1
|
Cao G, Zhang R, Jia X, Jiang B, Li Y, Xuan X, Tian J, Hui H, Xin S, Dong H. CXCR4-targeted sensitive magnetic particle imaging for abdominal aortic aneurysm early detection and prognosis evaluation by recognizing total inflammatory cells. Cardiovasc Res 2025; 121:324-338. [PMID: 39658102 DOI: 10.1093/cvr/cvae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/22/2024] [Accepted: 10/01/2024] [Indexed: 12/12/2024] Open
Abstract
AIMS The maximum aortic diameter remains the diagnostic criteria and the indicator for prognosis prediction of abdominal aortic aneurysms (AAAs). An additional imaging modality is currently needed to help evaluate the prognosis of AAA as well as early detection of AAA formation. This study evaluated the most effective inflammatory markers for AAA using single-cell sequencing and, from these, developed probes to facilitate in vivo multimodal imaging of AAA inflammation. METHODS AND RESULTS Single-cell RNA sequencing (scRNAseq) of the human aortic aneurysms, GSE155468 and GSE166676 data sets, identified CXCR4 as the most representative marker. Anti-CXCR4-PE antibody was conjugated to superparamagnetic iron oxide nanoparticles to synthesize Fe3O4-anti-CXCR4-PE probes. The biocompatibility and specificity of the probes were validated in vivo and in vitro. Magnetic particle imaging (MPI) and fluorescence imaging (FLI) were performed to assess inflammation in early and advanced AAA mouse models. CXCR4-specific receptor inhibitor, AMD3100, was used for confirming CXCR4 as an excellent target for AAA imaging and therapy. scRNAseq indicated that chemokine-related pathways were upregulated in aortic aneurysms, and CXCR4 was the chemokine receptor that marks all AAA-related immune cells and inflammatory vascular cells. Fe3O4-anti-CXCR4-PE effectively recognized immune cells and inflammatory vascular cells, as strong MPI and FLI signals corresponded to increased CXCR4, CD45, and CD68 levels that represented AAA severity and rupture risk. Importantly, Fe3O4-anti-CXCR4-PE can help identify early AAA formation when ultrasound is undiagnosable. Finally, AMD3100 treatment in AAA mouse model inhibited AAA expansion and rupture and reduced aortic wall inflammation by inhibiting accumulation of immune cells and haematopoietic stem cells. CONCLUSION CXCR4 marks immune cells and inflammatory vascular cells in AAA and is associated with AAA prognosis in a mouse model of AAA. CXCR4-targeting multimodal MPI/FLI provides a novel approach for AAA prognosis prediction and early detection.
Collapse
MESH Headings
- Animals
- Aortic Aneurysm, Abdominal/diagnostic imaging
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/immunology
- Aortic Aneurysm, Abdominal/pathology
- Receptors, CXCR4/metabolism
- Receptors, CXCR4/genetics
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/immunology
- Humans
- Disease Models, Animal
- Predictive Value of Tests
- Male
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/diagnostic imaging
- Aorta, Abdominal/pathology
- Aorta, Abdominal/immunology
- Aorta, Abdominal/drug effects
- Early Diagnosis
- Mice, Inbred C57BL
- Cyclams
- Magnetite Nanoparticles/administration & dosage
- Aortitis/metabolism
- Aortitis/diagnostic imaging
- Aortitis/immunology
- Aortitis/genetics
- Aortitis/pathology
- Single-Cell Analysis
- Magnetic Iron Oxide Nanoparticles/administration & dosage
- Benzylamines
- Molecular Imaging/methods
- Inflammation Mediators/metabolism
- Prognosis
- Macrophages/metabolism
- Macrophages/immunology
- Mice
- Signal Transduction
- Heterocyclic Compounds/pharmacology
Collapse
Affiliation(s)
- Genmao Cao
- Department of Vascular Surgery, 2nd Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan 030001, China
| | - Ruijing Zhang
- Department of Nephrology, 2nd Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Xiaohua Jia
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, No.95, Zhongguancun East Road, Beijing 100190, China
- Department of Ultrasound, Shuozhou Grand Hospital of Shanxi Medical University, Shuozhou 036000, China
| | - Bo Jiang
- Department of Vascular and Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Yaling Li
