1
|
Bhakha K, Matsui Y, Buakhao N, Wanganurakkul S, Deemagarn T, Oba M, Takemae H, Mizutani T, Misawa N, Chintapitaksakul L, Yamada K, Suwankitwat N. Development of a Multi-Locus Real-Time PCR with a High-Resolution Melting Assay to Differentiate Wild-Type, Asian Recombinant, and Vaccine Strains of Lumpy Skin Disease Virus. Vet Sci 2025; 12:213. [PMID: 40266924 PMCID: PMC11945404 DOI: 10.3390/vetsci12030213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 04/25/2025] Open
Abstract
Lumpy skin disease virus (LSDV) affects cattle and causes significant economic damage. The live vaccine derived from an attenuated strain is effective but is associated with mild disease and skin lesions in some vaccinated cattle. Moreover, recombinant LSDV strains, particularly one with wild-type field and vaccine strains, have recently emerged and spread throughout Asian countries. A cost-effective LSDV typing method is required. We developed a multi-locus real-time PCR with a high-resolution melting (HRM) assay to differentiate between the wild-type, vaccine, and dominant Asian recombinant strains. Based on a multiple alignment analysis, we selected three target genes for the HRM assay, ORF095, ORF126, and ORF145, in which there are insertions/deletions and nucleotide substitutions between wild-type and vaccine strains, and designed primer sets for the assay. Using the synthetic DNA encoding these genes for the two strains, it was shown that the PCR amplicons intercalated with a saturating fluorescent dye could clearly differentiate between wild-type and vaccine strains in the HRM analysis for all three target genes. Further, using clinical samples, our method was able to identify recombinant strains harboring the wild-type ORF095 and ORF145 and the vaccine strain ORF126 genes. Thus, our HRM assay may provide rapid LSDV typing.
Collapse
Affiliation(s)
- Kultyarat Bhakha
- Virology Laboratory, National Institute of Animal Health, Department of Livestock Development, Bangkok 10900, Thailand; (K.B.); (N.B.); (L.C.)
| | - Yuto Matsui
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki City, Miyazaki 889-2192, Japan; (Y.M.); (N.M.)
| | - Natchaya Buakhao
- Virology Laboratory, National Institute of Animal Health, Department of Livestock Development, Bangkok 10900, Thailand; (K.B.); (N.B.); (L.C.)
| | - Saruda Wanganurakkul
- Veterinary Research and Development Center (Eastern Region), Department of Livestock Development, Chonburi 20220, Thailand;
| | - Taweewat Deemagarn
- Animal Health Research and Innovation Promotion Section, National Institute of Animal Health, Department of Livestock Development, Bangkok 10900, Thailand;
| | - Mami Oba
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo University of Agriculture and Technology, Fuchu City, Tokyo 183-8509, Japan; (M.O.); (H.T.); (T.M.)
| | - Hitoshi Takemae
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo University of Agriculture and Technology, Fuchu City, Tokyo 183-8509, Japan; (M.O.); (H.T.); (T.M.)
| | - Tetsuya Mizutani
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo University of Agriculture and Technology, Fuchu City, Tokyo 183-8509, Japan; (M.O.); (H.T.); (T.M.)
| | - Naoaki Misawa
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki City, Miyazaki 889-2192, Japan; (Y.M.); (N.M.)
| | - Lerdchai Chintapitaksakul
- Virology Laboratory, National Institute of Animal Health, Department of Livestock Development, Bangkok 10900, Thailand; (K.B.); (N.B.); (L.C.)
| | - Kentaro Yamada
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki City, Miyazaki 889-2192, Japan; (Y.M.); (N.M.)
