1
|
Fuerst TR, Marin A, Jeong S, Kulakova L, Hlushko R, Gorga K, Toth EA, Singh NJ, Andrianov AK. Virus-Mimicking Polymer Nanocomplexes Co-Assembling HCV E1E2 and Core Proteins with TLR 7/8 Agonist-Synthesis, Characterization, and In Vivo Activity. J Funct Biomater 2025; 16:34. [PMID: 39852590 PMCID: PMC11766188 DOI: 10.3390/jfb16010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/11/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025] Open
Abstract
Hepatitis C virus (HCV) is a major public health concern, and the development of an effective HCV vaccine plays an important role in the effort to prevent new infections. Supramolecular co-assembly and co-presentation of the HCV envelope E1E2 heterodimer complex and core protein presents an attractive vaccine design strategy for achieving effective humoral and cellular immunity. With this objective, the two antigens were non-covalently assembled with an immunostimulant (TLR 7/8 agonist) into virus-mimicking polymer nanocomplexes (VMPNs) using a biodegradable synthetic polyphosphazene delivery vehicle. The resulting assemblies were characterized using dynamic light scattering and asymmetric flow field-flow fractionation methods and directly visualized in their vitrified state by cryogenic electron microscopy. The in vivo superiority of VMPNs over the individual components and an Alum-formulated vaccine manifests in higher neutralizing antibody titers, the promotion of a balanced IgG response, and the induction of a cellular immunity-CD4+ T cell responses to core proteins. The aqueous-based spontaneous co-assembly of antigens and immunopotentiating molecules enabled by a synthetic biodegradable carrier offers a simple and effective pathway to the development of polymer-based supramolecular nanovaccine systems.
Collapse
Affiliation(s)
- Thomas R. Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland Rockville, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland Rockville, Rockville, MD 20850, USA
| | - Sarah Jeong
- Institute for Bioscience and Biotechnology Research, University of Maryland Rockville, Rockville, MD 20850, USA
| | - Liudmila Kulakova
- Institute for Bioscience and Biotechnology Research, University of Maryland Rockville, Rockville, MD 20850, USA
| | - Raman Hlushko
- Institute for Bioscience and Biotechnology Research, University of Maryland Rockville, Rockville, MD 20850, USA
| | - Katrina Gorga
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Eric A. Toth
- Institute for Bioscience and Biotechnology Research, University of Maryland Rockville, Rockville, MD 20850, USA
| | - Nevil J. Singh
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alexander K. Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland Rockville, Rockville, MD 20850, USA
| |
Collapse
|
2
|
Ali AA, Azouz RAM, Hussein NA, El-Shenawy R, Helmy NM, El-Abd YS, Tabll AA. Development of Virus-Like Particles (VLPs) for Hepatitis C Virus genotype 4: a novel approach for vaccine development in Egypt. BMC Biotechnol 2025; 25:8. [PMID: 39827115 PMCID: PMC11742997 DOI: 10.1186/s12896-024-00935-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Egypt has the highest global prevalence of Hepatitis C Virus (HCV) infection, particularly of genotype 4. The development of a prophylactic vaccine remains crucial for HCV eradication, yet no such vaccine currently exists due to the vaccine development challenges. The ability of Virus-Like Particles (VLPs) to mimic the native virus and incorporate neutralizing and conformational epitopes, while effectively engaging both humoral and cellular immune responses, makes them a promising approach to addressing the challenges in HCV vaccine development. METHODS Lentiviral-based vectors were constructed and employed to integrate the full-length sequence of Core, E1, E2, and P7 genes of HCV genotype 4 into the genome of Human Embryonic Kidney cells (HEK293T). Upon the expression, HCV structural proteins can oligomerize and self-assemble into VLPs mimicking the structure of HCV native virus. VLPs were purified and characterized for the development of a potential VLPs-based vaccine. RESULTS In this study, mammalian cells were successfully engineered to stably express HCV structural proteins and generate non-infectious VLPs for HCV genotype 4. The expression of HCV-integrated genes resulted in a successful production of HCV structural proteins, which oligomerized and self-assembled into two layers enveloped VLPs. Electron microscopy analysis of purified VLPs revealed spherical particles with an average diameter of 60-65 nm, closely resembling mature HCV virions. These results highlighted the potential of these VLPs as a vaccine candidate for HCV genotype 4. CONCLUSIONS HCV genotype 4 remains an underexplored target in vaccine development, despite its significant public health burden, especially in Egypt. The successful generation of VLPs for this genotype represents a promising avenue for further vaccine development. The established system provides a robust platform for the production and study of VLP-based vaccines targeting HCV genotype 4.
