1
|
Solano-Collado V, Colamarino RA, Calderwood DA, Baldassarre M, Spanò S. A Small-Scale shRNA Screen in Primary Mouse Macrophages Identifies a Role for the Rab GTPase Rab1b in Controlling Salmonella Typhi Growth. Front Cell Infect Microbiol 2021; 11:660689. [PMID: 33898333 PMCID: PMC8059790 DOI: 10.3389/fcimb.2021.660689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 01/21/2023] Open
Abstract
Salmonella Typhi is a human-restricted bacterial pathogen that causes typhoid fever, a life-threatening systemic infection. A fundamental aspect of S. Typhi pathogenesis is its ability to survive in human macrophages but not in macrophages from other animals (i.e. mice). Despite the importance of macrophages in establishing systemic S. Typhi infection, the mechanisms that macrophages use to control the growth of S. Typhi and the role of these mechanisms in the bacterium's adaptation to the human host are mostly unknown. To facilitate unbiased identification of genes involved in controlling the growth of S. Typhi in macrophages, we report optimized experimental conditions required to perform loss-of function pooled shRNA screens in primary mouse bone-marrow derived macrophages. Following infection with a fluorescent-labeled S. Typhi, infected cells are sorted based on the intensity of fluorescence (i.e. number of intracellular fluorescent bacteria). shRNAs enriched in the fluorescent population are identified by next-generation sequencing. A proof-of-concept screen targeting the mouse Rab GTPases confirmed Rab32 as important to restrict S. Typhi in mouse macrophages. Interestingly and rather unexpectedly, this screen also revealed that Rab1b controls S. Typhi growth in mouse macrophages. This constitutes the first report of a Rab GTPase other than Rab32 involved in S. Typhi host-restriction. The methodology described here should allow genome-wide screening to identify mechanisms controlling the growth of S. Typhi and other intracellular pathogens in primary immune cells.
Collapse
Affiliation(s)
| | | | - David A. Calderwood
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, United States
| | | | - Stefania Spanò
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
2
|
Poltavets AS, Vishnyakova PA, Elchaninov AV, Sukhikh GT, Fatkhudinov TK. Macrophage Modification Strategies for Efficient Cell Therapy. Cells 2020; 9:1535. [PMID: 32599709 PMCID: PMC7348902 DOI: 10.3390/cells9061535] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Macrophages, important cells of innate immunity, are known for their phagocytic activity, capability for antigen presentation, and flexible phenotypes. Macrophages are found in all tissues and therefore represent an attractive therapeutic target for the treatment of diseases of various etiology. Genetic programming of macrophages is an important issue of modern molecular and cellular medicine. The controllable activation of macrophages towards desirable phenotypes in vivo and in vitro will provide effective treatments for a number of inflammatory and proliferative diseases. This review is focused on the methods for specific alteration of gene expression in macrophages, including the controllable promotion of the desired M1 (pro-inflammatory) or M2 (anti-inflammatory) phenotypes in certain pathologies or model systems. Here we review the strategies of target selection, the methods of vector delivery, and the gene editing approaches used for modification of macrophages.
Collapse
Affiliation(s)
- Anastasiya S. Poltavets
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia; (A.S.P.); (A.V.E.); (G.T.S.)
| | - Polina A. Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia; (A.S.P.); (A.V.E.); (G.T.S.)
- Department of Histology, Cytology and Embryology, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia;
| | - Andrey V. Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia; (A.S.P.); (A.V.E.); (G.T.S.)
- Department of Histology, Pirogov Russian National Research Medical University, Ministry of Healthcare of The Russian Federation, 1 Ostrovitianov Street, Moscow 117997, Russia
| | - Gennady T. Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia; (A.S.P.); (A.V.E.); (G.T.S.)