- Laboratory Veterinary Public Health, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki City, Miyazaki 889-2192, Japan
| | - Nutthakarn Suwankitwat
- Virology Laboratory, National Institute of Animal Health, Department of Livestock Development, Bangkok 10900, Thailand; (K.B.); (N.B.); (L.C.)
| |
Collapse
|
2
|
Mishra R, Biswas SK, Nandi S, Mahajan S, Sai Balaji KG, Gairola V, Poloju D, Gulzar S, Singh KP, Singh RK, Sharma GK. Deciphering the genetic landscape of lumpy skin disease: Unraveling variable virulence through comprehensive genome sequence analysis in India. Virology 2024; 596:110123. [PMID: 38805805 DOI: 10.1016/j.virol.2024.110123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Lumpy Skin Disease (LSD), a poxvirus disease affecting cattle, emerged in India in 2019 and intensified in 2022, resulting in significant economic losses for dairy farmers. There was unusual shift in mortality and morbidity patterns during the second wave. A comprehensive genetic study conducted, analyzing samples from 2019 to 2022 revealed circulation of two distinct subclades (subclade 1.2a and 1.2b) in India, with the latter showing a different pattern in morbidity and mortality. Notably, the Ankyrin repeats gene-based analysis could differentiate animals with varying clinical scores. Genetic variations were significant, with unique deletions identified, including a 12-nucleotide deletion in the GPCR gene in virus isolates collected during 2022 outbreaks, not reported earlier in Indian LSDV strains. A crucial finding was a significant 95-nucleotide deletion in the Functional Resolution Sequence (FRS) repeats of LSDV genomes from 2022 outbreaks, absent in 2019 samples. These deletions may have influenced the virus's virulence in India.
Collapse
Affiliation(s)
- R Mishra
- Center for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India.
| | - S K Biswas
- Center for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India.
| | - S Nandi
- Center for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India.
| | - S Mahajan
- Division of Veterinary Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India.
| | - K G Sai Balaji
- Center for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India.
| | - V Gairola
- Center for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India; Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.
| | - D Poloju
- Center for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India.
| | - S Gulzar
- Center for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India.
| | - K P Singh
- Center for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India.
| | - R K Singh
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India.
| | - G K Sharma
- Center for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| |
Collapse
|
3
|
Song Z, Chen L, Sun S, Yang G, Yu G. Unveiling the airborne microbial menace: Novel insights into pathogenic bacteria and fungi in bioaerosols from nursery schools to universities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172694. [PMID: 38670386 DOI: 10.1016/j.scitotenv.2024.172694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/07/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Bacterial and fungal aerosol pollution is widespread in indoor school environments, and poses potential health risks to students and staff. Understanding the distribution and diversity of microbial communities within aerosols is crucial to mitigate their adverse effects. Existing knowledge regarding the composition of bacterial and fungal aerosols, particularly the presence of potential pathogenic microorganisms in fine particulate matter (PM2.5) from nursery schools to universities, is limited. To bridge this knowledge gap, in the present study, we collected PM2.5 samples from five types of schools (i.e., nursery schools, primary schools, junior schools, and high schools and universities) in China. We used advanced single-molecule real-time sequencing to analyze the species-level diversity of bacterial and fungal components in PM2.5 samples based on 16S and ITS ribosomal genes, respectively. We found significant differences in microbial diversity and community composition among the samples obtained from different educational institutions and pollution levels. In particularly, junior schools exhibited higher PM2.5 concentrations (62.2-86.6 μg/m3) than other schools (14.4-48.4 μg/m3). Moreover, microbial variations in PM2.5 samples were associated with institution type. Notably, the prevailing pathogenic microorganisms included Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Streptococcus pneumoniae, and Schizophyllum commune, all of which were identified as Class II Pathogenic Microorganisms in school settings. Four potentially novel strains of S. commune were identified in PM2.5 samples collected from the university; the four strains showed 92.4 %-94.1 % ITS sequence similarity to known Schizophyllum isolates. To the best of our knowledge, this is the first study to explore bacterial and fungal diversity within PM2.5 samples from nursery schools to universities. Overall, these findings contribute to the existing knowledge of school environmental microbiology to ensure the health and safety of students and staff and impacting public health.
