1
|
Kevill JL, Farkas K, Herridge K, Malham SK, Jones DL. Evaluation of Three Viral Capsid Integrity qPCR Methods for Wastewater-Based Viral Surveillance. FOOD AND ENVIRONMENTAL VIROLOGY 2025; 17:12. [PMID: 39760935 PMCID: PMC11703991 DOI: 10.1007/s12560-024-09627-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025]
Abstract
Capsid Integrity qPCR (CI-qPCR) assays offer a promising alternative to cell culture-based infectivity assays for assessing pathogenic human virus viability in wastewater. This study compared three CI-qPCR methods: two novel (Crosslinker, TruTiter) and one established (PMAxx dye). These methods were evaluated on heat-inactivated and non-heat-inactivated 'live' viruses spiked into phosphate-buffered saline (PBS) and wastewater, as well as on viruses naturally present in wastewater samples. The viral panel included Human adenovirus 5 (HAdV), enterovirus A71 (EV), hepatitis-A virus (HAV), influenza-A H3N2 (IAV), respiratory syncytial virus A2 (RSV), norovirus GI, norovirus GII, and SARS-CoV-2. All three methods successfully differentiated between degraded, heat-inactivated, and live viruses in PBS. While all three methods were comparable for HAdV and norovirus GI, PMAxx detected significantly lower gene copies for EV and IAV. In spiked wastewater, PMAxx yielded significantly lower gene copies for all heat-inactivated viruses (HAdV, EV, HAV, IAV, and RSV) compared to the Crosslinker and TruTiter methods. For viruses naturally present in wastewater (un-spiked), no significant difference was observed between PMAxx and TruTiter methods. Intact, potentially infectious viruses were detected using both PMAxx and TruTiter on untreated and treated wastewater samples. A comparative analysis of qPCR data and TEM images revealed that viral flocculation of IAV may interfere with capsid integrity assays using intercalating dyes. In summary, our findings not only advance the development of more effective methods for assessing viral viability in wastewater, but also highlight the potential of CI-qPCR techniques to enhance early warning systems for emerging pathogens, thereby strengthening public health preparedness and response strategies.
Collapse
Affiliation(s)
- Jessica L Kevill
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK.
| | - Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Kate Herridge
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, UK
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| |
Collapse
|
2
|
Kevill JL, Li X, Garcia-Delgado A, Herridge K, Farkas K, Gaze W, Robins P, Malham SK, Jones DL. Microcosm experiment investigating climate-induced thermal effects on human virus viability in seawater: qPCR vs capsid integrity for enhanced risk management. MARINE POLLUTION BULLETIN 2024; 208:117006. [PMID: 39342910 DOI: 10.1016/j.marpolbul.2024.117006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/05/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024]
Abstract
Climate change is intensifying extreme weather events in coastal areas, leading to more frequent discharge of untreated wastewater containing human viruses into coastal waters. This poses a health risk, especially during heatwaves when bathing activity increases. A study examined the survival and viability of seven common wastewater viruses in seawater at different temperatures. Viral genomes were quantified using direct qPCR, whilst viability was assessed using Capsid Integrity qPCR. Results showed that T90 values from direct qPCR were much higher than those from CI-qPCR, suggesting that risk mitigation should be based on viral integrity tests. All viruses remained potentially viable for at least 72 h in environmental seawater and longer in sterile artificial seawater, highlighting the importance of biotic processes in viral inactivation. Viral persistence decreased with increasing temperature. Whilst heatwaves may partially reduce risks from human viral pathogens in coastal waters, they do not eliminate them entirely.