Collapse
Affiliation(s)
- Ahmed A Ali
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Cairo, 12622, Egypt.
| | - Rasha A M Azouz
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Nahla A Hussein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Reem El-Shenawy
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Naiera M Helmy
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Yasmine S El-Abd
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Ashraf A Tabll
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Cairo, 12622, Egypt
- Egyptian Centre for Research and Regenerative Medicine (ECRRM), Cairo, 11517, Egypt
| |
Collapse
|
3
|
Ali AA, Tabll AA. Unlocking potential: Virus-like particles as a promising strategy for effective HCV vaccine development. Virology 2025; 602:110307. [PMID: 39580887 DOI: 10.1016/j.virol.2024.110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Hepatitis C virus (HCV) is a leading cause of liver disease worldwide. The development of prophylactic vaccine is essential for HCV global eradication. Despite over three decades of research, no effective vaccine for HCV has been developed, primarily due to the virus's genetic diversity, immune evasion mechanisms, and incomplete understanding of protective immunity. However, Virus-Like Particles (VLPs) offer a promising approach to overcoming these challenges. VLPs mimic the structure of native virus but without the infectious genome, making them safe and non-infectious vaccines candidates. The capability of VLPs to incorporate neutralizing and conformational epitopes, and engage humoral and cellular immune responses, positions them as a promising tool for overcoming challenges associated with the HCV vaccine development. This review examines the challenges and immunological considerations for HCV vaccine development and provides an overview of the VLPs-based vaccines development. It also discusses future directions and public health implications of HCV vaccine development.
Collapse
Affiliation(s)
- Ahmed A Ali
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, (NRC), 12622, Cairo, Egypt.
| | - Ashraf A Tabll
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, 12622, Cairo, Egypt; Egyptian Centre for Research and Regenerative Medicine (ECRRM), 11517, Cairo, Egypt.
| |
Collapse
|
4
|
Liu S, Hu M, Liu X, Liu X, Chen T, Zhu Y, Liang T, Xiao S, Li P, Ma X. Nanoparticles and Antiviral Vaccines. Vaccines (Basel) 2023; 12:30. [PMID: 38250843 PMCID: PMC10819235 DOI: 10.3390/vaccines12010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Viruses have threatened human lives for decades, causing both chronic and acute infections accompanied by mild to severe symptoms. During the long journey of confrontation, humans have developed intricate immune systems to combat viral infections. In parallel, vaccines are invented and administrated to induce strong protective immunity while generating few adverse effects. With advancements in biochemistry and biophysics, different kinds of vaccines in versatile forms have been utilized to prevent virus infections, although the safety and effectiveness of these vaccines are diverse from each other. In this review, we first listed and described major pathogenic viruses and their pandemics that emerged in the past two centuries. Furthermore, we summarized the distinctive characteristics of different antiviral vaccines and adjuvants. Subsequently, in the main body, we reviewed recent advances of nanoparticles in the development of next-generation vaccines against influenza viruses, coronaviruses, HIV, hepatitis viruses, and many others. Specifically, we described applications of self-assembling protein polymers, virus-like particles, nano-carriers, and nano-adjuvants in antiviral vaccines. We also discussed the therapeutic potential of nanoparticles in developing safe and effective mucosal vaccines. Nanoparticle techniques could be promising platforms for developing broad-spectrum, preventive, or therapeutic antiviral vaccines.