| | - Timur Kh. Fatkhudinov
- Department of Histology, Cytology and Embryology, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia;
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia
| |
Collapse
|
3
|
Wang L, Zhang Y, Zhang N, Xia J, Zhan Q, Wang C. Potential role of M2 macrophage polarization in ventilator-induced lung fibrosis. Int Immunopharmacol 2019; 75:105795. [PMID: 31421547 DOI: 10.1016/j.intimp.2019.105795] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 12/24/2022]
Abstract
Mechanical ventilation (MV) is an essential life-support technique, but it can induce ventilator-induced lung injury (VILI) and subsequent pulmonary fibrosis. The mechanisms underlying this fibrosis are largely unknown. Because excessive polarization of M2 macrophages has increasingly been cited as possible inciting factor for tissue remodeling and organ fibrosis, we here hypothesize it might be involved in the development of pulmonary fibrosis after high tidal volume (VT) MV. In our prospective, randomized, controlled animal study, C57BL/6 mice were randomly placed in either a VILI group or sham group. After ventilation, surviving mice were allowed to recover for 0, 1, 3, 5, 7, or 14 days. 200 mice were involved in our in vivo experiment, and the results calculated here refer only to the surviving mice. The results clearly showed that high-VT MV caused early inflammation and a subsequent fibroproliferative response in mice without pre-existing lung disease. High-VT MV was also found to lead to a dramatic increase in the number of M2 macrophages in mouse bronchoalveolar lavage fluid (BALF) cell and lung tissues. Consistent with the progression of fibrosis, there were far more M2 macrophages at the 5th day after ventilation and remained dominant for 2 weeks. High-VT MV induced epithelial-mesenchymal transition (EMT) on day 7, accompanied by the increased expression of TGF-β1 and p-Smad2/3. In vitro experiments, the co-culture of M2 macrophage and MLE-12 cells resulted in a significant EMT and upregulation of TGF-β1 and p-Smad2/3 in MLE-12 cells. To summarize, our findings suggested the persistent tilt polarization toward M2 macrophages was associated with EMT during the course of ventilator-induced pulmonary fibrosis, which may play its roles through activation of epithelial TGF-β1/Smad2/3 signaling.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, China; Center for Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, China
| | - Yi Zhang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, China; Center for Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, China
| | - Nannan Zhang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, China; Center for Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, China
| | - Jingen Xia
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, China; Center for Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, China
| | - Qingyuan Zhan
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, China; Center for Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, China.
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, China; Center for Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, China; Chinese Academy of Medical Science, Peking Union Medical College, China.
| |
Collapse
|
4
|
Karponi G, Kritas S, Petridou E, Papanikolaou E. Efficient Transduction and Expansion of Ovine Macrophages for Gene Therapy Implementations. Vet Sci 2018; 5:vetsci5020057. [PMID: 29912168 PMCID: PMC6024765 DOI: 10.3390/vetsci5020057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/05/2018] [Accepted: 06/14/2018] [Indexed: 02/08/2023] Open
Abstract
A number of bacteria provoking zoonotic diseases present intracellular survival and a host cell tropism limited to the monocyte/macrophage lineage. Thus, infection is rendered difficult to eradicate, causing chronic inflammatory reactions to the host and widespread prevalence. Although self-inactivating lentiviral vectors have been successfully tested in the clinic against virally-induced human infectious diseases, little is known about the transduction susceptibility of ruminant animal phagocytes that play a critical role in the outbreak of zoonotic diseases such as brucellosis. In view of the development of a lentiviral vector-based platform targeting and inactivating specific genetic features of intracellular bacteria, we have tested the transducibility of ovine macrophages in terms of transgene expression and vector copy number (VCN). We show that ovine macrophages are relatively resistant to transduction even at a high multiplicity of infection with a conventional lentiviral vector expressing the green fluorescence protein and that addition of transduction enhancers, such as polybrene, increases transgene expression even after a one-week culture of the transduced cells in vitro. Overall, we demonstrate that ovine macrophages may be efficiently expanded and transduced in culture, thus providing the benchmark for gene therapy applications for zoonotic diseases.
Collapse
Affiliation(s)
- Garyfalia Karponi
- Laboratory of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Spyridon Kritas
- Laboratory of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Evanthia Petridou
- Laboratory of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Eleni Papanikolaou
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece.
| |
Collapse
|
5
|
Yang K, Xu C, Zhang Y, He S, Li D. Sestrin2 Suppresses Classically Activated Macrophages-Mediated Inflammatory Response in Myocardial Infarction through Inhibition of mTORC1 Signaling. Front Immunol 2017; 8:728. [PMID: 28713369 PMCID: PMC5491632 DOI: 10.3389/fimmu.2017.00728] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/08/2017] [Indexed: 11/29/2022] Open
Abstract
Myocardial infarction (MI) triggers an intense inflammatory response that is essential for dead tissue clearance but also detrimental to cardiac repair. Macrophages are active and critical players in the inflammatory response after MI. Understanding the molecular mechanisms by which macrophage-mediated inflammatory response is regulated is important for designing new therapeutic interventions for MI. In the current study, we examined the role of Sestrin2, which is a stress-inducible protein that regulate metabolic homeostasis, in the regulation of inflammatory response of cardiac macrophages after MI. We found that cardiac macrophages upregulated Sestrin2 expression in a mouse MI model. Using a lentiviral transduction system to overexpress Sestrin2 in polarized M1 and M2 macrophages, we revealed that Sestrin2 predominantly functioned on M1 rather than M2 macrophages. Sestrin2 overexpression suppressed inflammatory response of M1 macrophages both in vitro and in vivo. Furthermore, in the mouse MI model with selective depletion of endogenous macrophages and adoptive transfer of exogenous Sestrin2-overexpressing macrophages, the anti-inflammatory and repair-promoting effect of Sestrin2-overexpressing macrophages was demonstrated. Furthermore, Sestrin2 significantly inhibited mTORC1 signaling in M1 macrophages. Taken together, our study indicates the importance of Sestrin2 for suppression of M1 macrophage-mediated cardiac inflammation after MI.