- Department of Vascular Surgery, 2nd Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan 030001, China
| | - Xuezhen Xuan
- Department of Vascular Surgery, 2nd Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan 030001, China
| | - Jie Tian
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, No.95, Zhongguancun East Road, Beijing 100190, China
- National Key Laboratory of Kidney Diseases, No.28, Fuxing road, Beijing 100853, China
| | - Hui Hui
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, No.95, Zhongguancun East Road, Beijing 100190, China
- National Key Laboratory of Kidney Diseases, No.28, Fuxing road, Beijing 100853, China
| | - Shijie Xin
- Department of Vascular and Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Honglin Dong
- Department of Vascular Surgery, 2nd Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan 030001, China
| |
Collapse
|
2
|
Akerman AW, Alexander KC, Caranasos TG, Ikonomidis JS. Therapeutic potential of mesenchymal stem cells and their secreted extracellular vesicles in thoracic aortic aneurysm disease. J Thorac Cardiovasc Surg 2024; 167:89-93.e1. [PMID: 37084818 PMCID: PMC10882625 DOI: 10.1016/j.jtcvs.2023.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/23/2023]
Affiliation(s)
- Adam W Akerman
- Division of Cardiothoracic Surgery, Department of Surgery, University of North Carolina-Chapel Hill, Chapel Hill, NC
| | - Kyle C Alexander
- Division of Cardiothoracic Surgery, Department of Surgery, University of North Carolina-Chapel Hill, Chapel Hill, NC
| | - Thomas G Caranasos
- Division of Cardiothoracic Surgery, Department of Surgery, University of North Carolina-Chapel Hill, Chapel Hill, NC
| | - John S Ikonomidis
- Division of Cardiothoracic Surgery, Department of Surgery, University of North Carolina-Chapel Hill, Chapel Hill, NC.
| |
Collapse
|
3
|
Steffen BT, Pankow JS, Norby FL, Lutsey PL, Demmer RT, Guan W, Pankratz N, Li A, Liu G, Matsushita K, Tin A, Tang W. Proteomics Analysis of Genetic Liability of Abdominal Aortic Aneurysm Identifies Plasma Neogenin and Kit Ligand: The ARIC Study. Arterioscler Thromb Vasc Biol 2023; 43:367-378. [PMID: 36579647 PMCID: PMC9995137 DOI: 10.1161/atvbaha.122.317984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/13/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Genome-wide association studies have reported 23 gene loci related to abdominal aortic aneurysm (AAA)-a potentially lethal condition characterized by a weakened dilated vessel wall. This study aimed to identify proteomic signatures and pathways related to these risk loci to better characterize AAA genetic susceptibility. METHODS Plasma concentrations of 4870 proteins were determined using a DNA aptamer-based array. Linear regression analysis estimated the associations between the 23 risk alleles and plasma protein levels with adjustments for potential confounders in a race-stratified analysis of 1671 Black and 7241 White participants. Significant proteins were then evaluated for their prediction of clinical AAA (454 AAA events in 11 064 individuals), and those significantly associated with AAA were further interrogated using Mendelian randomization analysis. RESULTS Risk variants proximal to PSRC1-CELSR2-SORT1, PCIF1-ZNF335-MMP9, RP11-136O12.2/TRIB1, ZNF259/APOA5, IL6R, PCSK9, LPA, and APOE were associated with 118 plasma proteins in Whites and 59 were replicated in Black participants. Novel associations with clinical AAA incidence were observed for kit ligand (HR, 0.59 [95% CI, 0.42-0.82] for top versus first quintiles) and neogenin (HR, 0.64 [95% CI, 0.46-0.88]) over a median 21.2-year follow-up; neogenin was also associated with ultrasound-detected asymptomatic AAA (N=4295; 57 asymptomatic AAA cases). Mendelian randomization inverse variance weighted estimates suggested that AAA risk is promoted by lower levels of kit ligand (OR per SD=0.67; P=1.4×10-5) and neogenin (OR per SD=0.50; P=0.03). CONCLUSIONS Low levels of neogenin and kit ligand may be novel risk factors for AAA development in potentially causal pathways. These findings provide insights and potential targets to reduce AAA susceptibility.