Collapse
Affiliation(s)
- Sen Liu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Meilin Hu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
| | - Xiaoqing Liu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xingyu Liu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
| | - Tao Chen
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
| | - Yiqiang Zhu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
| | - Taizhen Liang
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
| | - Shiqi Xiao
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
| | - Peiwen Li
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
| | - Xiancai Ma
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
5
|
Toth EA, Andrianov AK, Fuerst TR. Prospects for developing an Hepatitis C virus E1E2-based nanoparticle vaccine. Rev Med Virol 2023; 33:e2474. [PMID: 37565536 PMCID: PMC10626635 DOI: 10.1002/rmv.2474] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
Globally, more than 58 million people are chronically infected with Hepatitis C virus (HCV) with 1.5 million new infections occurring each year. An effective vaccine for HCV is therefore a major unmet medical and public health need. Since HCV rapidly accumulates mutations, vaccines must elicit the production of broadly neutralising antibodies (bnAbs) in a reproducible fashion. Decades of research have generated a number of HCV vaccine candidates. Based on the available data and research through clinical development, a vaccine antigen based on the E1E2 glycoprotein complex appears to be the best choice, but robust induction of humoral and cellular responses leading to virus neutralisation has not yet been achieved. One issue that has arisen in developing an HCV vaccine (and many other vaccines as well) is the platform used for antigen delivery. The majority of viral vaccine trials have employed subunit vaccines. However, subunit vaccines often have limited immunogenicity, as seen for HCV, and thus multiple formats must be examined in order to elicit a robust anti-HCV immune response. Nanoparticle vaccines are gaining prominence in the field due to their ability to facilitate a controlled multivalent presentation and trafficking to lymph nodes, where they can interact with both arms of the immune system. This review discusses the potential for development of a nanoparticle-based HCV E1E2 vaccine, with an emphasis on the potential benefits of such an approach along with the major challenges facing the incorporation of E1E2 into nanoparticulate delivery systems and how those challenges can be addressed.
Collapse
Affiliation(s)
- Eric A. Toth
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Alexander K. Andrianov
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Thomas R. Fuerst
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
6
|
Collett S, Earnest L, Carrera Montoya J, Edeling MA, Yap A, Wong CY, Christiansen D, Roberts J, Mumford J, Lecouturier V, Pavot V, Marco S, Loi JK, Simmons C, Gulab SA, Mackenzie JM, Elbourne A, Ramsland PA, Cameron G, Hans D, Godfrey DI, Torresi J. Development of virus-like particles with inbuilt immunostimulatory properties as vaccine candidates. Front Microbiol 2023; 14:1065609. [PMID: 37350788 PMCID: PMC10282183 DOI: 10.3389/fmicb.2023.1065609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/17/2023] [Indexed: 06/24/2023] Open
Abstract
The development of virus-like particle (VLP) based vaccines for human papillomavirus, hepatitis B and hepatitis E viruses represented a breakthrough in vaccine development. However, for dengue and COVID-19, technical complications, such as an incomplete understanding of the requirements for protective immunity, but also limitations in processes to manufacture VLP vaccines for enveloped viruses to large scale, have hampered VLP vaccine development. Selecting the right adjuvant is also an important consideration to ensure that a VLP vaccine induces protective antibody and T cell responses. For diseases like COVID-19 and dengue fever caused by RNA viruses that exist as families of viral variants with the potential to escape vaccine-induced immunity, the development of more efficacious vaccines is also necessary. Here, we describe the development and characterisation of novel VLP vaccine candidates using SARS-CoV-2 and dengue virus (DENV), containing the major viral structural proteins, as protypes for a novel approach to produce VLP vaccines. The VLPs were characterised by Western immunoblot, enzyme immunoassay, electron and atomic force microscopy, and in vitro and in vivo immunogenicity studies. Microscopy techniques showed proteins self-assemble to form VLPs authentic to native viruses. The inclusion of the glycolipid adjuvant, α-galactosylceramide (α-GalCer) in the vaccine formulation led to high levels of natural killer T (NKT) cell stimulation in vitro, and strong antibody and memory CD8+ T cell responses in vivo, demonstrated with SARS-CoV-2, hepatitis C virus (HCV) and DEN VLPs. This study shows our unique vaccine formulation presents a promising, and much needed, new vaccine platform in the fight against infections caused by enveloped RNA viruses.