Collapse
Affiliation(s)
- Keping Yang
- Department of Cardiology, Jingzhou Central Hospital, Jingzhou Clinical Medical College, Yangtze University, Jingzhou, China
| | - Chenhong Xu
- Department of Cardiology, Jingzhou Central Hospital, Jingzhou Clinical Medical College, Yangtze University, Jingzhou, China
| | - Yunfeng Zhang
- Department of Cardiology, Jingzhou Central Hospital, Jingzhou Clinical Medical College, Yangtze University, Jingzhou, China
| | - Shaolin He
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dazhu Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Wang W, Liu Z, Su J, Chen WS, Wang XW, Bai SX, Zhang JZ, Yu SQ. Macrophage micro-RNA-155 promotes lipopolysaccharide-induced acute lung injury in mice and rats. Am J Physiol Lung Cell Mol Physiol 2016; 311:L494-506. [PMID: 27371731 DOI: 10.1152/ajplung.00001.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/29/2016] [Indexed: 01/01/2023] Open
Abstract
Micro-RNA (miR)-155 is a novel gene regulator with important roles in inflammation. Herein, our study aimed to explore the role of miR-155 in LPS-induced acute lung injury(ALI). ALI in mice was induced by intratracheally delivered LPS. Loss-of-function experiments performed on miR-155 knockout mice showed that miR-155 gene inactivation protected mice from LPS-induced ALI, as manifested by preserved lung permeability and reduced lung inflammation compared with wild-type controls. Bone marrow transplantation experiments identified leukocytes, but not lung parenchymal-derived miR-155-promoted acute lung inflammation. Real-time PCR analysis showed that the expression of miR-155 in lung tissue was greatly elevated in wild-type mice after LPS stimulation. In situ hybridization showed that miR-155 was mainly expressed in alveolar macrophages. In vitro experiments performed in isolated alveolar macrophages and polarized bone marrow-derived macrophages confirmed that miR-155 expression in macrophages was increased in response to LPS stimulation. Conversely, miR-155 gain-of-function in alveolar macrophages remarkably exaggerated LPS-induced acute lung injury. Molecular studies identified the inflammation repressor suppressor of cytokine signaling (SOCS-1) as the downstream target of miR-155. By binding to the 3'-UTR of the SOCS-1 mRNA, miR-155 downregulated SOCS-1 expression, thus, permitting the inflammatory response during lung injury. Finally, we generated a novel miR-155 knockout rat strain and showed that the proinflammatory role of miR-155 was conserved in rats. Our study identified miR-155 as a proinflammatory factor after LPS stimulation, and alveolar macrophages-derived miR-155 has an important role in LPS-induced ALI.