Collapse
Affiliation(s)
- Brian T. Steffen
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN 55454
- Division of Health Data Science, Department of Surgery, University of Minnesota, Minneapolis, MN 55455
| | - James S. Pankow
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN 55454
| | - Faye L. Norby
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Health System, Los Angeles, CA 90048
| | - Pamela L. Lutsey
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN 55454
| | - Ryan T. Demmer
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN 55454
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032
| | - Weihua Guan
- Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, MN, 55455
| | - Nathan Pankratz
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN 55455
| | - Aixin Li
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN 55454
| | - Guning Liu
- Division of Epidemiology, Human Genetics and Environmental Sciences, The University of Texas Health Science Center, School of Public Health, Houston, TX 77030
| | - Kunihiro Matsushita
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
- Welch Center for Prevention, Epidemiology and Clinical Research, Baltimore, MD 21205
| | - Adrienne Tin
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216
| | - Weihong Tang
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN 55454
| |
Collapse
|
4
|
Shi C, Zhang K, Zhao Z, Wang Y, Xu H, Wei W. Correlation between stem cell molecular phenotype and atherosclerotic plaque neointima formation and analysis of stem cell signal pathways. Front Cell Dev Biol 2023; 11:1080563. [PMID: 36711040 PMCID: PMC9877345 DOI: 10.3389/fcell.2023.1080563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
Vascular stem cells exist in the three-layer structure of blood vessel walls and play an indispensable role in angiogenesis under physiological conditions and vascular remodeling under pathological conditions. Vascular stem cells are mostly quiescent, but can be activated in response to injury and participate in endothelial repair and neointima formation. Extensive studies have demonstrated the differentiation potential of stem/progenitor cells to repair endothelium and participate in neointima formation during vascular remodeling. The stem cell population has markers on the surface of the cells that can be used to identify this cell population. The main positive markers include Stem cell antigen-1 (Sca1), Sry-box transcription factor 10 (SOX10). Stromal cell antigen 1 (Stro-1) and Stem cell growth factor receptor kit (c-kit) are still controversial. Different parts of the vessel have different stem cell populations and multiple markers. In this review, we trace the role of vascular stem/progenitor cells in the progression of atherosclerosis and neointima formation, focusing on the expression of stem cell molecular markers that occur during neointima formation and vascular repair, as well as the molecular phenotypic changes that occur during differentiation of different stem cell types. To explore the correlation between stem cell molecular markers and atherosclerotic diseases and neointima formation, summarize the differential changes of molecular phenotype during the differentiation of stem cells into smooth muscle cells and endothelial cells, and further analyze the signaling pathways and molecular mechanisms of stem cells expressing different positive markers participating in intima formation and vascular repair. Summarizing the limitations of stem cells in the prevention and treatment of atherosclerotic diseases and the pressing issues that need to be addressed, we provide a feasible scheme for studying the signaling pathways of vascular stem cells involved in vascular diseases.
Collapse
Affiliation(s)
- Chuanxin Shi
- Division of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kefan Zhang
- Division of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenyu Zhao
- Division of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yifan Wang
- Division of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haozhe Xu
- Department of Biotherapy, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Wei
- Division of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Wei Wei,
| |
Collapse
|
5
|
Weaver LM, Loftin CD, Zhan CG. Development of pharmacotherapies for abdominal aortic aneurysms. Biomed Pharmacother 2022; 153:113340. [PMID: 35780618 PMCID: PMC9514980 DOI: 10.1016/j.biopha.2022.113340] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022] Open
Abstract
The cardiovascular field is still searching for a treatment for abdominal aortic aneurysms (AAA). This inflammatory disease often goes undiagnosed until a late stage and associated rupture has a high mortality rate. No pharmacological treatment options are available. Three hallmark factors of AAA pathology include inflammation, extracellular matrix remodeling, and vascular smooth muscle dysfunction. Here we discuss drugs for AAA treatment that have been studied in clinical trials by examining the drug targets and data present for each drug's ability to regulate the aforementioned three hallmark pathways in AAA progression. Historically, drugs that were examined in interventional clinical trials for treatment of AAA were repurposed therapeutics. Novel treatments (biologics, small-molecule compounds etc.) have not been able to reach the clinic, stalling out in pre-clinical studies. Here we discuss the backgrounds of previous investigational drugs in hopes of better informing future development of potential therapeutics. Overall, the highlighted themes discussed here stress the importance of both centralized anti-inflammatory drug targets and rigor of translatability. Exceedingly few murine studies have examined an intervention-based drug treatment in halting further growth of an established AAA despite interventional treatment being the therapeutic approach taken to treat AAA in a clinical setting. Additionally, data suggest that a potentially successful drug target may be a central inflammatory biomarker. Specifically, one that can effectively modulate all three hallmark factors of AAA formation, not just inflammation. It is suggested that inhibiting PGE2 formation with an mPGES-1 inhibitor is a leading drug target for AAA treatment to this end.
