1
|
Kadoi K, Toba J, Uehara A, Isoda N, Sakoda Y, Iwamoto E. Enhanced sulfate pseudo-affinity chromatography using monolith-like particle architecture for purifying SARS-CoV-2. Vaccine 2025; 53:126951. [PMID: 40037125 DOI: 10.1016/j.vaccine.2025.126951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 02/22/2025] [Accepted: 02/22/2025] [Indexed: 03/06/2025]
Abstract
Traditional virus chromatographic purification face limitations owing to the small pore sizes of conventional resins, which restrict efficient virus binding. The newly developed MLP1000 DexS, a cellulose monolith-like particle (MLP) with large continuous pores (radius of 1.5 μm) and a sulfate pseudo-affinity ligand, facilitates virus access to intraparticle surfaces and significantly enhances binding capacity. In this study, we investigated the effectiveness of MLP1000 DexS for purifying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from Vero cells. Using a 0.29 mL column volume, we evaluated this resin through bind-elute mode chromatography under two load volume conditions (4.5 mL and 21 mL). MLP1000 DexS exhibited superior performance under high-loading conditions, achieving a high elution recovery of 59 % for the virus compared with that of 11-17 % for the commercial resins Cellufine Sulfate and Capto DeVirS. Additionally, the dsDNA removal capacity of MLP1000 DexS was 3.0-5.3-fold higher than that of the other resins. These findings suggest that MLP1000 DexS is an effective purification material for the downstream processing of live-attenuated and inactivated coronavirus vaccine production.
Collapse
Affiliation(s)
- Kenji Kadoi
- Yokohama R&D Center, JNC Corporation, 5-1 Ookawa, Kanazawa-ku, Yokohama-shi Kanagawa, 236-8605, Japan.
| | - Junya Toba
- Yokohama R&D Center, JNC Corporation, 5-1 Ookawa, Kanazawa-ku, Yokohama-shi Kanagawa, 236-8605, Japan.
| | - Ayana Uehara
- Yokohama R&D Center, JNC Corporation, 5-1 Ookawa, Kanazawa-ku, Yokohama-shi Kanagawa, 236-8605, Japan.
| | - Norikazu Isoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.
| | - Eri Iwamoto
- Yokohama R&D Center, JNC Corporation, 5-1 Ookawa, Kanazawa-ku, Yokohama-shi Kanagawa, 236-8605, Japan.
| |
Collapse
|
2
|
Tian Y, Wang X, Shao D, Zhao W, Chen R, Huang Q. Establishment and evaluation of detection methods for process-specific residual host cell protein and residual host cell DNA in biological preparation. Cell Biochem Funct 2024; 42:e3986. [PMID: 38504442 DOI: 10.1002/cbf.3986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
To establish accurate detection methods of process-specific Escherichia coli residual host cell protein (HCP) and residual host cell DNA (rcDNA) in recombinant biological preparations. Taking the purification process of GLP expressed by E. coli as a specific-process model, the HCP of empty E. coli was intercepted to immunize mice and rabbits. Using IgG from immunized rabbits as the coating antibody and mouse immune serum as the second sandwich antibody, a process-specific enzyme-linked immunosorbent assay (ELISA) for E. coli HCP was established. Targeting the 16S gene of E. coli, ddPCR was used to obtain the absolute copies of rcDNA in samples. Non-process-specific commercial ELISA kit and the process-specific ELISA established in this study were used to detect the HCP in GLP preparation. About 62% of HCPs, which should be process-specific HCPs, could not be detected by the non-process-specific commercial ELISA kit. The sensitivity of established ELISA can reach 338 pg/mL. The rcDNA could be absolutely quantitated by ddPCR, for the copies of rcDNA in three multiple diluted samples showed a reduced gradient. While the copies of rcDNA in three multiple diluted samples could not be distinguished by the qPCR. Process-specific ELISA has high sensitivity in detecting process-specific E. coli HCP. The absolutely quantitative ddPCR has much higher accuracy than the relatively quantitative qPCR, it is a nucleic acid quantitative method that is expected to replace qPCR in the future.