Collapse
Affiliation(s)
- Wen Wang
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Zhi Liu
- Department of Otolaryngology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China; and
| | - Jie Su
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Wen-Sheng Chen
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiao-Wu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - San-Xing Bai
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jin-Zhou Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Shi-Qiang Yu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
7
|
Tong HI, Kang W, Davy PMC, Shi Y, Sun S, Allsopp RC, Lu Y. Monocyte Trafficking, Engraftment, and Delivery of Nanoparticles and an Exogenous Gene into the Acutely Inflamed Brain Tissue - Evaluations on Monocyte-Based Delivery System for the Central Nervous System. PLoS One 2016; 11:e0154022. [PMID: 27115998 PMCID: PMC4846033 DOI: 10.1371/journal.pone.0154022] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/07/2016] [Indexed: 11/23/2022] Open
Abstract
The ability of monocytes and monocyte-derived macrophages (MDM) to travel towards chemotactic gradient, traverse tissue barriers, and accumulate precisely at diseased sites makes them attractive candidates as drug carriers and therapeutic gene delivery vehicles targeting the brain, where treatments are often hampered by the blockade of the blood brain barrier (BBB). This study was designed to fully establish an optimized cell-based delivery system using monocytes and MDM, by evaluating their homing efficiency, engraftment potential, as well as carriage and delivery ability to transport nano-scaled particles and exogenous genes into the brain, following the non-invasive intravenous (IV) cell adoptive transfer in an acute neuroinflammation mouse model induced by intracranial injection of Escherichia coli lipopolysaccharides. We demonstrated that freshly isolated monocytes had superior inflamed-brain homing ability over MDM cultured in the presence of macrophage colony stimulating factor. In addition, brain trafficking of IV infused monocytes was positively correlated with the number of adoptive transferred cells, and could be further enhanced by transient disruption of the BBB with IV administration of Mannitol, Bradykinin or Serotonin right before cell infusion. A small portion of transmigrated cells was detected to differentiate into IBA-1 positive cells with microglia morphology in the brain. Finally, with the use of superparamagnetic iron oxide nanoparticles SHP30, the ability of nanoscale agent-carriage monocytes to enter the inflamed brain region was validated. In addition, lentiviral vector DHIV-101 was used to introduce green fluorescent protein (GFP) gene into monocytes, and the exogenous GFP gene was detected in the brain at 48 hours following IV infusion of the transduced monocytes. All together, our study has set up the optimized conditions for the more-in-depth tests and development of monocyte-mediated delivery, and our data supported the notion to use monocytes as a non-invasive cell-based delivery system for the brain.
Collapse
Affiliation(s)
- Hsin-I Tong
- Office of Public Health Studies, University of Hawaii at Manoa, Honolulu, Hawaii, United Sates of America
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Wen Kang
- Office of Public Health Studies, University of Hawaii at Manoa, Honolulu, Hawaii, United Sates of America
| | - Philip M. C. Davy
- Institute for Biogenesis Research, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Yingli Shi
- Office of Public Health Studies, University of Hawaii at Manoa, Honolulu, Hawaii, United Sates of America
| | - Si Sun
- Office of Public Health Studies, University of Hawaii at Manoa, Honolulu, Hawaii, United Sates of America
| | - Richard C. Allsopp
- Institute for Biogenesis Research, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Yuanan Lu
- Office of Public Health Studies, University of Hawaii at Manoa, Honolulu, Hawaii, United Sates of America
- * E-mail:
| |
Collapse
|
8
|
Kang W, Marasco WA, Tong HI, Byron MM, Wu C, Shi Y, Sun S, Sun Y, Lu Y. Anti-tat Hutat2:Fc mediated protection against tat-induced neurotoxicity and HIV-1 replication in human monocyte-derived macrophages. J Neuroinflammation 2014; 11:195. [PMID: 25416164 PMCID: PMC4256057 DOI: 10.1186/s12974-014-0195-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 11/05/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND HIV-1 Tat is essential for HIV replication and is also a well-known neurotoxic factor causing HIV-associated neurocognitive disorder (HAND). Currently, combined antiretroviral therapy targeting HIV reverse transcriptase or protease cannot prevent the production of early viral proteins, especially Tat, once HIV infection has been established. HIV-infected macrophages and glial cells in the brain still release Tat into the extracellular space where it can exert direct and indirect neurotoxicity. Therefore, stable production of anti-Tat antibodies in the brain would neutralize HIV-1 Tat and thus provide an effective approach to protect neurons. METHODS We constructed a humanized anti-Tat Hutat2:Fc fusion protein with the goal of antagonizing HIV-1 Tat and delivered the gene into cell lines and primary human monocyte-derived macrophages (hMDM) by an HIV-based lentiviral vector. The function of the anti-Tat Hutat2:Fc fusion protein and the potential side effects of lentiviral vector-mediated gene transfer were evaluated in vitro. RESULTS Our study demonstrated that HIV-1-based lentiviral vector-mediated gene transduction resulted in a high-level, stable expression of anti-HIV-1 Tat Hutat2:Fc in human neuronal and monocytic cell lines, as well as in primary hMDM. Hutat2:Fc was detectable in both cells and supernatants and continued to accumulate to high levels within the supernatant. Hutat2:Fc protected mouse cortical neurons against HIV-1 Tat86-induced neurotoxicity. In addition, both secreted Hutat2:Fc and transduced hMDM led to reducing HIV-1BaL viral replication in human macrophages. Moreover, lentiviral vector-based gene introduction did not result in any significant changes in cytomorphology and cell viability. Although the expression of IL8, STAT1, and IDO1 genes was up-regulated in transduced hMDM, such alternation in gene expression did not affect the neuroprotective effect of Hutat2:Fc. CONCLUSIONS Our study demonstrated that lentivirus-mediated gene transfer could efficiently deliver the Hutat2:Fc gene into primary hMDM and does not lead to any significant changes in hMDM immune-activation. The neuroprotective and HIV-1 suppressive effects produced by Hutat2:Fc were comparable to that of a full-length anti-Tat antibody. This study provides the foundation and insights for future research on the potential use of Hutat2:Fc as a novel gene therapy approach for HAND through utilizing monocytes/macrophages, which naturally cross the blood-brain barrier, for gene delivery.