Collapse
Affiliation(s)
- Lauren M Weaver
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA.
| | - Charles D Loftin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA.
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA; Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA.
| |
Collapse
|
6
|
Zhang M, Che C, Cheng J, Li P, Yang Y. Ion channels in stem cells and their roles in stem cell biology and vascular diseases. J Mol Cell Cardiol 2022; 166:63-73. [PMID: 35143836 DOI: 10.1016/j.yjmcc.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/11/2022] [Accepted: 02/01/2022] [Indexed: 10/19/2022]
Abstract
Stem cell therapy may be a promising option for the treatment of vascular diseases. In recent years, significant progress has been made in stem cell research, especially in the mechanism of stem cell activation, homing and differentiation in vascular repair and reconstruction. Current research on stem cells focuses on protein expression and transcriptional networks. Ion channels are considered to be the basis for the generation of bioelectrical signals, which control the proliferation, differentiation and migration of various cell types. Although heterogeneity of multiple ion channels has been found in different types of stem cells, it is unclear whether the heterogeneous expression of ion channels is related to different cell subpopulations and/or different stages of the cell cycle. There is still a long way to go in clinical treatment by using the regulation of stem cell ion channels. In this review, we reviewed the main ion channels found on stem cells, their expression and function in stem cell proliferation, differentiation and migration, and the research status of stem cells' involvement in vascular diseases.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, 319 Zhongshan Road, Luzhou 646000, China
| | - Chang Che
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, 319 Zhongshan Road, Luzhou 646000, China
| | - Jun Cheng
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, 319 Zhongshan Road, Luzhou 646000, China
| | - Pengyun Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, 319 Zhongshan Road, Luzhou 646000, China.
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, 319 Zhongshan Road, Luzhou 646000, China.
| |
Collapse
|
7
|
Herrero-Cervera A, Espinós-Estévez C, Martín-Vañó S, Taberner-Cortés A, Aguilar-Ballester M, Vinué Á, Piqueras L, Martínez-Hervás S, González-Navarro H. Dissecting Abdominal Aortic Aneurysm Is Aggravated by Genetic Inactivation of LIGHT (TNFSF14). Biomedicines 2021; 9:biomedicines9111518. [PMID: 34829747 PMCID: PMC8615201 DOI: 10.3390/biomedicines9111518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
Abdominal aortic aneurysm (AAA), is a complex disorder characterized by vascular vessel wall remodeling. LIGHT (TNFSF14) is a proinflammatory cytokine associated with vascular disease. In the present study, the impact of genetic inactivation of Light was investigated in dissecting AAA induced by angiotensin II (AngII) in the Apolipoprotein E-deficient (Apoe−/−) mice. Studies in aortic human (ah) vascular smooth muscle cells (VSMC) to study potential translation to human pathology were also performed. AngII-treated Apoe−/−Light−/− mice displayed increased abdominal aorta maximum diameter and AAA severity compared with Apoe−/− mice. Notably, reduced smooth muscle α-actin+ area and Acta2 and Col1a1 gene expression were observed in AAA from Apoe−/−Light−/− mice, suggesting a loss of VSMC contractile phenotype compared with controls. Decreased Opn and augmented Sox9 expression, which are associated with detrimental and non-contractile osteochondrogenic VSMC phenotypes, were also seen in AngII-treated Apoe−/−Light−/− mouse AAA. Consistent with a role of LIGHT preserving VSMC contractile characteristics, LIGHT-treatment of ahVSMCs diminished the expression of SOX9 and of the pluripotency marker CKIT. These effects were partly mediated through lymphotoxin β receptor (LTβR) as the silencing of its gene ablated LIGHT effects on ahVSMCs. These studies suggest a protective role of LIGHT through mechanisms that prevent VSMC trans-differentiation in an LTβR-dependent manner.