Collapse
Affiliation(s)
- Jessica L Kevill
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK.
| | - Xiaorong Li
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Alvaro Garcia-Delgado
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Kate Herridge
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - William Gaze
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Peter Robins
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| |
Collapse
|
3
|
Wei Y, Xu X, Wang L, Chen Q, Li J, Liu X, Wei Z, Pang J, Peng Y, Guo X, Cheng Z, Wang Z, Zhang Y, Chen K, Lu X, Liang Q. A suitable and efficient optimization system for the culture of Chlamydia trachomatis in adult inclusion conjunctivitis. Pathog Dis 2024; 82:ftae020. [PMID: 39210513 PMCID: PMC11407439 DOI: 10.1093/femspd/ftae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/02/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
The prevalence of Chlamydia trachomatis infection in the genitourinary tract is increasing, with an annual rise of 9 million cases. Individuals afflicted with these infections are at a heightened risk of developing adult inclusive conjunctivitis (AIC), which is commonly recognized as the ocular manifestation of this sexually transmitted infection. Despite its significant clinical implications, the lack of distinctive symptoms and the overlap with other ocular conditions often lead to underdiagnosis or misdiagnosis of AIC associated with C. trachomatis infection. Here, we established six distinct C. trachomatis culture cell lines, specifically highlighting the MA104 N*V cell line that exhibited diminished expression of interferon regulatory factor 3 (IRF3) and signal transducer and activator of transcription 1 (STAT1), resulting in reduced interferons. Infected MA104 N*V cells displayed the highest count of intracytoplasmic inclusions detected through immunofluorescence staining, peaking at 48 h postinfection. Subsequently, MA104 N*V cells were employed for clinical screening in adult patients diagnosed with AIC. Among the evaluated cohort of 20 patients, quantitative PCR (qPCR) testing revealed positive results in seven individuals, indicating the presence of C. trachomatis infection. Furthermore, the MA104 N*V cell cultures derived from these infected patients demonstrated successful cultivation and replication of the pathogen, confirming its viability and infectivity. Molecular genotyping identified four distinct urogenital serovars, with serovar D being the most prevalent (4/7), followed by E (1/7), F (1/7), and Ia (1/7). This novel cellular model contributes to studies on C. trachomatis pathogenesis, molecular mechanisms, and host-pathogen interactions both in vitro and in vivo. It also aids in acquiring clinically relevant strains critical for advancing diagnostics, treatments, and vaccines against C. trachomatis.
Collapse
Affiliation(s)
- Yuan Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Xizhan Xu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Leying Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Qiankun Chen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Jinsong Li
- Diarrhoeal Laboratory, Institute of Viral Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Xiafei Liu
- Diarrhoeal Laboratory, Institute of Viral Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Zhenyu Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Jinding Pang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Yan Peng
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Xiaoyan Guo
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Zhen Cheng
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Zhiqun Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Yang Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Kexin Chen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Xinxin Lu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Qingfeng Liang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| |
Collapse
|
4
|
Kevill JL, Farkas K, Ridding N, Woodhall N, Malham SK, Jones DL. Use of Capsid Integrity-qPCR for Detecting Viral Capsid Integrity in Wastewater. Viruses 2023; 16:40. [PMID: 38257740 PMCID: PMC10819219 DOI: 10.3390/v16010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Quantifying viruses in wastewater via RT-qPCR provides total genomic data but does not indicate the virus capsid integrity or the potential risk for human infection. Assessing virus capsid integrity in sewage is important for wastewater-based surveillance, since discharged effluent may pose a public health hazard. While integrity assays using cell cultures can provide this information, they require specialised laboratories and expertise. One solution to overcome this limitation is the use of photo-reactive monoazide dyes (e.g., propidium monoazide [PMAxx]) in a capsid integrity-RT-qPCR assay (ci-RT-qPCR). In this study, we tested the efficiency of PMAxx dye at 50 μM and 100 μM concentrations on live and heat-inactivated model viruses commonly detected in wastewater, including adenovirus (AdV), hepatitis A (HAV), influenza A virus (IAV), and norovirus GI (NoV GI). The 100 μM PMAxx dye concentration effectively differentiated live from heat-inactivated viruses for all targets in buffer solution. This method was then applied to wastewater samples (n = 19) for the detection of encapsulated AdV, enterovirus (EV), HAV, IAV, influenza B virus (IBV), NoV GI, NoV GII, and SARS-CoV-2. Samples were negative for AdV, HAV, IAV, and IBV but positive for EV, NoV GI, NoV GII, and SARS-CoV-2. In the PMAxx-treated samples, EV, NoV GI, and NoV GII showed -0.52-1.15, 0.9-1.51, and 0.31-1.69 log reductions in capsid integrity, indicating a high degree of potentially infectious virus in wastewater. In contrast, SARS-CoV-2 was only detected using RT-qPCR but not after PMAxx treatment, indicating the absence of encapsulated and potentially infectious virus. In conclusion, this study demonstrates the utility of PMAxx dyes to evaluate capsid integrity across a diverse range of viruses commonly monitored in wastewater.
