (control, sham-operated and BOO group) respectively. The cystometry and IAP assessments were measured by the pediatric venous indwelling sheath and coronary dilatation catheter connected to Laborie urodynamic system on postoperative day 7. Data was collected simultaneously through urethra and rectum in each group. In addition, bladder histology was assessed to confirm BOO. RESULTS The novel method can collect the urodynamic parameters successfully, including the BLPP, IAP, MBC, etc. IAP was elevated in BOO rats, but no significantly difference was found between the sham-operated rats and the control rats. The hypertrophy of detrusor muscle in bladder section was observed by Masson trichrome staining in BOO group compared with other groups. CONCLUSIONS Our novel method based on innovative research implement for cystometry and IAP assessments in rodents is a reliable and replicable approach for evaluating the lower urinary tract function. Especially it provides detailed information to evaluate lower urinary tract structures and function in the early stage of BOO.
Collapse
Affiliation(s)
- Yafei Yang
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China (mainland)
| | - Jin Yang
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China (mainland)
| | - Lin Chen
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China (mainland)
| | - Jianyun Hu
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China (mainland)
| | - Shasha Xing
- Central Laboratory, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China (mainland)
| | - Bastian Amend
- Department of Urology, University of Tübingen, Tübingen, Germany
| | - Arnulf Stenzl
- Department of Urology, University of Tübingen, Tübingen, Germany
| | - Xin Wei
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China (mainland)
| | - Haifeng Hu
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China (mainland)
| |
Collapse
|
26
|
Wiafe B, Adesida A, Churchill T, Adewuyi EE, Li Z, Metcalfe P. Hypoxia-increased expression of genes involved in inflammation, dedifferentiation, pro-fibrosis, and extracellular matrix remodeling of human bladder smooth muscle cells. In Vitro Cell Dev Biol Anim 2017; 53:58-66. [PMID: 27632054 DOI: 10.1007/s11626-016-0085-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 08/03/2016] [Indexed: 10/21/2022]
Abstract
Partial bladder outlet obstruction (pBOO) is characterized by exaggerated stretch, hydrodynamic pressure, and inflammation which cause significant damage and fibrosis to the bladder wall. Several studies have implicated hypoxia in its pathophysiology. However, the isolated progressive effects of hypoxia on bladder cells are not yet defined. Sub-confluent normal human bladder smooth muscle cells (hbSMC) were cultured in 3% O2 tension for 2, 24, 48, and 72 h. RNA, cellular proteins, and secreted proteins were used for gene expression analysis, immunoblotting, and ELISA, respectively. Transcription of hypoxia-inducible factor (HIF)1α and HIF2α were transiently induced after 2 h of hypoxia (p < 0.05), whereas HIF3 was upregulated after 72 h (p < 0.005). HIF1 and HIF3α proteins were significantly induced after 2 and 72 h, respectively. VEGF mRNA increased significantly after 24 and 72 h (p < 0.005). The inflammatory cytokines, TGFB (protein and mRNA), IL 1β, 1L6, and TNFα (mRNA) demonstrated a time-dependent increased expression. Furthermore, the anti-inflammatory cytokine IL-10 was downregulated after 72 h (p < 0.05). Evidence of smooth muscle cell dedifferentiation included increased αSMA, vimentin, and desmin. Evidence of pro-fibrotic changes included increased CTGF, SMAD 2, and SMAD 3 as well as collagens 1, 2, 3, and 4, fibronectin, aggrecan, and TIMP 1 transcripts (p < 0.05). Total collagen proteins also increased time-dependently (p < 0.05). Together, these results show that exposure of hbSMC to low oxygen tension results in intense hypoxic cascade, including inflammation, de-differentiation, pro-fibrotic changes, and increased extracellular matrix expression. This elucidates mechanisms of hypoxia-driven bladder deterioration in bladder cells, which is important in tailoring in vivo experiments and may ultimately translate into improved clinical outcomes.
Collapse
Affiliation(s)
- Bridget Wiafe
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Adetola Adesida
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Thomas Churchill
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | | | - Zack Li
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Peter Metcalfe
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.
- Department of Surgery, Division of Pediatric Urology, University of Alberta Hospital, 2C3.79 WMC 8440-112 Street NW, Edmonton, Alberta, T6G 2B7, Canada.