Collapse
Affiliation(s)
- Simon Collett
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC, Australia
| | - Linda Earnest
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Julio Carrera Montoya
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Melissa A. Edeling
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Ashley Yap
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Chinn Yi Wong
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Dale Christiansen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Jason Roberts
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, The University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jamie Mumford
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | | | | | | | - Joon Keit Loi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Cameron Simmons
- Institute of Vector-Borne Disease, Monash University, Clayton, VIC, Australia
| | - Shivali A. Gulab
- Avalia Immunotherapies Limited, Wellington, New Zealand
- Vaccine Alliance Aotearoa New Zealand, Wellington, New Zealand
| | - Jason M. Mackenzie
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Aaron Elbourne
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC, Australia
| | - Paul A. Ramsland
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC, Australia
- Department of Surgery Austin Health, University of Melbourne, Heidelberg, VIC, Australia
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Garth Cameron
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Dhiraj Hans
- Research, Innovation and Commercialisation, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Joseph Torresi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
7
|
Zhao Q, He K, Zhang X, Xu M, Zhang X, Li H. Production and immunogenicity of different prophylactic vaccines for hepatitis C virus (Review). Exp Ther Med 2022; 24:474. [PMID: 35761816 PMCID: PMC9214603 DOI: 10.3892/etm.2022.11401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a global health challenge, and prophylactic vaccines are the most effective way to eliminate the infection. To date, numerous forms of preventive vaccines have entered the clinical trial stage, including the virus-like particle (VLP) vaccine, recombinant subunit vaccine, peptide vaccine and nucleic acid vaccine. The rational design makes it easier to obtain specific vaccine structures with a broad spectrum and strong immunogenicity. Different vaccine antigens can evoke different immune responses, including humoral and T-cell immune responses, and can be produced using different expression systems, such as bacteria, yeast, mammals, plants, insects or parasites. Intracellular and insoluble production and a narrow immune spectrum are two difficulties that limit the application of vaccines. The present study summarizes the immunogenicity of different preventive vaccines, evaluates the characteristics of different expression systems used for vaccine production, and analyzes the strategies to enhance the secretion and immune spectrum of vaccine proteins.
Collapse
Affiliation(s)
- Qianqian Zhao
- Microbiology Department, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Kun He
- Microbiology Department, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Xiuhua Zhang
- Key Laboratory of Biological Drugs, Shandong Academy of Pharmaceutical Science, Jinan, Shandong 250101, P.R. China
| | - Mingjie Xu
- Microbiology Department, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Xiuping Zhang
- Microbiology Department, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Huanjie Li
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
8
|
Garduño-González KA, Peña-Benavides SA, Araújo RG, Castillo-Zacarías C, Melchor-Martínez EM, Oyervides-Muñoz MA, Sosa-Hernández JE, Purton S, Iqbal HM, Parra-Saldívar R. Current challenges for modern vaccines and perspectives for novel treatment alternatives. J Drug Deliv Sci Technol 2022; 70:103222. [DOI: 10.1016/j.jddst.2022.103222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Tornesello AL, Tagliamonte M, Buonaguro FM, Tornesello ML, Buonaguro L. Virus-like Particles as Preventive and Therapeutic Cancer Vaccines. Vaccines (Basel) 2022; 10:227. [PMID: 35214685 PMCID: PMC8879290 DOI: 10.3390/vaccines10020227] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/04/2022] Open
Abstract
Virus-like particles (VLPs) are self-assembled viral protein complexes that mimic the native virus structure without being infectious. VLPs, similarly to wild type viruses, are able to efficiently target and activate dendritic cells (DCs) triggering the B and T cell immunities. Therefore, VLPs hold great promise for the development of effective and affordable vaccines in infectious diseases and cancers. Vaccine formulations based on VLPs, compared to other nanoparticles, have the advantage of incorporating multiple antigens derived from different proteins. Moreover, such antigens can be functionalized by chemical modifications without affecting the structural conformation or the antigenicity. This review summarizes the current status of preventive and therapeutic VLP-based vaccines developed against human oncoviruses as well as cancers.
Collapse
Affiliation(s)
- Anna Lucia Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, via Mariano Semmola, 80131 Napoli, Italy; (F.M.B.); (M.L.T.)
| | - Maria Tagliamonte
- Innovative Immunological Models, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, via Mariano Semmola, 80131 Napoli, Italy; (M.T.); (L.B.)
| | - Franco M. Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, via Mariano Semmola, 80131 Napoli, Italy; (F.M.B.); (M.L.T.)