Collapse
Affiliation(s)
- Jessica L. Kevill
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; (K.F.); (N.R.); (N.W.); or (D.L.J.)
| | - Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; (K.F.); (N.R.); (N.W.); or (D.L.J.)
| | - Nicola Ridding
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; (K.F.); (N.R.); (N.W.); or (D.L.J.)
| | - Nicholas Woodhall
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; (K.F.); (N.R.); (N.W.); or (D.L.J.)
| | - Shelagh K. Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK;
| | - Davey L. Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; (K.F.); (N.R.); (N.W.); or (D.L.J.)
- Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
5
|
Feng F, Hao H, Zhao J, Li Y, Zhang Y, Li R, Wen Z, Wu C, Li M, Li P, Chen L, Tang R, Wang X, Sun C. Shell-mediated phagocytosis to reshape viral-vectored vaccine-induced immunity. Biomaterials 2021; 276:121062. [PMID: 34418816 DOI: 10.1016/j.biomaterials.2021.121062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/25/2021] [Accepted: 08/05/2021] [Indexed: 02/02/2023]
Abstract
Adenovirus (Ad) has been extensively developed as a gene delivery vector, but the potential side effect caused by systematic immunization remains one major obstacle for its clinical application. Needle-free mucosal immunization with Ad-based vaccine shows advantages but still faces poor mucosal responses. We herein report that the chemical engineering of single live viral-based vaccine effectively modulated the location and pattern of the subsequently elicited immunity. Through precisely assembly of functional materials onto single live Ad particle, the modified virus entered host cell in a phagocytosis-dependent manner, which is completely distinct from the receptor-mediated entry of native Ad. RNA-Seq data further demonstrated that the modified Ad-induced innate immunity was sharply reshaped via phagocytosis-related pathway, therefore promoting the activation and mature of antigen presentation cells (APC). Moreover, the functional shell enabled the modified Ad-based vector with enhanced muco-adhesion to nasal tissues in mice, and then prolonged resident time onto mucosal surface, leading to the robust mucosal IgA production and T cell immunity at local and even remote mucosal-associated lymphoid tissues. This study demonstrated that vaccine-induced immunity can be well modulated by chemistry engineering, and this method provides the rational design for needle-free mucosa-targeting vaccine against a variety of emerging infectious diseases.
Collapse
Affiliation(s)
- Fengling Feng
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, 518107, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 514400, China
| | - Haibin Hao
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jin Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, 518107, China
| | - Yanjun Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, 518107, China
| | - Ying Zhang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ruiting Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, 518107, China
| | - Ziyu Wen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, 518107, China
| | - Chunxiu Wu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 518107, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minchao Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, 518107, China
| | - Pingchao Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 518107, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 518107, China.
| | - Ruikang Tang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Caijun Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, 518107, China; State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 518107, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 514400, China.