Collapse
Affiliation(s)
- Andrea Herrero-Cervera
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (A.H.-C.); (S.M.-V.); (A.T.-C.); (M.A.-B.); (Á.V.); (L.P.); (S.M.-H.)
| | | | - Susana Martín-Vañó
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (A.H.-C.); (S.M.-V.); (A.T.-C.); (M.A.-B.); (Á.V.); (L.P.); (S.M.-H.)
| | - Alida Taberner-Cortés
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (A.H.-C.); (S.M.-V.); (A.T.-C.); (M.A.-B.); (Á.V.); (L.P.); (S.M.-H.)
| | - María Aguilar-Ballester
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (A.H.-C.); (S.M.-V.); (A.T.-C.); (M.A.-B.); (Á.V.); (L.P.); (S.M.-H.)
| | - Ángela Vinué
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (A.H.-C.); (S.M.-V.); (A.T.-C.); (M.A.-B.); (Á.V.); (L.P.); (S.M.-H.)
| | - Laura Piqueras
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (A.H.-C.); (S.M.-V.); (A.T.-C.); (M.A.-B.); (Á.V.); (L.P.); (S.M.-H.)
- Department of Pharmacology, University of Valencia, 46010 Valencia, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Sergio Martínez-Hervás
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (A.H.-C.); (S.M.-V.); (A.T.-C.); (M.A.-B.); (Á.V.); (L.P.); (S.M.-H.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Endocrinology and Nutrition Service, Clinic Hospital of Valencia, 46010 Valencia, Spain
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Herminia González-Navarro
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (A.H.-C.); (S.M.-V.); (A.T.-C.); (M.A.-B.); (Á.V.); (L.P.); (S.M.-H.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Biochemistry and Molecular Biology Department, University of Valencia, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-96-386-44-03; Fax: +34-96-398-78-60
| |
Collapse
|
8
|
Marsman J, Gimenez G, Day RC, Horsfield JA, Jones GT. A non-coding genetic variant associated with abdominal aortic aneurysm alters ERG gene regulation. Hum Mol Genet 2021; 29:554-565. [PMID: 31691800 PMCID: PMC7068029 DOI: 10.1093/hmg/ddz256] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/11/2019] [Accepted: 10/23/2019] [Indexed: 12/27/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a major cause of sudden death in the elderly. While AAA has some overlapping genetic and environmental risk factors with atherosclerosis, there are substantial differences, and AAA-specific medication is lacking. A recent meta-analysis of genome-wide association studies has identified four novel single-nucleotide polymorphisms (SNPs) specifically associated with AAA. Here, we investigated the gene regulatory function for one of four non-coding SNPs associated with AAA, rs2836411, which is located in an intron of the ERG gene. Rs2836411 resides within a >70 kb super-enhancer that has high levels of H3K27ac and H3K4me1 in vascular endothelial and haematopoietic cell types. Enhancer luciferase assays in cell lines showed that the risk allele significantly alters enhancer activity. The risk allele also correlates with reduced ERG expression in aortic and other vascular tissues. To identify whether rs2836411 directly contacts the promoters of ERG and/or of genes further away, we performed allele-specific circular chromosome conformation capture sequencing. In vascular endothelial cells, which express ERG, the SNP region interacts highly within the super-enhancer, while in vascular smooth muscle cells, which do not express ERG, the interactions are distributed across a wider region that includes neighbouring genes. Furthermore, the risk allele has fewer interactions within the super-enhancer compared to the protective allele. In conclusion, our results indicate that rs2836411 likely affects ERG expression by altering enhancer activity and changing local chromatin interactions. ERG is involved in vascular development, angiogenesis, and inflammation in atherosclerosis; therefore mechanistically, rs2836411 could contribute to AAA by modulating ERG levels.