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, via Mariano Semmola, 80131 Napoli, Italy; (F.M.B.); (M.L.T.)
| | - Luigi Buonaguro
- Innovative Immunological Models, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, via Mariano Semmola, 80131 Napoli, Italy; (M.T.); (L.B.)
| |
Collapse
|
10
|
To Include or Occlude: Rational Engineering of HCV Vaccines for Humoral Immunity. Viruses 2021; 13:v13050805. [PMID: 33946211 PMCID: PMC8146105 DOI: 10.3390/v13050805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Direct-acting antiviral agents have proven highly effective at treating existing hepatitis C infections but despite their availability most countries will not reach the World Health Organization targets for elimination of HCV by 2030. A prophylactic vaccine remains a high priority. Whilst early vaccines focused largely on generating T cell immunity, attention is now aimed at vaccines that generate humoral immunity, either alone or in combination with T cell-based vaccines. High-resolution structures of hepatitis C viral glycoproteins and their interaction with monoclonal antibodies isolated from both cleared and chronically infected people, together with advances in vaccine technologies, provide new avenues for vaccine development.
Collapse
|
11
|
Investigating virus-host cell interactions: Comparative binding forces between hepatitis C virus-like particles and host cell receptors in 2D and 3D cell culture models. J Colloid Interface Sci 2021; 592:371-384. [PMID: 33677197 DOI: 10.1016/j.jcis.2021.02.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/25/2022]
Abstract
Cell cultures have been successfully used to study hepatitis C virus (HCV) for many years. However, most work has been done using traditional, 2-dimensional (2D) cell cultures (cells grown as a monolayer in growth flasks or dishes). Studies have shown that when cells are grown suspended in an extra-cellular-matrix-like material, they develop into spherical, 'organoid' arrangements of cells (3D growth) that display distinct differences in morphological and functional characteristics compared to 2D cell cultures. In liver organoids, one key difference is the development of clearly differentiated apical and basolateral surfaces separated and maintained by cellular tight junctions. This phenomenon, termed polarity, is vital to normal barrier function of hepatocytes in vivo. It has also been shown that viruses, and virus-like particles, interact very differently with cells derived from 2D as compared to 3D cell cultures, bringing into question the usefulness of 2D cell cultures to study virus-host cell interactions. Here, we investigate differences in cellular architecture as a function of cell culture system, using confocal scanning laser microscopy, and determine differences in binding interactions between HCV virus-like particles (VLPs) and their cognate receptors in the different cell culture systems using atomic force microscopy (AFM). We generated organoid cultures that were polarized, as determined by localization of key apical and basolateral markers. We found that, while uptake of HCV VLPs by both 2D and 3D Huh7 cells was observed by flow cytometry, binding interactions between HCV VLPs and cells were measurable by AFM only on polarized cells. The work presented here adds to the growing body of research suggesting that polarized cell systems are more suitable for the study of HCV infection and dynamics than non-polarized systems.
Collapse
|
12
|
Abstract
Hepatocellular carcinoma (HCC) is the fifth most prevalent cancer and the second leading cause of cancer-related death worldwide.
Collapse
|
13
|
Pre-clinical evaluation of a quadrivalent HCV VLP vaccine in pigs following microneedle delivery. Sci Rep 2019; 9:9251. [PMID: 31239471 PMCID: PMC6592879 DOI: 10.1038/s41598-019-45461-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 05/29/2019] [Indexed: 02/07/2023] Open
Abstract
The introduction of directly acting antiviral agents (DAAs) has produced significant improvements in the ability to cure chronic hepatitis C infection. However, with over 2% of the world’s population infected with HCV, complications arising from the development of cirrhosis of the liver, chronic hepatitis C infection remains the leading indication for liver transplantation. Several modelling studies have indicated that DAAs alone will not be sufficient to eliminate HCV, but if combined with an effective vaccine this regimen would provide a significant advance towards achieving this critical World Health Organisation goal. We have previously generated a genotype 1a, 1b, 2a, 3a HCV virus like particle (VLP) quadrivalent vaccine. The HCV VLPs contain the core and envelope proteins (E1 and E2) of HCV and the vaccine has been shown to produce broad humoral and T cell immune responses following vaccination of mice. In this report we further advanced this work by investigating vaccine responses in a large animal model. We demonstrate that intradermal microneedle vaccination of pigs with our quadrivalent HCV VLP based vaccine produces long-lived multi-genotype specific and neutralizing antibody (NAb) responses together with strong T cell and granzyme B responses and normal Th1 and Th2 cytokine responses. These responses were achieved without the addition of adjuvant. Our study demonstrates that our vaccine is able to produce broad immune responses in a large animal that, next to primates, is the closest animal model to humans. Our results are important as they show that the vaccine can produce robust immune responses in a large animal model before progressing the vaccine to human trials.