Collapse
Affiliation(s)
- Wen Kang
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Xi'an, Shaanxi, 710038, China. .,Department of Public Health Sciences, John A. Burns School of Medicine, University of Hawaii, 1960 East-west Road, Honolulu, HI, 96822, USA.
| | - Wayne A Marasco
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 50 Brookline Avenue, Boston, MA, 02215, USA.
| | - Hsin-I Tong
- Department of Public Health Sciences, John A. Burns School of Medicine, University of Hawaii, 1960 East-west Road, Honolulu, HI, 96822, USA.
| | - Mary Margaret Byron
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., BSB, Suite 231, Honolulu, HI, 96813, USA.
| | - Chengxiang Wu
- Department of Public Health Sciences, John A. Burns School of Medicine, University of Hawaii, 1960 East-west Road, Honolulu, HI, 96822, USA.
| | - Yingli Shi
- Department of Public Health Sciences, John A. Burns School of Medicine, University of Hawaii, 1960 East-west Road, Honolulu, HI, 96822, USA.
| | - Si Sun
- Department of Public Health Sciences, John A. Burns School of Medicine, University of Hawaii, 1960 East-west Road, Honolulu, HI, 96822, USA.
| | - Yongtao Sun
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Xi'an, Shaanxi, 710038, China.
| | - Yuanan Lu
- Department of Public Health Sciences, John A. Burns School of Medicine, University of Hawaii, 1960 East-west Road, Honolulu, HI, 96822, USA.
| |
Collapse
|
9
|
Tong J, Buch S, Yao H, Wu C, Tong HI, Wang Y, Lu Y. Monocytes-derived macrophages mediated stable expression of human brain-derived neurotrophic factor, a novel therapeutic strategy for neuroAIDS. PLoS One 2014; 9:e82030. [PMID: 24505242 PMCID: PMC3914783 DOI: 10.1371/journal.pone.0082030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 10/19/2013] [Indexed: 12/30/2022] Open
Abstract
HIV-1 associated dementia remains a significant public health burden. Clinical and experimental research has shown that reduced levels of brain-derived neurotrophic factor (BDNF) may be a risk factor for neurological complications associated with HIV-1 infection. We are actively testing genetically modified macrophages for their possible use as the cell-based gene delivery vehicle for the central nervous system (CNS). It can be an advantage to use the natural homing/migratory properties of monocyte-derived macrophages to deliver potentially neuroprotective BDNF into the CNS, as a non-invasive manner. Lentiviral-mediated gene transfer of human (h)BDNF plasmid was constructed and characterized. Defective lentiviral stocks were generated by transient transfection of 293T cells with lentiviral transfer plasmid together with packaging and envelope plasmids. High titer lentiviral vector stocks were harvested and used to transduce human neuronal cell lines, primary cultures of human peripheral mononocyte-derived macrophages (hMDM) and murine myeloid monocyte-derived macrophages (mMDM). These transduced cells were tested for hBDNF expression, stability, and neuroprotective activity. The GenomeLab GeXP Genetic Analysis System was used to evaluate transduced cells for any adverse effects by assessing gene profiles of 24 reference genes. High titer vectors were prepared for efficient transduction of neuronal cell lines, hMDM, and mMDM. Stable secretion of high levels of hBDNF was detected in supernatants of transduced cells using western blot and ELISA. The conditioned media containing hBDNF were shown to be protective to neuronal and monocytic cell lines from TNF-α and HIV-1 Tat mediated cytotoxicity. Lentiviral vector-mediated gene transduction of hMDM and mMDM resulted in high-level, stable expression of the neuroprotective factorBDNF in vitro. These findings form the basis for future research on the potential use of BDNF as a novel therapy for neuroAIDS.