Collapse
Affiliation(s)
- Yixiao Tian
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Xinyue Wang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Dongyan Shao
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Wen Zhao
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Renan Chen
- Shaanxi Province Cancer Hospital, Xi'an, Shaanxi, China
| | - Qingsheng Huang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Fan W, Zhao L, Yu L, Zhou Y. Chip-based digital PCR as a direct quantification method for residual DNA in mRNA drugs. J Pharm Biomed Anal 2024; 238:115837. [PMID: 37952451 DOI: 10.1016/j.jpba.2023.115837] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Residual exogenous DNA, as common contaminants in biological products, must be monitored and removed to ensure safety. Digital PCR (dPCR) technology is widely applied in DNA quantitative analysis due to high specificity, sensitivity, absolute quantification, etc. Data support is relatively lacking in deciphering the dPCR technology application in residual DNA of mRNA drugs. The current study helped establish the dPCR methods corresponding to two different mRNA vaccines to detect the residual DNA template. The established dPCR methods have a wide linear range, good precision, accuracy, and specificity without being interfered with by encapsulating and demulsifying reagents. The method is simple, rapid, and sensitive which demonstrates that dPCR can directly quantitate other types of risky DNA in mRNA drugs accurately as well.
Collapse
Affiliation(s)
- Wenchao Fan
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Lan Zhao
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Lei Yu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Yong Zhou
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China.
| |
Collapse
|
4
|
Development and Evaluation of a Novel One-Step RT-qPCR Targeting the Vero Gene for the Identification of False-Positive Results Caused by Inactivated Virus Vaccine Contamination. Vaccines (Basel) 2023; 11:vaccines11020372. [PMID: 36851250 PMCID: PMC9959469 DOI: 10.3390/vaccines11020372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
To identify false-positive SARS-CoV-2 test results caused by novel coronavirus inactivated vaccine contamination, a novel RT-qPCR targeting the ORF1ab and N genes of SARS-CoV-2 and Vero gene was developed. The amplification efficiency, precision, and lower limit of detection (LLOD) of the RT-qPCR assay were determined. A total of 346 clinical samples and 132 environmental samples were assessed, and the diagnostic performance was evaluated. The results showed that the amplification efficiency of the ORF1ab, N, and Vero genes was 95%, 97%, and 93%, respectively. The coefficients of variation of Ct values at a concentration of 3 × 104 copies/mL were lower than 5%. The LLOD for the ORF1ab, N, and Vero genes reached 8.0, 3.3, and 8.2 copies/reaction, respectively. For the 346 clinical samples, our RT-qPCR assay identified SARS-CoV-2-positive and SARS-CoV-2-negative samples with a sensitivity of 100.00% and a specificity of 99.30% and novel coronavirus inactivated vaccine-contaminated samples with a sensitivity of 100% and a specificity of 100%. For the environmental samples, our RT-qPCR assay identified novel coronavirus inactivated vaccine-contaminated samples with a sensitivity of 88.06% and a specificity of 95.38%. In conclusion, the RT-qPCR assay we established can be used to diagnose COVID-19 and, to a certain extent, false-positive results due to vaccine contamination.