Collapse
|
14
|
Immunological responses following administration of a genotype 1a/1b/2/3a quadrivalent HCV VLP vaccine. Sci Rep 2018; 8:6483. [PMID: 29691437 PMCID: PMC5915487 DOI: 10.1038/s41598-018-24762-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/12/2018] [Indexed: 12/16/2022] Open
Abstract
The significant public health problem of Hepatitis C virus (HCV) has been partially addressed with the advent of directly acting antiviral agents (DAAs). However, the development of an effective preventative vaccine would have a significant impact on HCV incidence and would represent a major advance towards controlling and possibly eradicating HCV globally. We previously reported a genotype 1a HCV viral-like particle (VLP) vaccine that produced neutralizing antibodies (NAb) and T cell responses to HCV. To advance this approach, we produced a quadrivalent genotype 1a/1b/2a/3a HCV VLP vaccine to produce broader immune responses. We show that this quadrivalent vaccine produces antibody and NAb responses together with strong T and B cell responses in vaccinated mice. Moreover, selective neutralizing human monoclonal antibodies (HuMAbs) targeting conserved antigenic domain B and D epitopes of the E2 protein bound strongly to the HCV VLPs, suggesting that these critical epitopes are expressed on the surface of the particles. Our findings demonstrate that a quadrivalent HCV VLP based vaccine induces broad humoral and cellular immune responses that will be necessary for protection against HCV. Such a vaccine could provide a substantial addition to highly active antiviral drugs in eliminating HCV.
Collapse
|
15
|
Christiansen D, Earnest-Silveira L, Chua B, Boo I, Drummer HE, Grubor-Bauk B, Gowans EJ, Jackson DC, Torresi J. Antibody Responses to a Quadrivalent Hepatitis C Viral-Like Particle Vaccine Adjuvanted with Toll-Like Receptor 2 Agonists. Viral Immunol 2018; 31:338-343. [PMID: 29489437 DOI: 10.1089/vim.2017.0182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The development of an effective preventative hepatitis C virus (HCV) vaccine will reside, in part, in its ability to elicit neutralizing antibodies (NAbs). We previously reported a genotype 1a HCV virus like particle (VLP) vaccine that produced HCV specific NAb and T cell responses that were substantially enhanced by Toll-like receptor 2 (TLR2) agonists. We have now produced a quadrivalent genotype 1a/1b/2a/3a HCV VLP vaccine and tested the ability of two TLR2 agonists, R4Pam2Cys and E8Pam2Cys, to stimulate the production of NAb. We now show that our vaccine with R4Pam2Cys or E8Pam2Cys produces strong antibody and NAb responses in vaccinated mice after just two doses. Total antibody titers were higher in mice inoculated with vaccine plus E8Pam2Cys compared to HCV VLPs alone. However, the TLR2 agonists did not result in stronger NAb responses compared to vaccine without adjuvant. Such a vaccine could provide a substantial addition to the overall goal to eliminate HCV.
Collapse
Affiliation(s)
- Dale Christiansen
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia
| | - Linda Earnest-Silveira
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia
| | - Brendon Chua
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia
| | - Irene Boo
- 2 Burnet Institute , Melbourne, Australia
| | - Heidi E Drummer
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia .,2 Burnet Institute , Melbourne, Australia .,3 Department of Microbiology, Monash University , Clayton, Australia
| | - Branka Grubor-Bauk
- 4 Department of Surgery, The University of Adelaide and The Basil Hetzel Institute for Translational Health Research, Adelaide, South Australia
| | - Eric J Gowans
- 4 Department of Surgery, The University of Adelaide and The Basil Hetzel Institute for Translational Health Research, Adelaide, South Australia
| | - David C Jackson
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia
| | - Joseph Torresi
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia
| |
Collapse
|
16
|
Microscale stirred-cell filtration for high-throughput evaluation of separation performance. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2017.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Non-protein biologic therapeutics. Curr Opin Biotechnol 2017; 53:65-75. [PMID: 29289799 DOI: 10.1016/j.copbio.2017.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/10/2017] [Accepted: 12/11/2017] [Indexed: 01/15/2023]
Abstract
While the therapeutic biologics are dominated by therapeutic proteins, particularly monoclonal antibodies, a wide range of non-protein therapeutic biologics are rapidly gaining ground both in clinical studies and approved products. Many of these first-in-class therapies provide novel treatment modalities and address previously untreatable conditions or undruggable targets. In particular, novel treatments for rare genetic disorders and qualitatively different oncology therapeutics have been approved in the last two years. This review discusses recent advances in peptide, nucleic acid, carbohydrate, vaccine, and cell-based therapies as well as the manufacturing and commercialization challenges associated with these novel therapeutics.