Collapse
Affiliation(s)
- Zhicheng Song
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Lei Chen
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Shuwei Sun
- Jinan Licheng No.2 High School, Jinan 250109, China
| | - Guiwen Yang
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Guanliu Yu
- College of Life Sciences, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
4
|
Van Borm S, Dellicour S, Martin DP, Lemey P, Agianniotaki EI, Chondrokouki ED, Vidanovic D, Vaskovic N, Petroviċ T, Laziċ S, Koleci X, Vodica A, Djadjovski I, Krstevski K, Vandenbussche F, Haegeman A, De Clercq K, Mathijs E. Complete genome reconstruction of the global and European regional dispersal history of the lumpy skin disease virus. J Virol 2023; 97:e0139423. [PMID: 37905838 PMCID: PMC10688313 DOI: 10.1128/jvi.01394-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE Lumpy skin disease virus (LSDV) has a complex epidemiology involving multiple strains, recombination, and vaccination. Its DNA genome provides limited genetic variation to trace outbreaks in space and time. Sequencing of LSDV whole genomes has also been patchy at global and regional scales. Here, we provide the first fine-grained whole genome sequence sampling of a constrained LSDV outbreak (southeastern Europe, 2015-2017), which we analyze along with global publicly available genomes. We formally evaluate the past occurrence of recombination events as well as the temporal signal that is required for calibrating molecular clock models and subsequently conduct a time-calibrated spatially explicit phylogeographic reconstruction. Our study further illustrates the importance of accounting for recombination events before reconstructing global and regional dynamics of DNA viruses. More LSDV whole genomes from endemic areas are needed to obtain a comprehensive understanding of global LSDV dispersal dynamics.
Collapse
Affiliation(s)
- Steven Van Borm
- Scientific Directorate Animal Infectious Diseases, Sciensano, Brussels, Belgium
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Darren P. Martin
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Philippe Lemey
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Eirini I. Agianniotaki
- National Reference Laboratory for Capripoxviruses, Department of Molecular Diagnostics, FMD, Virological, Rickettsial and Exotic Diseases, Directorate of Athens Veterinary Center, Ministry of Rural Development and Food, Athens, Greece
| | - Eleni D. Chondrokouki
- National Reference Laboratory for Capripoxviruses, Department of Molecular Diagnostics, FMD, Virological, Rickettsial and Exotic Diseases, Directorate of Athens Veterinary Center, Ministry of Rural Development and Food, Athens, Greece
| | - Dejan Vidanovic
- Department for laboratory diagnostics, Veterinary Specialized Institute, Kraljevo, Serbia
| | - Nikola Vaskovic
- Department for laboratory diagnostics, Veterinary Specialized Institute, Kraljevo, Serbia
| | - Tamaš Petroviċ
- Department for Virology, Scientific Veterinary Institute, Novi Sad, Serbia
| | - Sava Laziċ
- Department for Virology, Scientific Veterinary Institute, Novi Sad, Serbia
| | - Xhelil Koleci
- Faculty of Veterinary Medicine, The Agricultural University of Tirana, Tirana, Albania
| | - Ani Vodica
- Animal Health Department, Food Safety and Veterinary Institute, Tirana, Albania
| | - Igor Djadjovski
- Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
| | - Kiril Krstevski
- Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
| | - Frank Vandenbussche
- Scientific Directorate Animal Infectious Diseases, Sciensano, Brussels, Belgium
| | - Andy Haegeman
- Scientific Directorate Animal Infectious Diseases, Sciensano, Brussels, Belgium
| | - Kris De Clercq
- Scientific Directorate Animal Infectious Diseases, Sciensano, Brussels, Belgium
| | - Elisabeth Mathijs
- Scientific Directorate Animal Infectious Diseases, Sciensano, Brussels, Belgium
| |
Collapse
|
5
|