| |
Collapse
|
27
|
Chen S, Peng C, Wei X, Luo D, Lin Y, Yang T, Jin X, Gong L, Li H, Wang K. Simulated physiological stretch increases expression of extracellular matrix proteins in human bladder smooth muscle cells via integrin α4/αv-FAK-ERK1/2 signaling pathway. World J Urol 2016; 35:1247-1254. [DOI: 10.1007/s00345-016-1993-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 12/16/2016] [Indexed: 11/29/2022] Open
|
28
|
Sun Y, Luo D, Zhu Y, Wang K. MicroRNA 4323 induces human bladder smooth muscle cell proliferation under cyclic hydrodynamic pressure by activation of erk1/2 signaling pathway. Exp Biol Med (Maywood) 2016; 242:169-176. [PMID: 27651435 DOI: 10.1177/1535370216669837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We cultivated human bladder smooth muscle cells (HBSMCs) under pressures of 0 or 200 cm H2O pressure for 24 h, before using microarray technology to extract and analyze the different expressions of miRNAs and mRNAs in the two groups. We also predicted the target mRNA of the miDNA and performed functional forecasting. Changes in miRNA were identified by quantitative real-time polymerase chain reaction (qRT-PCR) after overexpressing miRNA by transfection. We used flow cytometry to examine HBSMC proliferation, and we used qRT-PCR and Western blot analyses to quantify the expression and activation of mRNAs and proteins. There were nine upregulated and four downregulated miRNAs involved in cell proliferation, including miR 4323, which was identified by qRT-PCR ( p = 0.027). In addition, miR 4323 was shown to inhibit LYN ( p = 0.031), decrease lyn kinase ( p = 0.037), and promotes the phosphorylation of extracellular regulated protein kinases 1 and 2 (Erk1/2) ( p = 0.004). Moreover, overexpression of miR 4323 activated the proliferation pathway regulated by Erk1/2. Then, miR 4323 was shown to stimulate the proliferation of HBSMCs, with the proliferation index improving from 30.84 ± 4.57 to 52.13 ± 3.41 ( p = 0.001). In summary, when the miRNA miR 4323 was overexpressed under cyclic hydrodynamic pressure, LYN is decreased and the Erk1/2 signaling pathway is activated; in addition, miR 4323 is involved in HBSMC proliferation when under hydrodynamic pressure.
Collapse
Affiliation(s)
- Yi Sun
- 1 Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.,2 West China Medicine Center, Sichuan University, Chengdu 610041, Sichuan, China
| | - Deyi Luo
- 1 Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuchun Zhu
- 1 Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kunjie Wang
- 1 Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
29
|
MiR 3180-5p promotes proliferation in human bladder smooth muscle cell by targeting PODN under hydrodynamic pressure. Sci Rep 2016; 6:33042. [PMID: 27608612 PMCID: PMC5017130 DOI: 10.1038/srep33042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/18/2016] [Indexed: 02/05/2023] Open
Abstract
Human bladder smooth muscle cells (HBSMCs) were subjected to pressure cycles of up to 200 cm H2O to a pressure of 0 cm H2O for 24 hours. The total RNA extracted from each group was subjected to microarray analysis. miR-3180-5p emerged as the most overexpressed of all the differentially expressed microRNAs, and this finding was validated by PCR. We then used CCK-8 to quantify cell proliferation after liposome-mediated transfection. Subsequently, we investigated the change in PODN and its downstream signaling proteins, including cyclin-dependent kinase 2 (cdk2) and p21. In addition, flow cytometry was performed to quantify cell-cycle distribution. The results show that miR-3180-5p, the microRNA that was most overexpressed in response to HP, reduced the expression of PODN and podocan (p = 0.004 and p = 0.041, respectively). Silencing of PODN via miR-3180-5p overexpression revealed a significant promotion of cell proliferation increased in the CCK-8 experiment, p = 0.00077). This cell proliferation was accompanied by an increase in cdk2 expression (p = 0.00193) and a decrease in p21 expression (p = 0.0095). The percentage of cells in (S + G2/M) improved after transfection (p = 0.002). It was apparent that HP upregulates miR-3180-5p, which inhibits the expression of PODN and promotes HBSMC proliferation via the cdk2 signaling pathway.