Collapse
|
5
|
Lauro ML, Bowman AM, Smith JP, Gaye SN, Acevedo-Skrip J, DePhillips PA, Loughney JW. Overcoming Biopharmaceutical Interferents for Quantitation of Host Cell DNA Using an Automated, High-Throughput Methodology. AAPS J 2022; 25:10. [PMID: 36482268 PMCID: PMC9735023 DOI: 10.1208/s12248-022-00764-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/21/2022] [Indexed: 12/13/2022] Open
Abstract
The rapid development of biologics and vaccines in response to the current pandemic has highlighted the need for robust platform assays to characterize diverse biopharmaceuticals. A critical aspect of biopharmaceutical development is achieving a highly pure product, especially with respect to residual host cell material. Specifically, two important host cell impurities of focus within biopharmaceuticals are residual DNA and protein. In this work, a novel high-throughput host cell DNA quantitation assay was developed for rapid screening of complex vaccine drug substance samples. The developed assay utilizes the commercially available, fluorescent-sensitive Picogreen dye within a 96-well plate configuration to allow for a cost effective and rapid analysis. The assay was applied to in-process biopharmaceutical samples with known interferences to the dye, including RNA and protein. An enzymatic digestion pre-treatment was found to overcome these interferences and thus allow this method to be applied to wide-ranging, diverse analyses. In addition, the use of deoxycholate in the digestion treatment allowed for disruption of interactions in a given sample matrix in order to more accurately and selectively quantitate DNA. Critical analytical figures of merit for assay performance, such as precision and spike recovery, were evaluated and successfully demonstrated. This new analytical method can thus be successfully applied to both upstream and downstream process analysis for biologics and vaccines using an innovative and automated high-throughput approach.
Collapse
Affiliation(s)
- Mackenzie L. Lauro
- grid.417993.10000 0001 2260 0793Analytical Research & Development, MRL, Merck & Co., Inc., West Point, Pennsylvania 19486 USA
| | - Amy M. Bowman
- grid.417993.10000 0001 2260 0793Analytical Research & Development, MRL, Merck & Co., Inc., West Point, Pennsylvania 19486 USA
| | - Joseph P. Smith
- grid.417993.10000 0001 2260 0793Analytical Research & Development, MRL, Merck & Co., Inc., West Point, Pennsylvania 19486 USA
| | - Susannah N. Gaye
- grid.417993.10000 0001 2260 0793Analytical Research & Development, MRL, Merck & Co., Inc., West Point, Pennsylvania 19486 USA
| | - Jillian Acevedo-Skrip
- grid.417993.10000 0001 2260 0793Analytical Research & Development, MRL, Merck & Co., Inc., West Point, Pennsylvania 19486 USA
| | - Pete A. DePhillips
- grid.417993.10000 0001 2260 0793Analytical Research & Development, MRL, Merck & Co., Inc., West Point, Pennsylvania 19486 USA
| | - John W. Loughney
- grid.417993.10000 0001 2260 0793Analytical Research & Development, MRL, Merck & Co., Inc., West Point, Pennsylvania 19486 USA
| |
Collapse
|
6
|
Evaluation of a downstream process for the recovery and concentration of a Cell-Culture-Derived rVSV-Spike COVID-19 vaccine candidate. Vaccine 2021; 39:7044-7051. [PMID: 34756612 PMCID: PMC8531466 DOI: 10.1016/j.vaccine.2021.10.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 12/25/2022]
Abstract
rVSV-Spike (rVSV-S) is a recombinant viral vaccine candidate under development to control the COVID-19 pandemic and is currently in phase II clinical trials. rVSV-S induces neutralizing antibodies and protects against SARS-CoV-2 infection in animal models. Bringing rVSV-S to clinical trials required the development of a scalable downstream process for the production of rVSV-S that can meet regulatory guidelines. The objective of this study was the development of the first downstream unit operations for cell-culture-derived rVSV-S, namely, the removal of nucleic acid contamination, the clarification and concentration of viral harvested supernatant, and buffer exchange. Retaining the infectivity of the rVSV-S during the downstream process was challenged by the shear sensitivity of the enveloped rVSV-S and its membrane protruding spike protein. Through a series of screening experiments, we evaluated and established the required endonuclease treatment conditions, filter train composition, and hollow fiber-tangential flow filtration parameters to remove large particles, reduce the load of impurities, and concentrate and exchange the buffer while retaining rVSV-S infectivity. The combined effect of the first unit operations on viral recovery and the removal of critical impurities was examined during scale-up experiments. Overall, approximately 40% of viral recovery was obtained and the regulatory requirements of less than 10 ng host cell DNA per dose were met. However, while 86–97% of the host cell proteins were removed, the regulatory acceptable HCP levels were not achieved, requiring subsequent purification and polishing steps. The results we obtained during the scale-up experiments were similar to those obtained during the screening experiments, indicating the scalability of the process. The findings of this study set the foundation for the development of a complete downstream manufacturing process, requiring subsequent purification and polishing unit operations for clinical preparations of rVSV-S.