Collapse
Affiliation(s)
- Judith Marsman
- Department of Surgical Sciences, University of Otago, Dunedin 9016, New Zealand
| | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Robert C Day
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Julia A Horsfield
- Department of Pathology, University of Otago, Dunedin 9016, New Zealand
| | - Gregory T Jones
- Department of Surgical Sciences, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
9
|
Wu H, Zhou X, Gong H, Ni Z, Xu Q. Perivascular tissue stem cells are crucial players in vascular disease. Free Radic Biol Med 2021; 165:324-333. [PMID: 33556462 DOI: 10.1016/j.freeradbiomed.2021.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/21/2022]
Abstract
Perivascular tissue including adipose layer and adventitia have been considered to play pivotal roles in vascular development and disease progression. Recent studies showed that abundant stem/progenitorcells (SPCs) are present in perivascular tissues. These SPCs exhibit capability to proliferate and differentiate into specific terminal cells. Adult perivascular SPCs are quiescent in normal condition, once activated by specific molecules (e.g., cytokines), they migrate toward the lumen side where they differentiate into both smooth muscle cells (SMCs) and endothelial cells (ECs), thus promoting intima hyperplasia or endothelial regeneration. In addition, perivascular SPCs can also regulate vascular diseases via other ways including but not limited to paracrine effects, matrix protein modulation and microvessel formation. Perivascular SPCs have also been shown to possess therapeutic potentials due to the capability to differentiate into vascular cells and regenerate vascular structures. This review summarizes current knowledge on resident SPCs features and discusses the potential benefits of SPCs therapy in vascular diseases.
Collapse
Affiliation(s)
- Hong Wu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Xuhao Zhou
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Hui Gong
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Zhichao Ni
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, China.
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, China.
| |
Collapse
|
10
|
Yue JK, Chang D, Oh T, Winkler EA, Lu AY, Hetts SW, Young EP, Reddy AT, Fox CK, Abla AA, Roland JL. Multiple Tumor-Associated Intracranial Aneurysms Adjacent to a Suprasellar Germ Cell Tumor: Case Report and Review of Literature. Pediatr Neurosurg 2021; 56:482-491. [PMID: 34320494 DOI: 10.1159/000517890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/14/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Tumor-associated intracranial aneurysms are rare and not well understood. CASE PRESENTATION We describe a 4-year-old female with multiple intracranial aneurysms intimately associated with a suprasellar germ cell tumor (GCT). We provide the clinical history, medical, and surgical treatment course, as well as a comprehensive and concise synthesis of the literature on tumor-associated aneurysms. DISCUSSION We discuss mechanisms for aneurysm formation with relevance to the current case, including cellular and paracrine signaling pertinent to suprasellar GCTs and possible molecular pathways involved. We review the complex multidisciplinary treatment required for complex tumor and cerebrovascular interactions.
Collapse
Affiliation(s)
- John K Yue
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Diana Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Taemin Oh
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Ethan A Winkler
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Alex Y Lu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Steven W Hetts
- Department of Interventional Neuroradiology, University of California San Francisco, San Francisco, California, USA
| | - Elizabeth P Young
- Department of Pediatric Hematology/Oncology, University of California San Francisco, San Francisco, California, USA
| | - Alyssa T Reddy
- Department of Pediatric Hematology/Oncology, University of California San Francisco, San Francisco, California, USA
| | - Christine K Fox
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Adib A Abla
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Jarod L Roland
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
11
|
The pseudogene PTENP1 regulates smooth muscle cells as a competing endogenous RNA. Clin Sci (Lond) 2019; 133:1439-1455. [PMID: 31235554 DOI: 10.1042/cs20190156] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/30/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023]