Collapse
|
30
|
Liang Z, Xin W, Qiang L, Xiang C, Bang-Hua L, Jin Y, De-Yi L, Hong L, Kun-Jie W. Hydrostatic pressure and muscarinic receptors are involved in the release of inflammatory cytokines in human bladder smooth muscle cells. Neurourol Urodyn 2016; 36:1261-1269. [PMID: 27576172 DOI: 10.1002/nau.23104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/27/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Zhou Liang
- Department of Urology, West China Hospital; Sichuan University; Chengdu P.R. China
| | - Wei Xin
- Department of Urology, West China Hospital; Sichuan University; Chengdu P.R. China
| | - Liu Qiang
- Department of Urology, West China Hospital; Sichuan University; Chengdu P.R. China
| | - Cai Xiang
- Department of Urology, West China Hospital; Sichuan University; Chengdu P.R. China
| | - Liao Bang-Hua
- Department of Urology, West China Hospital; Sichuan University; Chengdu P.R. China
| | - Yang Jin
- Department of Urology; Affiliated Hospital/Clinical Medical College of Chengdu University; Chengdu P.R. China
| | - Luo De-Yi
- Department of Urology, West China Hospital; Sichuan University; Chengdu P.R. China
| | - Li Hong
- Department of Urology, West China Hospital; Sichuan University; Chengdu P.R. China
| | - Wang Kun-Jie
- Department of Urology, West China Hospital; Sichuan University; Chengdu P.R. China
| |
Collapse
|
31
|
Lou Y, Zhang F, Luo Y, Wang L, Huang S, Jin F. Serum and Glucocorticoid Regulated Kinase 1 in Sodium Homeostasis. Int J Mol Sci 2016; 17:ijms17081307. [PMID: 27517916 PMCID: PMC5000704 DOI: 10.3390/ijms17081307] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/13/2022] Open
Abstract
The ubiquitously expressed serum and glucocorticoid regulated kinase 1 (SGK1) is tightly regulated by osmotic and hormonal signals, including glucocorticoids and mineralocorticoids. Recently, SGK1 has been implicated as a signal hub for the regulation of sodium transport. SGK1 modulates the activities of multiple ion channels and carriers, such as epithelial sodium channel (ENaC), voltage-gated sodium channel (Nav1.5), sodium hydrogen exchangers 1 and 3 (NHE1 and NHE3), sodium-chloride symporter (NCC), and sodium-potassium-chloride cotransporter 2 (NKCC2); as well as the sodium-potassium adenosine triphosphatase (Na+/K+-ATPase) and type A natriuretic peptide receptor (NPR-A). Accordingly, SGK1 is implicated in the physiology and pathophysiology of Na+ homeostasis. Here, we focus particularly on recent findings of SGK1’s involvement in Na+ transport in renal sodium reabsorption, hormone-stimulated salt appetite and fluid balance and discuss the abnormal SGK1-mediated Na+ reabsorption in hypertension, heart disease, edema with diabetes, and embryo implantation failure.
Collapse
Affiliation(s)
- Yiyun Lou
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang, China.
| | - Fan Zhang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Yuqin Luo
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Liya Wang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Shisi Huang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
- Key Laboratory of Reproductive Genetics, National Ministry of Education (Zhejiang University), Women's Reproductive Healthy Laboratory of Zhejiang Province, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
32
|
Chen L, Yang J, Hu HF, Wang ZL. Re: Preventive Effect of Hydrogen Water on the Development of Detrusor Overactivity in a Rat Model of Bladder Outlet Obstruction: N. Miyazaki, O. Yamaguchi, M. Nomiya, K. Aikawa and J. Kimura J Urol 2016;195:780-787. J Urol 2016; 196:620-1. [PMID: 27154566 DOI: 10.1016/j.juro.2016.03.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Lin Chen
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, China.
| | - Jin Yang
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, China
| | - Hai-Feng Hu
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, China
| | - Zi-Li Wang
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, China
| |
Collapse
|
33
|
Sloff M, Simaioforidis V, Tiemessen DM, Janke HP, Kortmann BBM, Roelofs LAJ, Geutjes PJ, Oosterwijk E, Feitz WFJ. Tubular Constructs as Artificial Urinary Conduits. J Urol 2016; 196:1279-86. [PMID: 27185613 DOI: 10.1016/j.juro.2016.04.092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE A readily available artificial urinary conduit might be substituted for autologous bowel in standard urinary diversions and minimize bowel associated complications. However, the use of large constructs remains challenging as host cellular ingrowth and/or vascularization is limited. We investigated large, reinforced, collagen based tubular constructs in a urinary diversion porcine model and compared subcutaneously pre-implanted constructs to cell seeded and basic constructs. MATERIALS AND METHODS Reinforced tubular constructs were prepared from type I collagen and biodegradable Vicryl® meshes through standard freezing, lyophilization and cross-linking techniques. Artificial urinary conduits were created in 17 female Landrace pigs, including 7 with a basic untreated construct, 5 with a construct seeded with autologous urothelial and smooth muscle cells, and 5 with a free graft formed by subcutaneous pre-implantation of a basic construct. All pigs were evaluated after 1 month. RESULTS The survival rate was 94%. At evaluation 1 basic and 1 cell seeded conduit were occluded. Urinary flow was maintained in all conduits created with pre-implanted constructs. Pre-implantation of the basic construct resulted in a vascularized tissue tube, which could be used as a free graft to create an artificial conduit. The outcome was favorable compared to that of the other conduits. Urinary drainage was better, hydroureteronephrosis was limited and tissue regeneration was improved. CONCLUSIONS Subcutaneous pre-implantation of a basic reinforced tubular construct resulted in a vascularized autologous tube, which may potentially replace bowel in standard urinary diversions. To our knowledge we introduce a straightforward 2-step procedure to create artificial urinary conduits in a large animal model.