Collapse
Affiliation(s)
- Jing Tong
- MOE Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Institute of TCM & Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan, People's Republic of China
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Shilpa Buch
- University of Nebraska Medical Center, Pharmacology and Experimental Neuroscience, Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Honghong Yao
- University of Nebraska Medical Center, Pharmacology and Experimental Neuroscience, Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Chengxiang Wu
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Hsin-I Tong
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Youwei Wang
- MOE Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Institute of TCM & Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan, People's Republic of China
- * E-mail: (YW); (YL)
| | - Yuanan Lu
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- * E-mail: (YW); (YL)
| |
Collapse
|
10
|
Wu C, Lu Y. High-titre retroviral vector system for efficient gene delivery into human and mouse cells of haematopoietic and lymphocytic lineages. J Gen Virol 2010; 91:1909-1918. [PMID: 20410313 PMCID: PMC3052536 DOI: 10.1099/vir.0.020255-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genetically modified cells of haematopoietic and lymphocytic lineages could provide potentially curative treatments for a wide range of inherited and acquired diseases. However, this application is limited in mouse models by the low efficiency of lentiviral vectors. To facilitate the rapid production of high-titre helper-free retroviral vectors for enhanced gene delivery, multiple modifications to a prototype moloney murine leukemia virus (MoMLV)-derived vector system were made including adaptation of the vector system to simian virus 40 ori/T antigen-mediated episomal replication in packaging cells, replacement of the MoMLV 5' U3 promoter with a series of stronger composite promoters and addition of an extra polyadenylation signal downstream of the 3' long terminal repeat. These modifications enhanced vector production by 2-3 logs. High-titre vector stocks were tested for their ability to infect a variety of cells derived from humans and mice, including primary monocyte-derived macrophage cultures. Whilst the lentiviral vector was significantly restricted at the integration level, the MoMLV-based vector showed effective gene transduction of mouse cells. This high-titre retroviral vector system represents a useful tool for efficient gene delivery into human and mouse haematopoietic and lymphocytic cells, with particular application in mice as a small animal model for novel gene therapy tests.
Collapse
Affiliation(s)
- Chengxiang Wu
- Departments of Public Health Sciences and Microbiology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Yuanan Lu
- Departments of Public Health Sciences and Microbiology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
11
|
van Strien ME, Mercier D, Drukarch B, Brevé JJP, Poole S, Binnekade R, Bol JGJM, Blits B, Verhaagen J, van Dam AM. Anti-inflammatory effect by lentiviral-mediated overexpression of IL-10 or IL-1 receptor antagonist in rat glial cells and macrophages. Gene Ther 2010; 17:662-71. [PMID: 20182518 DOI: 10.1038/gt.2010.8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuroinflammation, as defined by activation of local glial cells and production of various inflammatory mediators, is an important feature of many neurological disorders. Expression of pro-inflammatory mediators produced by glial cells in the central nervous system (CNS) is considered to contribute to the neuropathology observed in those diseases. To diminish the production or action of pro-inflammatory mediators, we have used lentiviral (LV) vector-mediated encoding rat interleukin-10 (rIL-10) or rat interleukin-1 receptor antagonist (rIL-1ra) to direct the local, long-term expression of these anti-inflammatory cytokines in the CNS. We have shown that cultured macrophages or astroglia transduced with LV-rIL-10 or LV-rIL-1ra produced far less tumor necrosis factor (TNF)alpha or IL-6, respectively in response to pro-inflammatory stimuli. Moreover, intracerebroventricular (i.c.v.) administration of LV-rIL-10 or LV-rIL-1ra resulted in transduction of glial cells and macrophages and, subsequently reduced TNFalpha, IL-6 and inducible nitric oxide synthase (iNOS) expression in various brain regions induced by inflammatory stimuli, whereas peripheral expression of these mediators remained unaffected. In addition, expression levels of the anti-inflammatory cytokines IL-4 and transforming growth factor-beta were not altered in either brain or pituitary gland. Furthermore, i.c.v. administration of LV-rIL-10 or LV-rIL-1ra given during the remission phase of chronic-relapsing experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, improved the clinical outcome of the relapse phase. Thus, local application of LV vectors expressing anti-inflammatory cytokines could be of therapeutic interest to counteract pro-inflammatory processes in the brain without interfering with the peripheral production of inflammatory mediators.