Mustafa G, Mahrosh HS, Salman M, Ali M, Arif R, Ahmed S, Ebaid H. In Silico Analysis of Honey Bee Peptides as Potential Inhibitors of Capripoxvirus DNA-Directed RNA Polymerase. Animals (Basel) 2023; 13:2281. [PMID: 37508058 PMCID: PMC10376589 DOI: 10.3390/ani13142281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The genus Capripoxvirus belongs to the Poxviridae family. The sheeppox, goatpox, and lumpy skin disease viruses are three species of this genus with 96% identity in their genomes. These are financially devastating viral infections among cattle, which cause a reduction in animal products and lead to a loss in livestock industries. In the current study, the phylogenetic analysis was carried out to reveal the evolutionary relationships of Capripoxvirus species (i.e., sheeppox virus (SPPV), goatpox virus (GTPV), and lumpy skin disease virus (LSDV)) with other viruses from the Poxviridae family with >96% query coverage to find the similarity index among all members. The three viruses (i.e., SPPV, GTPV, and LSDV) joined the clade of Capripoxvirus of the Poxviridae family in the phylogenetic tree and exhibited close evolutionary relationships. The multiple sequence alignment using ClustalOmega revealed significant variations in the protein sequences of the DNA-dependent RNA polymerase of SPPV, GTPV, and LSDV. The three-dimensional structures of five selected bee peptides and DNA-directed RNA polymerase of SPPV, GTPV, and LSDV were predicted using trRosetta and I-TASSER and used for molecular docking and simulation studies. The protein-protein docking was carried out using HADDOCK server to explore the antiviral activity of peptides as honey bee proteins against SPPV, GTPV, and LSDV. In total, five peptides were docked to DNA-directed RNA polymerase of these viruses. The peptides mellitin and secapin-1 displayed the lowest binding scores (-106.9 +/- 7.2 kcal/mol and -101.4 +/- 11.3 kcal/mol, respectively) and the best patterns with stable complexes. The molecular dynamics simulation indicated that the complex of protein DNA-dependent RNA polymerase and the peptide melittin stayed firmly connected and the peptide binding to the receptor protein was stable. The findings of this study provide the evidence of bee peptides as potent antimicrobial agents against sheeppox, goatpox, and lumpy skin disease viruses with no complexity.
Collapse
Affiliation(s)
- Ghulam Mustafa
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38060, Pakistan
| | - Hafiza Salaha Mahrosh
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Mahwish Salman
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38060, Pakistan
| | - Muhammad Ali
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Rawaba Arif
- Department of Biochemistry, University of Jhang, Jhang 35200, Pakistan
| | - Sibtain Ahmed
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Department of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Hossam Ebaid
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Krotova A, Shalina K, Mazloum A, Kwon D, Van Schalkwyk A, Byadovskaya O, Sprygin A. Genetic characterization of sheep pox virus strains from outbreaks in Central Russia in 2018-2019. Transbound Emerg Dis 2022; 69:e3430-e3435. [PMID: 36217254 DOI: 10.1111/tbed.14727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 10/03/2022] [Indexed: 02/04/2023]
Abstract
This study investigates the phylogenomic relatedness between sheep pox viruses (SPPVs) circulating in Central Russia in 2018-2019 with the NISKHI vaccine strain used in the country, based on their complete genome sequences. The sheep pox outbreaks occurred 1 year apart in the adjacent regions of Tula and Moscow. Full genome sequences were generated by sequencing DNA directly obtained from Trizol-extracted scabs, using the DNBSEQ-400 platform (MGI Tech, China). Phylogenetic analysis indicated that the SPPV isolates from Russia clusters with previously published sequences from Srinagar in the Kashmir province of India in 2000 (SPPV-Srinagar strain) as well as SPPV A strain from Kazakhstan in 2000. The aforementioned cluster belonged to a sister clade containing the NISKHI vaccine strain, thus indicating that the recent outbreaks were not genetically linked to the widely used vaccine.