Collapse
Affiliation(s)
- Marije Sloff
- Department of Urology, Radboud Institute for Molecular Life Sciences and Amalia's Children Hospital, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Vasileios Simaioforidis
- Department of Urology, Radboud Institute for Molecular Life Sciences and Amalia's Children Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dorien M Tiemessen
- Department of Urology, Radboud Institute for Molecular Life Sciences and Amalia's Children Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Heinz P Janke
- Department of Urology, Radboud Institute for Molecular Life Sciences and Amalia's Children Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Barbara B M Kortmann
- Department of Urology, Radboud Institute for Molecular Life Sciences and Amalia's Children Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Luc A J Roelofs
- Department of Urology, Radboud Institute for Molecular Life Sciences and Amalia's Children Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paul J Geutjes
- Department of Urology, Radboud Institute for Molecular Life Sciences and Amalia's Children Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Egbert Oosterwijk
- Department of Urology, Radboud Institute for Molecular Life Sciences and Amalia's Children Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wout F J Feitz
- Department of Urology, Radboud Institute for Molecular Life Sciences and Amalia's Children Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
34
|
Wang W, He J, Feng B, Zhang Z, Zhang W, Zhou G, Cao Y, Fu W, Liu W. Aligned nanofibers direct human dermal fibroblasts to tenogenic phenotype in vitro and enhance tendon regeneration in vivo. Nanomedicine (Lond) 2016; 11:1055-72. [PMID: 27074092 DOI: 10.2217/nnm.16.24] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To explore the effect of aligned nanofibers on inducing tenogenic phenotype of human dermal fibroblasts (hDFs) in vitro and on inducing de novo tendon regeneration in vivo. Materials & methods: Random and aligned nanofibers were electrospun, seeded with hDFs and cultured in vitro, and in vivo implanted without cell seeding to bridge segmental defect of rat Achilles tendon. Results: In vitro, the well-aligned nanofibers could elongate hDFs, induce a tenogenic phenotype and form better organized neotendon respectively compared with random nanofibers. In vivo, the bridged nanofibers of aligned group could better recruit host cells and regenerate Achilles tendon de novo with enhanced tenogenic gene expression. Conclusion: Aligned nanofibers could induce tenogenic phenotype in vitro and regenerate tendon in vivo.
Collapse
Affiliation(s)
- Wenbo Wang
- Department of Plastic & Reconstructive Surgery, Shanghai Tissue Engineering Key Laboratory, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jing He
- Department of Anatomy & Neurobiology, Tongji University School of Medicine, Shanghai, PR China
| | - Bei Feng
- Department of Pediatric Cardiothoracic Surgery, Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao University, Shanghai, PR China
| | - Zhiyong Zhang
- Department of Plastic & Reconstructive Surgery, Shanghai Tissue Engineering Key Laboratory, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
- National Tissue Engineering Center of China, Shanghai, PR China
| | - Wenjie Zhang
- Department of Plastic & Reconstructive Surgery, Shanghai Tissue Engineering Key Laboratory, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
- National Tissue Engineering Center of China, Shanghai, PR China
| | - Guangdong Zhou
- Department of Plastic & Reconstructive Surgery, Shanghai Tissue Engineering Key Laboratory, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
- National Tissue Engineering Center of China, Shanghai, PR China
| | - Yilin Cao
- Department of Plastic & Reconstructive Surgery, Shanghai Tissue Engineering Key Laboratory, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
- National Tissue Engineering Center of China, Shanghai, PR China
| | - Wei Fu
- Department of Pediatric Cardiothoracic Surgery, Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao University, Shanghai, PR China
| | - Wei Liu
- Department of Plastic & Reconstructive Surgery, Shanghai Tissue Engineering Key Laboratory, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
- National Tissue Engineering Center of China, Shanghai, PR China
| |
Collapse
|
35
|
Luo J, Liang A, Liang M, Xia R, Rizvi Y, Wang Y, Cheng J. Serum Glucocorticoid-Regulated Kinase 1 Blocks CKD-Induced Muscle Wasting Via Inactivation of FoxO3a and Smad2/3. J Am Soc Nephrol 2016; 27:2797-808. [PMID: 26880799 DOI: 10.1681/asn.2015080867] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/10/2016] [Indexed: 12/18/2022] Open
Abstract
Muscle proteolysis in CKD is stimulated when the ubiquitin-proteasome system is activated. Serum glucocorticoid-regulated kinase 1 (SGK-1) is involved in skeletal muscle homeostasis, but the role of this protein in CKD-induced muscle wasting is unknown. We found that, compared with muscles from healthy controls, muscles from patients and mice with CKD express low levels of SGK-1. In mice, SGK-1-knockout (SGK-1-KO) induced muscle loss that correlated with increased expression of ubiquitin E3 ligases known to facilitate protein degradation by the ubiquitin-proteasome, and CKD substantially aggravated this response. SGK-1-KO also altered the phosphorylation levels of transcription factors FoxO3a and Smad2/3. In C2C12 muscle cells, expression of dominant negative FoxO3a or knockdown of Smad2/3 suppressed the upregulation of E3 ligases induced by loss of SGK-1. Additionally, SGK-1 overexpression increased the level of phosphorylated N-myc downstream-regulated gene 1 protein, which directly interacted with and suppressed the phosphorylation of Smad2/3. Overexpression of SGK-1 in wild-type mice with CKD had similar effects on the phosphorylation of FoxO3a and Smad2/3 and prevented CKD-induced muscle atrophy. Finally, mechanical stretch of C2C12 muscle cells or treadmill running of wild-type mice with CKD stimulated SGK-1 production, and treadmill running inhibited proteolysis in muscle. These protective responses were absent in SGK-1-KO mice. Thus, SGK-1 could be a mechanical sensor that mediates exercise-induced improvement in muscle wasting stimulated by CKD.