Collapse
Affiliation(s)
- M E van Strien
- Department of Anatomy and Neurosciences, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Xu CY, Gu Y, Hou WH, Que YQ, Gao SG, Cheng T, Xia NS. Tetracysteine as a reporter for gene therapy. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2009; 22:496-501. [PMID: 20337223 DOI: 10.1016/s0895-3988(10)60007-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
OBJECTIVE To study the feasibility of using tetracysteine (TC) reporter in gene therapy. METHODS Effects of TC reporter and conventional reporter genes encoding green fluorescence protein (GFP) and luciferase (Luc) on expression and function of the therapeutic gene MGMT(P140K) were compared. Cytotoxicity and drug resistance were studied by Western blot. TC reporter used in therapy was analyzed by flow cytometry (FCM). RESULTS The TC reporter had no toxicity to cells and neither affected the expression or activity of therapeutic gene as compared to GFP and Luc. TC could be used in blood sample detection. CONCLUSION TC is a new kind of reporter gene for lentiviral vector in future gene therapy.
Collapse
Affiliation(s)
- Chen-Yu Xu
- National Institute of Diagnostics and Vaccine Development for Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Salata C, Curtarello M, Calistri A, Sartori E, Sette P, de Bernard M, Parolin C, Palù G. vOX2 glycoprotein of human herpesvirus 8 modulates human primary macrophages activity. J Cell Physiol 2009; 219:698-706. [PMID: 19229882 DOI: 10.1002/jcp.21722] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Human herpesvirus 8 (HHV-8) is a lymphotropic herpesvirus linked to several disorders such as Kaposi's sarcoma, primary effusion lymphoma and multicentric Castleman's disease. Several HHV-8 proteins regulate host innate and adaptive immune response; in particular, orfK14 is expressed as an immediate early gene during the viral lytic cycle and encodes a surface glycoprotein (vOX2), significantly homologous to the cellular OX2, which delivers inhibitory signals to macrophages. Although it has been suggested that vOX2 may down-regulate basophil and neutrophil functions, its role in macrophages, a cell type lytically infected by HHV-8 in vivo, is still controversial. Therefore, we investigated the effect of vOX2 expression in human primary monocyte-derived macrophages (MDMs). In this report, we demonstrate that vOX2-expressing MDMs in basal conditions are induced to produce inflammatory cytokines and display higher phagocytic activity with respect to mock cells. By contrast, an opposite effect is exhibited by vOX2 in MDMs undergoing IFN-gamma-activation, with a down-modulation of the cytokine production and phagocytic activity. Moreover, we observed that, when MDMs are co-cultured with vOX2-expressing cells, the inflammatory cytokine release is increased, independently from the MDM activation state. Interestingly, we could correlate our results with the mRNA transcript level of the vOX2 cellular CD200R receptor. Finally, we demonstrate a down-regulation of the MHC class I and class II molecules on the cell surface of vOX2-transduced MDMs. Our results provide new insights into the immunomodulatory effects of HHV-8 vOX2 protein. J. Cell. Physiol. 219: 698-706, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Cristiano Salata
- Division of Microbiology and Virology, Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Human immunodeficiency virus type 1 (HIV-1) is the causative agent of acquired immunodeficiency syndrome (AIDS). HIV-1 can infect human brain macrophages and microglial cells, causing HIV-associated dementia, or neuroAIDS, an increasingly common disorder of the central nervous system (CNS) that affects 20% of HIV-1-infected individuals. Current treatments for neuroAIDS are hampered by the poor efficiency of many antiretroviral drugs to cross the blood-brain barrier (BBB). Circulating blood monocytes and their derived macrophages are known to migrate across the BBB and enter the CNS under normal physiologic conditions and certain circumstances; some of these cells can subsequently mature into long-lived tissue-resident brain macrophages and microglia. Thus, the natural homing/migratory properties of blood monocyte-derived macrophages (MDM) can be potentially utilized as an effective genetic tool for delivering anti-HIV-1 genes to the CNS in a noninvasive and nonsurgical manner. To test and establish this macrophage-based gene therapy for the CNS, we have constructed and generated high-titered defective lentiviral vectors (DLV) expressing enhanced green fluorescent protein (GFP) as a reporter and optimized protocols for the isolation and long-term cultivation of primary MDM from humans and mice. We have demonstrated that primary cultures of human and mouse MDM can be efficiently modified in vitro using GFP-DLV vectors without apparently adverse effects on cellular biological properties. We have also shown that primary mouse MDM can enter the brain. The efficiency of CNS uptake of these cells can be enhanced through the use of bradykinin or a hypertonic mannitol solution for transient disruption of the BBB. These experimental methods and findings lay the initial groundwork for future in vivo studies on the ability of GFP-DLV-modified blood MDM to introduce anti-HIV-1 and neuroprotective genes into the CNS.