| |
Collapse
|
6
|
Salvador D, Neto C, Benoliel MJ, Caeiro MF. Assessment of the Presence of Hepatitis E virus in Surface Water and Drinking Water in Portugal. Microorganisms 2020; 8:E761. [PMID: 32438739 PMCID: PMC7285264 DOI: 10.3390/microorganisms8050761] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatitis E virus (HEV) is a non-enveloped single-stranded positive-sense RNA virus, belonging to the Hepeviridae family, resistant to environmental conditions, and transmitted by the consumption of contaminated water. This virus is responsible for both sporadic and epidemic outbreaks, leading to thousands of infections per year in several countries, and is thus considered an emerging disease in Europe and Asia. This study refers to a survey in Portugal during 2019, targeting the detection and eventual quantification of enteric viruses in samples from surface and drinking water. Samples positive for HEV RNA were recurrently found by reverse transcription quantitative PCR (RT-qPCR), in both types of matrix. The infectivity of these samples was evaluated in cultured Vero E6 cells and RNA from putative viruses produced in cultures evidencing cytopathic effects and was subjected to RT-qPCR targeting HEV genomic RNA. Our results evidenced the existence of samples positive either for HEV RNA (77.8% in surface water and 66.7% in drinking water) or for infectious HEV (23.0% in surface water and 27.7% in drinking water). These results highlight the need for effective virological control of water for human consumption and activities.
Collapse
Affiliation(s)
- Daniel Salvador
- Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Avenida Prof. Egas Moniz, Edifício Egas Moniz, Piso 0, Ala C, 1649-028 Lisboa, Portugal;
- Direção de Laboratório e Controlo da Qualidade da Água (LAB) da Empresa Portuguesa das Águas Livres (EPAL), Avenida de Berlim, 15, 1800-031 Lisboa, Portugal; (C.N.); (M.J.B.)
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Centro de Estudos do Ambiente e do Mar (CESAM), Edifício C2—Piso 2, Campo Grande, 1749-016 Lisboa, Portugal
| | - Célia Neto
- Direção de Laboratório e Controlo da Qualidade da Água (LAB) da Empresa Portuguesa das Águas Livres (EPAL), Avenida de Berlim, 15, 1800-031 Lisboa, Portugal; (C.N.); (M.J.B.)
| | - Maria João Benoliel
- Direção de Laboratório e Controlo da Qualidade da Água (LAB) da Empresa Portuguesa das Águas Livres (EPAL), Avenida de Berlim, 15, 1800-031 Lisboa, Portugal; (C.N.); (M.J.B.)
| | - Maria Filomena Caeiro
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Centro de Estudos do Ambiente e do Mar (CESAM), Edifício C2—Piso 2, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
7
|
Jiang N, Shi L, Lin J, Zhang L, Peng Y, Sheng H, Wu P, Pan Q. Comparison of two different combined test strips with fluorescent microspheres or colored microspheres as tracers for rotavirus and adenovirus detection. Virol J 2018. [PMID: 29534739 PMCID: PMC5851252 DOI: 10.1186/s12985-018-0951-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Rotavirus (RV) and enteric adenovirus (AdV) mainly cause infantile infectious gastroenteritis. Several separate test methods for the detection of RV or AdV are currently available, but few tests are able to simultaneously detect both RV and AdV viruses, especially in primary medical institutions. Methods The present study was mainly designed to compare the performance of two combined test strips for the detection of RV and AdV: a rotavirus–adenovirus strip with fluorescent microspheres for tracers (FMT); and the CerTest rotavirus–adenovirus blister strip with colored microspheres for tracers (CMT). To test the strips cultures of RV, AdV and from other enteric pathogens were used, in addition to 350 stool specimens from 45 symptomatic patients with gastrointestinal infections. Results Detection thresholds for RV and AdV cultures using serial dilutions showed that the sensitivity of FMT was significantly higher than that of CMT (both P < 0.05). Specificity evaluation demonstrated that with culture mixtures of Coxsackie (A16), ECHO (type30), and entero- (EV71) viruses there was no detection of cross reaction using the two test strips, i.e., all the results were negative. With regard to the detection of RV in 350 clinical specimens, the total coincidence rate was 92.9%, the positive coincidence rate was 98.2%, and the negative coincidence rate was 90.8%. With regard to AdV detection, the total coincidence rate was 95.4%, the positive coincidence rate was 95.2%, and the negative coincidence rate was 95.5%. Conclusions FMT performed better than CMT with regard to the combined detection of RV and AdV.