Collapse
Affiliation(s)
- Jinlong Luo
- Department of Emergency, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; and Selzman Institute for Kidney Health, Nephrology Division, Baylor College of Medicine, Houston, Texas
| | - Anlin Liang
- Selzman Institute for Kidney Health, Nephrology Division, Baylor College of Medicine, Houston, Texas
| | - Ming Liang
- Selzman Institute for Kidney Health, Nephrology Division, Baylor College of Medicine, Houston, Texas
| | - Ruohan Xia
- Selzman Institute for Kidney Health, Nephrology Division, Baylor College of Medicine, Houston, Texas
| | - Yasmeen Rizvi
- Selzman Institute for Kidney Health, Nephrology Division, Baylor College of Medicine, Houston, Texas
| | - Yun Wang
- Selzman Institute for Kidney Health, Nephrology Division, Baylor College of Medicine, Houston, Texas
| | - Jizhong Cheng
- Selzman Institute for Kidney Health, Nephrology Division, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
36
|
Koeck I, Burkhard FC, Monastyrskaya K. Activation of common signaling pathways during remodeling of the heart and the bladder. Biochem Pharmacol 2015; 102:7-19. [PMID: 26390804 DOI: 10.1016/j.bcp.2015.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/14/2015] [Indexed: 12/12/2022]
Abstract
The heart and the urinary bladder are hollow muscular organs, which can be afflicted by pressure overload injury due to pathological conditions such as hypertension and bladder outlet obstruction. This increased outflow resistance induces hypertrophy, marked by dramatic changes in the organs' phenotype and function. The end result in both the heart and the bladder can be acute organ failure due to advanced fibrosis and the subsequent loss of contractility. There is emerging evidence that microRNAs (miRNAs) play an important role in the pathogenesis of heart failure and bladder dysfunction. MiRNAs are endogenous non-coding single-stranded RNAs, which regulate gene expression and control adaptive and maladaptive organ remodeling processes. This Review summarizes the current knowledge of molecular alterations in the heart and the bladder and highlights common signaling pathways and regulatory events. The miRNA expression analysis and experimental target validation done in the heart provide a valuable source of information for investigators working on the bladder and other organs undergoing the process of fibrotic remodeling. Aberrantly expressed miRNA are amendable to pharmacological manipulation, offering an opportunity for development of new therapies for cardiac and bladder hypertrophy and failure.
Collapse
Affiliation(s)
- Ivonne Koeck
- Urology Research Laboratory, Department Clinical Research, University of Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | | | - Katia Monastyrskaya
- Urology Research Laboratory, Department Clinical Research, University of Bern, Switzerland; Department of Urology, University Hospital, Bern, Switzerland.
| |
Collapse
|
37
|
Luo DY, Wazir R, Du C, Tian Y, Yue X, Wei TQ, Wang KJ. Magnitude-dependent proliferation and contractility modulation of human bladder smooth muscle cells under physiological stretch. World J Urol 2015; 33:1881-7. [PMID: 25678345 DOI: 10.1007/s00345-015-1509-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 02/04/2015] [Indexed: 02/05/2023] Open
Abstract
PURPOSE The purpose of this study was to describe and test a kind of stretch pattern which is based on modified BOSE BioDynamic system to produce optimum physiological stretch during bladder cycle. Moreover, we aimed to emphasize the effects of physiological stretch's amplitude upon proliferation and contractility of human bladder smooth muscle cells (HBSMCs). METHODS HBSMCs were seeded onto silicone membrane and subjected to stretch simulating bladder cycle at the range of stretches and time according to customized software on modified BOSE BioDynamic bioreactor. Morphological changes were assessed using immunofluorescence and confocal laser scanning microscope. Cell proliferation and cell viability were determined by BrdU incorporation assay and Cell Counting Kit-8, respectively. Contractility of the cells was determined using collagen gel contraction assay. RT-PCR was used to assess phenotypic and contractility markers. RESULTS HBSMCs were found to show morphologically spindle-shaped and orientation at various elongations in the modified bioreactor. Stretch-induced proliferation and viability depended on the magnitude of stretch, and stretches also regulate contractility and contraction markers in a magnitude-dependent manner. CONCLUSION We described and tested a kind of stretch pattern which delivers physiological stretch implemented during bladder cycle. The findings also showed that mechanical stretch can promote magnitude-dependent morphological, proliferative and contractile modulation of HBSMCs in vitro.