Collapse
Affiliation(s)
- Yuanan Lu
- University of Hawaii, Public Health Sciences, Honolulu, HI 96822, USA
| |
Collapse
|
15
|
Su YR, Blakemore JL, Zhang Y, Linton MF, Fazio S. Lentiviral transduction of apoAI into hematopoietic progenitor cells and macrophages: applications to cell therapy of atherosclerosis. Arterioscler Thromb Vasc Biol 2008; 28:1439-46. [PMID: 18497309 DOI: 10.1161/atvbaha.107.160093] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We used genetically engineered mouse hematopoietic progenitor cells (HPCs) to investigate the therapeutic effects of human apoAI on atherosclerosis in apoE(-/-) mice. METHODS AND RESULTS Lentiviral constructs expressing either human apoAI (LV-apoAI) or green fluorescent protein (LV-GFP) cDNA under a macrophage specific promoter (CD68) were generated and used for ex vivo transduction of mouse HPCs and macrophages. The transduction efficiency was >25% for HPCs and >70% for macrophages. ApoAI was found in the macrophage culture media, mostly associated with the HDL fraction. Interestingly, a significant increase in mRNA and protein levels for ATP binding cassette A1 (ABCA1) and ABCG1 were found in apoAI-expressing macrophages after acLDL loading. Expression of apoAI significantly increased cholesterol efflux in wild-type and apoE(-/-) macrophages. HPCs transduced with LV-apoAI ex vivo and then transplanted into apoE(-/-) mice caused a 50% reduction in atherosclerotic lesion area compared to GFP controls, without influencing plasma HDL-C levels. CONCLUSIONS Lentiviral transduction of apoAI into HPCs reduces atherosclerosis in apoE(-/-) mice. Expression of apoAI in macrophages improves cholesterol trafficking in wild-type apoE-producing macrophages and causes upregulation of ABCA1 and ABCG1. These novel observations set the stage for a cell therapy approach to atherosclerosis regression, exploiting the cooperation between apoE and apoAI to maximize cholesterol exit from the plaque.
Collapse
Affiliation(s)
- Yan Ru Su
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville TN 37232-6300, USA.
| | | | | | | | | |
Collapse
|
16
|
Kunnumakkara AB, Nair AS, Ahn KS, Pandey MK, Yi Z, Liu M, Aggarwal BB. Gossypin, a pentahydroxy glucosyl flavone, inhibits the transforming growth factor beta-activated kinase-1-mediated NF-kappaB activation pathway, leading to potentiation of apoptosis, suppression of invasion, and abrogation of osteoclastogenesis. Blood 2007; 109:5112-21. [PMID: 17332240 PMCID: PMC1890830 DOI: 10.1182/blood-2007-01-067256] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gossypin, a flavone originally isolated from Hibiscus vitifolius, has been shown to suppress angiogenesis, inflammation, and carcinogenesis. The mechanisms of these activities, however, are unknown. Because nuclear factor-kappaB (NF-kappaB) is associated with inflammation, carcinogenesis, hyperproliferation, invasion, and angiogenesis, we hypothesized that gossypin mediates its effects through modulation of NF-kappaB activation. In the present study, we demonstrate that gossypin (and not gossypetin, an aglycone analog) inhibited NF-kappaB activation induced by inflammatory stimuli and carcinogens. Constitutive NF-kappaB activation in tumor cells was also inhibited by this flavone. Inhibition of I kappa B alpha kinase by gossypin led to the suppression of I kappa B alpha phosphorylation and degradation, p65 nuclear translocation, and NF-kappaB-regulated gene expression. This, in turn, led to the down-regulation of gene products involved in cell survival (IAP2, XIAP, Bcl-2, Bcl-xL, survivin, and antiFas-associated death domain-like interleukin-1 beta-converting enzyme-inhibitory protein), proliferation (c-myc, cyclin D1, and cyclooxygenase-2), angiogenesis (vascular endothelial growth factor), and invasion (matrix metalloprotease-9). Suppression of these gene products by gossypin enhanced apoptosis induced by tumor necrosis factor and chemotherapeutic agents, suppressed tumor necrosis factor-induced cellular invasion, abrogated receptor activator of NF-kappaB ligand-induced osteoclastogenesis, and vascular endothelial growth factor-induced migration of human umbilical vein endothelial cells. Overall, our results demonstrate that gossypin inhibits the NF-kappaB activation pathway, which may explain its role in the suppression of inflammation, carcinogenesis, and angiogenesis.
Collapse
Affiliation(s)
- Ajaikumar B Kunnumakkara
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|