Collapse
|
7
|
Hamidi A, Hoeksema F, Velthof P, Lemckert A, Gillissen G, Luitjens A, Bines JE, Pullagurla SR, Kumar P, Volkin DB, Joshi SB, Havenga M, Bakker WAM, Yallop C. Developing a manufacturing process to deliver a cost effective and stable liquid human rotavirus vaccine. Vaccine 2021; 39:2048-2059. [PMID: 33744044 PMCID: PMC8062787 DOI: 10.1016/j.vaccine.2021.03.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 11/28/2022]
Abstract
Despite solid evidence of the success of rotavirus vaccines in saving children from fatal gastroenteritis, more than 82 million infants worldwide still lack access to a rotavirus vaccine. The main barriers to global rotavirus vaccine coverage include cost, manufacturing capacity and suboptimal efficacy in low- and lower-middle income countries. One vaccine candidate with the potential to address the latter is based on the novel, naturally attenuated RV3 strain of rotavirus, RV3-BB vaccine administered in a birth dose strategy had a vaccine efficacy against severe rotavirus gastroenteritis of 94% at 12 months of age in infants in Indonesia. To further develop this vaccine candidate, a well-documented and low-cost manufacturing process is required. A target fully loaded cost of goods (COGs) of ≤$3.50 per course of three doses was set based on predicted market requirements. COGs modelling was leveraged to develop a process using Vero cells in cell factories reaching high titers, reducing or replacing expensive reagents and shortening process time to maximise output. Stable candidate liquid formulations were developed allowing two-year storage at 2-8 °C. In addition, the formulation potentially renders needless the pretreatment of vaccinees with antacid to ensure adequate gastric acid neutralization for routine oral vaccination. As a result, the formulation allows small volume dosing and reduction of supply chain costs. A dose ranging study is currently underway in Malawi that will inform the final clinical dose required. At a clinical dose of ≤6.3 log10 FFU, the COGs target of ≤$3.50 per three dose course was met. At a clinical dose of 6.5 log10 FFU, the final manufacturing process resulted in a COGs that is substantially lower than the current average market price, 2.44 USD per dose. The manufacturing and formulation processes were transferred to BioFarma in Indonesia to enable future RV3-BB vaccine production.
Collapse
Affiliation(s)
- Ahd Hamidi
- Batavia Biosciences BV, Zernikedreef 16, 2333CL Leiden, the Netherlands
| | - Femke Hoeksema
- Batavia Biosciences BV, Zernikedreef 16, 2333CL Leiden, the Netherlands
| | - Pim Velthof
- Batavia Biosciences BV, Zernikedreef 16, 2333CL Leiden, the Netherlands
| | | | - Gert Gillissen
- Batavia Biosciences BV, Zernikedreef 16, 2333CL Leiden, the Netherlands
| | - Alfred Luitjens
- Batavia Biosciences BV, Zernikedreef 16, 2333CL Leiden, the Netherlands
| | - Julie E Bines
- Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Department of Gastroenterology and Clinical Nutrition, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Swathi R Pullagurla
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Prashant Kumar
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Menzo Havenga
- Batavia Biosciences BV, Zernikedreef 16, 2333CL Leiden, the Netherlands
| | | | - Christopher Yallop
- Batavia Biosciences BV, Zernikedreef 16, 2333CL Leiden, the Netherlands.