Collapse
Affiliation(s)
- De-Yi Luo
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Romel Wazir
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Caigan Du
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada.,Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Ye Tian
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xuan Yue
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Tang-Qiang Wei
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Kun-Jie Wang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
38
|
Bu S, Zhu Y, Peng C, Cai X, Cao C, Tan H, Cheng J, Zhang J, Liu J, Li H, Wang K. Simulated physiological stretch-induced proliferation of human bladder smooth muscle cells is regulated by MMPs. Arch Biochem Biophys 2014; 564:197-202. [DOI: 10.1016/j.abb.2014.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 09/01/2014] [Accepted: 09/18/2014] [Indexed: 01/18/2023]
|
39
|
Lang F, Stournaras C, Alesutan I. Regulation of transport across cell membranes by the serum- and glucocorticoid-inducible kinase SGK1. Mol Membr Biol 2014; 31:29-36. [PMID: 24417516 DOI: 10.3109/09687688.2013.874598] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The serum- and glucocorticoid-inducible kinase 1 (SGK1) is genomically upregulated by cell stress including energy depletion and hyperosmotic shock as well as a variety of hormones including glucocorticoids, mineralocorticoids and TGFβ. SGK1 is activated by insulin, growth factors and oxidative stress via phosphatidylinositide-3-kinase, 3-phosphoinositide-dependent kinase PDK1 and mTOR. SGK1 is a powerful stimulator of Na(+)/K(+)-ATPase, carriers (e.g., NCC, NKCC, NHE1, NHE3, SGLT1, several amino acid transporters) and ion channels (e.g., ENaC, SCN5A, TRPV4-6, ORAI1/STIM1, ROMK, KCNE1/KCNQ1, GluR6, CFTR). Mechanisms employed by SGK1 in transport regulation include direct phosphorylation of target transport proteins, phosphorylation and thus activation of other transport regulating kinases, stabilization of membrane proteins by phosphorylation and thus inactivation of the ubiquitin ligase NEDD4-2, as well as stimulation of transport protein expression by upregulation transcription factors (e.g., nuclear factor kappa-B [NFκB]) and by fostering of protein translation. SGK1 sensitivity of pump, carrier and channel activities participate in the regulation of epithelial transport, cardiac and neuronal excitability, degranulation, platelet function, migration, cell proliferation and apoptosis. SGK1-sensitive functions do not require the presence of SGK1 but are markedly upregulated by SGK1. Accordingly, the phenotype of SGK1 knockout mice is mild. The mice are, however, less sensitive to excessive activation of transport by glucocorticoids, mineralocorticoids, insulin and inflammation. Moreover, excessive SGK1 activity contributes to the pathophysiology of hypertension, obesity, diabetes, thrombosis, stroke, inflammation, autoimmune disease, fibrosis and tumor growth.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, University of Tübingen , Germany and
| | | | | |
Collapse
|
40
|
Wei TQ, Luo DY, Chen L, Wu T, Wang KJ. Cyclic hydrodynamic pressure induced proliferation of bladder smooth muscle cells via integrin alpha5 and FAK. Physiol Res 2013; 63:127-34. [PMID: 24182341 DOI: 10.33549/physiolres.932506] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
According to previous studies, integrins play an important role in the mechanotransduction. The aim of this study was to examine the role of integrin subunits and its down-stream signaling molecules in the cyclic hydrodynamic pressure-induced proliferation of human bladder smooth muscle cells (HBSMCs) cultured in scaffolds. The HBSMCs cultured in scaffolds were subjected to four different levels of cyclic hydrodynamic pressure for 24 hours, which were controlled by a BOSE BioDynamic bioreactor. Flow cytometry was used to examine cell cycle distribution. Real-time RT-PCR and western blotting were used to examine the expression levels of integrin subunits and their downstream signaling molecules. Integrin alpha5 siRNA was applied to validate the role of integrin alpha5 in cell proliferation. Here, we showed that cyclic hydrodynamic pressure promoted proliferation of HBSMCs. The cyclic hydrodynamic pressure also increased expression of integrin alpha5 and phosphorylation of FAK, the key mediator of integrin alpha5 signaling, but not that of integrin alpha1, alpha3, alpha4, alphav, beta1 and beta3. Moreover, inhibition of integrin alpha5 decreased the level of p-FAK and abolished proliferation of HBSMCs stimulated by cyclic hydrodynamic pressure. Taken together, we demonstrate for the ?rst time that the integrin alpha5-FAK signaling pathway controls the proliferation of HBSMCs in response to cyclic hydrodynamic pressure.