Collapse
Affiliation(s)
- Na Jiang
- Clinical Research Center, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Lei Shi
- Clinical Research Center, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jieping Lin
- Clinical Research Center, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Lifang Zhang
- Clinical Research Center, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yanxia Peng
- Clinical Research Center, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Huiying Sheng
- Division of Endocrinology and Metabolism, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong, China
| | - Ping Wu
- Clinical Research Center, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Qingjun Pan
- Clinical Research Center, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| |
Collapse
|
8
|
Murray J, Todd KV, Bakre A, Orr-Burks N, Jones L, Wu W, Tripp RA. A universal mammalian vaccine cell line substrate. PLoS One 2017; 12:e0188333. [PMID: 29176782 PMCID: PMC5703543 DOI: 10.1371/journal.pone.0188333] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/03/2017] [Indexed: 12/22/2022] Open
Abstract
Using genome-wide small interfering RNA (siRNA) screens for poliovirus, influenza A virus and rotavirus, we validated the top 6 gene hits PV, RV or IAV to search for host genes that when knocked-down (KD) enhanced virus permissiveness and replication over wild type Vero cells or HEp-2 cells. The enhanced virus replication was tested for 12 viruses and ranged from 2-fold to >1000-fold. There were variations in virus-specific replication (strain differences) across the cell lines examined. Some host genes (CNTD2, COQ9, GCGR, NDUFA9, NEU2, PYCR1, SEC16G, SVOPL, ZFYVE9, and ZNF205) showed that KD resulted in enhanced virus replication. These findings advance platform-enabling vaccine technology, the creation of diagnostic cells substrates, and are informative about the host mechanisms that affect virus replication in mammalian cells.
Collapse
Affiliation(s)
- Jackelyn Murray
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Kyle V. Todd
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Abhijeet Bakre
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Nichole Orr-Burks
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Les Jones
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Weilin Wu
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
9
|
Otto PH, Reetz J, Eichhorn W, Herbst W, Elschner MC. Isolation and propagation of the animal rotaviruses in MA-104 cells—30 years of practical experience. J Virol Methods 2015; 223:88-95. [DOI: 10.1016/j.jviromet.2015.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 11/29/2022]
|
10
|
Qiu F, Cao J, Su Q, Yi Y, Bi S. Multiplex hydrolysis probe real-time PCR for simultaneous detection of hepatitis A virus and hepatitis E virus. Int J Mol Sci 2014; 15:9780-8. [PMID: 24886818 PMCID: PMC4100120 DOI: 10.3390/ijms15069780] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/31/2014] [Accepted: 04/21/2014] [Indexed: 12/11/2022] Open
Abstract
Detection of hepatitis viral infections has traditionally relied on the circulating antibody test using the enzyme-linked immunosorbent assay. However, multiplex real-time PCR has been increasingly used for a variety of viral nucleic acid detections and has proven to be superior to traditional methods. Hepatitis A virus (HAV) and hepatitis E virus (HEV) are the major causes of acute hepatitis worldwide; both HAV and HEV infection are a main public health problem. In the present study, a one-step multiplex reverse transcriptase quantitative polymerase chain reaction assay using hydrolysis probes was developed for simultaneously detecting HAV and HEV. This novel detection system proved specific to the target viruses, to be highly sensitive and to be applicable to clinical sera samples, making it useful for rapid, accurate and feasible identification of HAV and HEV.
Collapse
Affiliation(s)
- Feng Qiu
- Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155 Changbai Road, Beijing 102206, China.
| | - Jingyuan Cao
- Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155 Changbai Road, Beijing 102206, China.
| | - Qiudong Su
- Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155 Changbai Road, Beijing 102206, China.
| | - Yao Yi
- Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155 Changbai Road, Beijing 102206, China.
| | - Shengli Bi
- Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155 Changbai Road, Beijing 102206, China.
| |
Collapse
|