Collapse
|
18
|
Masavuli MG, Wijesundara DK, Torresi J, Gowans EJ, Grubor-Bauk B. Preclinical Development and Production of Virus-Like Particles As Vaccine Candidates for Hepatitis C. Front Microbiol 2017; 8:2413. [PMID: 29259601 PMCID: PMC5723323 DOI: 10.3389/fmicb.2017.02413] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/22/2017] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C Virus (HCV) infects 2% of the world’s population and is the leading cause of liver disease and liver transplantation. It poses a serious and growing worldwide public health problem that will only be partially addressed with the introduction of new antiviral therapies. However, these treatments will not prevent re-infection particularly in high risk populations. The introduction of a HCV vaccine has been predicted, using simulation models in a high risk population, to have a significant effect on reducing the incidence of HCV. A vaccine with 50 to 80% efficacy targeted to high-risk intravenous drug users could dramatically reduce HCV incidence in this population. Virus like particles (VLPs) are composed of viral structural proteins which self-assemble into non-infectious particles that lack genetic material and resemble native viruses. Thus, VLPs represent a safe and highly immunogenic vaccine delivery platform able to induce potent adaptive immune responses. Currently, many VLP-based vaccines have entered clinical trials, while licensed VLP vaccines for hepatitis B virus (HBV) and human papilloma virus (HPV) have been in use for many years. The HCV core, E1 and E2 proteins can self-assemble into immunogenic VLPs while inclusion of HCV antigens into heterogenous (chimeric) VLPs is also a promising approach. These VLPs are produced using different expression systems such as bacterial, yeast, mammalian, plant, or insect cells. Here, this paper will review HCV VLP-based vaccines and their immunogenicity in animal models as well as the different expression systems used in their production.
Collapse
Affiliation(s)
- Makutiro Ghislain Masavuli
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Danushka K Wijesundara
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Joseph Torresi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Eric J Gowans
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Branka Grubor-Bauk
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
19
|
Torresi J. The Rationale for a Preventative HCV Virus-Like Particle (VLP) Vaccine. Front Microbiol 2017; 8:2163. [PMID: 29163442 PMCID: PMC5674006 DOI: 10.3389/fmicb.2017.02163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/20/2017] [Indexed: 12/16/2022] Open
Abstract
HCV represents a global health problem with ~200 million individuals currently infected, worldwide. With the high cost of antiviral therapies, the global burden of chronic hepatitis C infection (CHCV) infection will be substantially reduced by the development of an effective vaccine for HCV. The field of HCV vaccines is generally divided into proponents of strategies to induce neutralizing antibodies (NAb) and those who propose to elicit cell mediated immunity (CMI). However, for a hepatitis C virus (HCV) vaccine to be effective in preventing infection, it must be capable of generating cross-reactive CD4+, CD8+ T cell, and NAb responses that will cover the major viral genotypes. Simulation models of hepatitis C have predicted that a vaccine of even modest efficacy and coverage will significantly reduce the incidence of hepatitis C. A HCV virus like particle (VLP) based vaccine would fulfill the requirement of delivering critical conformational neutralizing epitopes in addition to providing HCV specific CD4+ and CD8+ epitopes. Several approaches have been reported including insect cell-derived genotype 1b HCV VLPs; a human liver-derived quadrivalent genotype 1a, 1b, 2, and 3a vaccine; a genotype 1a HCV E1 and E2 glycoprotein/MLV Gag pseudotype VLP vaccine; and chimeric HBs-HCV VLP vaccines. All to result in the production of cross-NAb and/or T cell responses against HCV. This paper summarizes the evidence supporting the development of a HCV VLP based vaccine.
Collapse
Affiliation(s)
- Joseph Torresi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
20
|
Prasetyo AA. VLPs of HCV local isolates for HCV immunoassay diagnostic approach in Indonesia. AIP CONFERENCE PROCEEDINGS 2017; 1788:030100. [DOI: 10.1063/1.4968353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|