Collapse
Affiliation(s)
- T-Q Wei
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R.C.
| | | | | | | | | |
Collapse
|
41
|
Chen L, Wu T, Wei TQ, Wei X, Li SF, Wang KJ, Li H. Skp2-mediated degradation of p27 regulates cell cycle progression in compressed human bladder smooth muscle cells. Kaohsiung J Med Sci 2013; 30:181-6. [PMID: 24656158 DOI: 10.1016/j.kjms.2013.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/06/2013] [Indexed: 02/05/2023] Open
Abstract
Bladder outlet obstruction (BOO) results in smooth muscle cell hyperplasia, decreased bladder wall compliance, and lower and upper urinary tract pathology. Mechanical stimulus on detrusor tissue is critical to BOO disease progression. Our previous studies confirm that mechanical stimulus triggers human bladder smooth muscle cell (HBSMC) proliferation. To better understand the signal transduction mechanisms for this process we detected cell cycle machinery of HBSMC (Bose ® Biodynamic, Minnetonka, MN, USA). HBSMCs cultured in scaffolds were subjected to four different pressures (0 cmH2O, 100 cmH2O, 200 cmH2O, and 300 cmH2O) for 24 hours, which were controlled by a BOSE BioDynamic bioreactor. Then we used flow cytometry to examine cell cycle distribution, polymerase chain reaction, and immunoblotting to quantify Skp2, p27, and p21 expression in each group. Additionally, Skp2 was silenced in HBSMCs using small interfering RNA to validate the role of Skp2 in mediating pressure-induced cell cycle progression. Compared with the 0 cmH2O control, HBSMCs in the 200 cmH2O and 300 cmH2O groups exhibited high-level expression of Skp2 gene and low-level expression of p27 protein. However, p21, another downstream signal of Skp2, showed no significant change between groups. In addition, Skp2 silencing abolished increases in cell proliferation induced by pressure. To the best of our knowledge, this is the first report on the functional importance of Skp2 in cyclic hydrodynamic pressure stimulated HBSMC proliferation. The signal transduction mechanism for this process involves p27 as well as p21 signaling pathway.
Collapse
Affiliation(s)
- Lin Chen
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Wu
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Tang-Qiang Wei
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Wei
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Sheng-Fu Li
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, China
| | - Kun-Jie Wang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Hong Li
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Wazir R, Luo DY, Tian Y, Yue X, Li H, Wang KJ. The purinergic component of human bladder smooth muscle cells' proliferation and contraction under physiological stretch. Biochem Biophys Res Commun 2013; 437:256-60. [PMID: 23811273 DOI: 10.1016/j.bbrc.2013.06.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 06/17/2013] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate whether cyclic stretch induces proliferation and contraction of human smooth muscle cells (HBSMCs), mediated by P2X purinoceptor 1 and 2 and the signal transduction mechanisms of this process. METHODS HBSMCs were seeded on silicone membrane and stretched under varying parameters; (equibiaxial elongation: 2.5%, 5%, 10%, 15%, 20%, 25%), (Frequency: 0.05Hz, 0.1Hz, 0.2Hz, 0.5Hz, 1Hz). 5-Bromo-2-deoxyuridine assay was employed for proliferative studies. Contractility of the cells was determined using collagen gel contraction assay. After optimal physiological stretch was established; P2X1 and P2X2 were analyzed by real time polymerase chain reaction and Western Blot. Specificity of purinoceptors was maintained by employing specific inhibitors; (NF023 for P2X1, and A317491for P2X2), in some experiments. RESULTS Optimum proliferation and contractility were observed at 5% and 10% equibiaxial stretching respectively, applied at a frequency of 0.1Hz; At 5% stretch, proliferation increased from 0.837±0.026 (control) to 1.462±0.023%, p<0.05. Mean contraction at 10% stretching increased from 31.7±2.3%, (control) to 78.28 ±1.45%, p< 0.05. Expression of P2X1 and P2X2 was upregulated after application of stretch. Inhibition had effects on proliferation (1.232±0.051, p<0.05 NF023) and (1.302±0.021, p<0.05 A314791) while contractility was markedly reduced (68.24±2.31, p<0.05 NF023) and (73.2±2.87, p<0.05 A314791). These findings shows that mechanical stretch can promote magnitude-dependent proliferative and contractile modulation of HBSMCs in vitro, and P2X1 and 2 are at least partially responsible in this process.