| |
Collapse
|
8
|
Design and development of a simple method for the detection and quantification of residual host cell DNA in recombinant rotavirus vaccine. Mol Cell Probes 2020; 55:101674. [PMID: 33253779 DOI: 10.1016/j.mcp.2020.101674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/11/2020] [Accepted: 11/20/2020] [Indexed: 11/22/2022]
Abstract
Rotavirus recombinant vaccine is usually produced in Vero cells. Residual host DNA may reside in the final product and is considered a source of contamination. WHO protocols indicate that biological products should be free of any type of impurity such as nucleic acids, endotoxins, and host cell intermediate materials. Therefore, all recombinant biological therapeutics should be assessed for residual host DNA. In the present study, a sensitive and specific real-time PCR method was developed to detect residual host cell DNA in the final product. The Beta-actin gene of Vero cells was selected to detect residual host cell DNA. One set of primers and a TaqMan probe were designed for the gene using AlleleID 6 software. Real-time PCR reactions were set up, and efficiency of 84% was obtained. The sensitivity and limit of detection of the assay were determined to be 0.176 Fg/μl and 0.044 Fg/μl, respectively. The intra-assay and inter-assay variations were 4.4% and 1.04%, respectively. Furthermore, the specificity and sensitivity of the assay were high enough, and the detection limit was lower than that of the FDA and WHO standards. This indicates that our assay is highly specific and sensitive to detect residual host DNA of Vero cells in the recombinant rotavirus vaccine.
Collapse
|
9
|
Lothert K, Pagallies F, Eilts F, Sivanesapillai A, Hardt M, Moebus A, Feger T, Amann R, Wolff MW. A scalable downstream process for the purification of the cell culture-derived Orf virus for human or veterinary applications. J Biotechnol 2020; 323:221-230. [PMID: 32860824 DOI: 10.1016/j.jbiotec.2020.08.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/06/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022]
Abstract
The large demand for safe and efficient viral vector-based vaccines and gene therapies against both inherited and acquired diseases accelerates the development of viral vectors. One outstanding example, the Orf virus, has a wide range of applications, a superior efficacy and an excellent safety profile combined with a reduced pathogenicity compared to other viral vectors. However, besides these favorable attributes, an efficient and scalable downstream process still needs to be developed. Recently, we screened potential chromatographic stationary phases for Orf virus purification. Based on these previous accomplishments, we developed a complete downstream process for the cell culture-derived Orf virus. The described process comprises a membrane-based clarification step, a nuclease treatment, steric exclusion chromatography, and a secondary chromatographic purification step using Capto® Core 700 resin. The applicability of this process to a variety of diverse Orf virus vectors was shown, testing two different genotypes. These studies render the possibility to apply the developed downstream scheme for both genotypes, and lead to overall virus yields of about 64 %, with step recoveries of >70 % for the clarification, and >90 % for the chromatography train. Protein concentrations of the final product are below the detection limits, and the final DNA concentration of about 1 ng per 1E + 06 infective virus units resembles a total DNA depletion of 96-98 %.
Collapse
Affiliation(s)
- Keven Lothert
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany
| | - Felix Pagallies
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Friederike Eilts
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany
| | - Arabi Sivanesapillai
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany
| | - Martin Hardt
- Imaging Unit, Biomedical Research Centre Seltersberg, Justus Liebig University, Giessen, Germany
| | - Anna Moebus
- Imaging Unit, Biomedical Research Centre Seltersberg, Justus Liebig University, Giessen, Germany
| | - Thomas Feger
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Ralf Amann
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany.
| |
Collapse
|
10
|
Influenza A and B virus-like particles produced in mammalian cells are highly immunogenic and induce functional antibodies. Vaccine 2019; 37:6857-6867. [DOI: 10.1016/j.vaccine.2019.09.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022]
|