Collapse
Affiliation(s)
| | | | - Ali Mazloum
- Federal Center for Animal Health, Vladimir, Russia
| | - Dmitry Kwon
- Core Sequencing Center, Kurchatov Center for Genome Research NRC "Kurchatov Institute", Moscow, Russia
| | - Antoinette Van Schalkwyk
- Agricultural Research Council - Onderstepoort Veterinary Institute, Onderstepoort, South Africa.,Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | | | | |
Collapse
|
7
|
Vandenbussche F, Mathijs E, Philips W, Saduakassova M, De Leeuw I, Sultanov A, Haegeman A, De Clercq K. Recombinant LSDV Strains in Asia: Vaccine Spillover or Natural Emergence? Viruses 2022; 14:v14071429. [PMID: 35891412 PMCID: PMC9318037 DOI: 10.3390/v14071429] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/23/2022] Open
Abstract
From 2017 to 2019, several vaccine-like recombinant strains of lumpy skin disease virus (LSDV) were discovered in Kazakhstan and neighbouring regions of Russia and China. Shortly before their emergence, the authorities in Kazakhstan launched a mass vaccination campaign with the Neethling-based Lumpivax vaccine. Since none of the other countries in the affected region had used a homologous LSDV vaccine, it was soon suspected that the Lumpivax vaccine was the cause of these unusual LSDV strains. In this study, we performed a genome-wide molecular analysis to investigate the composition of two Lumpivax vaccine batches and to establish a possible link between the vaccine and the recent outbreaks. Although labelled as a pure Neethling-based LSDV vaccine, the Lumpivax vaccine appears to be a complex mixture of multiple CaPVs. Using an iterative enrichment/assembly strategy, we obtained the complete genomes of a Neethling-like LSDV vaccine strain, a KSGP-like LSDV vaccine strain and a Sudan-like GTPV strain. The same analysis also revealed the presence of several recombinant LSDV strains that were (almost) identical to the recently described vaccine-like LSDV strains. Based on their InDel/SNP signatures, the vaccine-like recombinant strains can be divided into four groups. Each group has a distinct breakpoint pattern resulting from multiple recombination events, with the number of genetic exchanges ranging from 126 to 146. The enormous divergence of the recombinant strains suggests that they arose during seed production. The recent emergence of vaccine-like LSDV strains in large parts of Asia is, therefore, most likely the result of a spillover from animals vaccinated with the Lumpivax vaccine.
Collapse
Affiliation(s)
- Frank Vandenbussche
- EURL for Diseases Caused by Capripoxviruses, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (F.V.); (E.M.); (W.P.)
| | - Elisabeth Mathijs
- EURL for Diseases Caused by Capripoxviruses, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (F.V.); (E.M.); (W.P.)
| | - Wannes Philips
- EURL for Diseases Caused by Capripoxviruses, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (F.V.); (E.M.); (W.P.)
| | - Meruyert Saduakassova
- Kazakh Scientific Research Veterinary Institute (KazSRVI/KazNIVI), Raiymbek ave. 223, Almaty 050016, Kazakhstan; (M.S.); (A.S.)
| | - Ilse De Leeuw
- Unit of Exotic and Particular Diseases, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (I.D.L.); (A.H.)
| | - Akhmetzhan Sultanov
- Kazakh Scientific Research Veterinary Institute (KazSRVI/KazNIVI), Raiymbek ave. 223, Almaty 050016, Kazakhstan; (M.S.); (A.S.)
| | - Andy Haegeman
- Unit of Exotic and Particular Diseases, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (I.D.L.); (A.H.)
| | - Kris De Clercq
- Unit of Exotic and Particular Diseases, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (I.D.L.); (A.H.)
- Correspondence:
| |
Collapse
|