Collapse
Affiliation(s)
- Romel Wazir
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | | | | | | | | | | |
Collapse
|
43
|
TIAN YE, YUE XUAN, LUO DEYI, WAZIR ROMEL, WANG JIANZHONG, WU TAO, CHEN LIN, LIAO ANGHUA, WANG KUNJIE. Increased proliferation of human bladder smooth muscle cells is mediated by physiological cyclic stretch via the PI3K-SGK1-Kv1.3 pathway. Mol Med Rep 2013; 8:294-8. [DOI: 10.3892/mmr.2013.1473] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/07/2013] [Indexed: 11/06/2022] Open
|
44
|
Luo DY, Wazir R, Tian Y, Yue X, Wei TQ, Wang KJ. Integrin αv mediates contractility whereas integrin α4 regulates proliferation of human bladder smooth muscle cells via FAK pathway under physiological stretch. J Urol 2013; 190:1421-9. [PMID: 23587631 DOI: 10.1016/j.juro.2013.04.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2013] [Indexed: 02/05/2023]
Abstract
PURPOSE The requirement of integrins for mechanotransduction has been recognized for some time. We investigated the role of integrin subunits and their pathway in the physiological stretch induced contractility and proliferation of human bladder smooth muscle cells. MATERIALS AND METHODS Human bladder smooth muscle cells were seeded on silicone membrane and subjected to stretch, simulating bladder cycles of various stretches and times, as controlled by customized software on a modified BioDynamic bioreactor. Cell proliferation, viability and cycle were determined by BrdU incorporation assay, the Cell Counting Kit-8 (Beyotime Institute of Biotechnology, Haimen, People's Republic of China) and flow cytometry, respectively. Cell contractility was determined using a collagen gel contraction assay. RESULTS Physiological stretch increased cell contractility, proliferation and viability. Knockdown of integrin αv but not α4 in the cells disrupted the enhanced contractility induced by stretch. Under physiological stretch conditions, the integrin αv level and phospho-FAK/FAK ratio correlated positively with cell stretch induced enhanced contractility. Further examination revealed that contractile marker expression was associated with integrin αv activation through the FAK pathway. At the same time integrin α4 but not integrin αv mediated stretch induced cell proliferation and viability. CONCLUSIONS These data revealed that different integrins have different roles in the contractility and proliferation of human bladder smooth muscle cells under physiological stretch. This suggests that different integrins may become specific therapeutic targets in patients with voiding dysfunction. They may also be used to design a specific microenvironment for optimal bladder tissue regeneration.
Collapse
Affiliation(s)
- De-Yi Luo
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
45
|
Lang F, Voelkl J. Therapeutic potential of serum and glucocorticoid inducible kinase inhibition. Expert Opin Investig Drugs 2013; 22:701-14. [PMID: 23506284 DOI: 10.1517/13543784.2013.778971] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Expression of serum-and-glucocorticoid-inducible kinase-1 (SGK1) is low in most cells, but dramatically increases under certain pathophysiological conditions, such as glucocorticoid or mineralocorticoid excess, inflammation with TGFβ release, hyperglycemia, cell shrinkage and ischemia. SGK1 is activated by insulin and growth factors via phosphatidylinositide-3-kinase, 3-phosphoinositide-dependent kinase and mammalian target of rapamycin. SGK1 sensitive functions include activation of ion channels (including epithelial Na(+) channel ENaC, voltage gated Na(+) channel SCN5A transient receptor potential channels TRPV4 - 6, Ca(2+) release activated Ca(2+) channel Orai1/STIM1, renal outer medullary K(+) channel ROMK, voltage gated K(+) channels KCNE1/KCNQ1, kainate receptor GluR6, cystic fibrosis transmembrane regulator CFTR), carriers (including Na(+),Cl(-) symport NCC, Na(+),K(+),2Cl(-) symport NKCC, Na(+)/H(+) exchangers NHE1 and NHE3, Na(+), glucose symport SGLT1, several amino acid transporters), and Na(+)/K(+)-ATPase. SGK1 regulates several enzymes (e.g., glycogen synthase kinase-3, ubiquitin-ligase Nedd4-2) and transcription factors (e.g., forkhead transcription factor 3a, β-catenin, nuclear factor kappa B). AREAS COVERED The phenotype of SGK1 knockout mice is mild and SGK1 is apparently dispensible for basic functions. Excessive SGK1 expression and activity, however, contributes to the pathophysiology of several disorders, including hypertension, obesity, diabetes, thrombosis, stroke, fibrosing disease, infertility and tumor growth. A SGK1 gene variant (prevalence ∼ 3 - 5% in Caucasians and ∼ 10% in Africans) is associated with hypertension, stroke, obesity and type 2 diabetes. SGK1 inhibitors have been developed and shown to reduce blood pressure of hyperinsulinemic mice and to counteract tumor cell survival. EXPERT OPINION Targeting SGK1 may be a therapeutic option in several clinical conditions, including metabolic syndrome and tumor growth.
Collapse
Affiliation(s)
- Florian Lang
- University of Tuebingen, Department of Physiology, Tuebingen, Germany.
| | | |
Collapse
|