Abstract
The long non-coding RNA (lncRNA) PTENP1 is a pseudogene of phosphatase and tensin homologue deleted on chromosome ten (PTEN), has been implicated in smooth muscle cell (SMC) proliferation and apoptosis. PTENP1 is the pseudogene of PTEN. However, it is unclear whether and how PTENP1 functions in the proliferation and apoptosis of human aortic SMCs (HASMCs). Here, we hypothesised that PTENP1 inhibits HASMC proliferation and enhances apoptosis by promoting PTEN expression. PCR analysis and Western blot assays respectively showed that both PTENP1 and PTEN were up-regulated in human aortic dissection (AD) samples. PTENP1 overexpression significantly increased the protein expression of PTEN, promoted apoptosis and inhibited the proliferation of HASMCs. PTENP1 silencing exhibited the opposite effects and mitigated H2O2-induced apoptosis of HASMCs. In an angiotensin II (Ang II)-induced mouse aortic aneurysm (AA) model, PTENP1 overexpression potentiated aortic SMC apoptosis, exacerbated aneurysm formation. Mechanistically, RNA pull-down assay and a series of luciferase reporter assays using miR-21 mimics or inhibitors identified PTENP1 as a molecular sponge for miR-21 to endogenously compete for the binding between miR-21 and the PTEN transcript, releasing PTEN expression. This finding was further supported by in vitro immunofluorescent evidence showing decreased cell apoptosis upon miR-21 mimic administration under baseline PTENP1 overexpression. Ex vivo rescue of PTEN significantly mitigated the SMC apoptosis induced by PTENP1 overexpression. Finally, Western blot assays showed substantially reduced Akt phosphorylation and cyclin D1 and cyclin E levels with up-regulated PTENP1 in HASMCs. Our study identified PTENP1 as a mediator of HASMC homeostasis and suggests that PTENP1 is a potential target in AD or AA intervention.
Collapse
|
12
|
Wang Y, Chen C, Wang Q, Cao Y, Xu L, Qi R. Inhibitory effects of cycloastragenol on abdominal aortic aneurysm and its related mechanisms. Br J Pharmacol 2019; 176:282-296. [PMID: 30302749 PMCID: PMC6295405 DOI: 10.1111/bph.14515] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 08/15/2018] [Accepted: 09/18/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Abdominal aortic aneurysm (AAA) is a degenerative disease affecting human health, but there are no safe and effective medications for AAA therapy. Cycloastragenol (CAG), derived from Astragali Radix, has various pharmacological effects. However, whether CAG can protect against AAA remains elusive. In this study, we investigated whether CAG has an inhibitory effect on AAA and its related mechanism. EXPERIMENTAL APPROACH The AAA mouse model was induced by incubating the abdominal aorta with elastase. CAG was administered by gavage at different doses beginning on the same day or 14 days after inducing AAA to explore its preventive or therapeutic effects respectively. The preventive effects of CAG on AAA were verified in another AAA mouse model induced by angiotensin II in ApoE-/- mouse. In vitro experiments were implemented on rat vascular smooth muscle cells (VSMCs) stimulated by TNF-α. KEY RESULTS Compared to the control AAA model group, CAG (125 mg·kg-1 body weight day-1 ) reduced the incidence of AAA, the dilatation of aorta and elastin degradation in media in both mouse models of AAA. CAG suppressed the inflammation, oxidation, phenotype switch and apoptosis in TNF-α-stimulated VSMCs, ameliorated the expression and activity of MMPs and decreased the activation of the ERK/JNK signalling pathway. CAG also inhibited the degradation of elastin in TNF-α-stimulated VSMCs. CONCLUSION AND IMPLICATIONS CAG presents protective effects against AAA through down-regulation of the MAPK signalling pathways and thus attenuates inflammation, oxidation, VSMC phenotype switch and apoptosis and the expression of MMPs as well as increasing elastin biosynthesis.
Collapse
MESH Headings
- Administration, Oral
- Angiotensin II/metabolism
- Animals
- Aortic Aneurysm, Abdominal/drug therapy
- Aortic Aneurysm, Abdominal/metabolism
- Apolipoproteins E/deficiency
- Apolipoproteins E/metabolism
- Cell Survival/drug effects
- Cells, Cultured
- Dose-Response Relationship, Drug
- Drugs, Chinese Herbal/administration & dosage
- Drugs, Chinese Herbal/pharmacology
- Inflammation/drug therapy
- Inflammation/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Conformation
- Oxidative Stress/drug effects
- Pancreatic Elastase/metabolism
- Rats
- Rats, Sprague-Dawley
- Sapogenins/administration & dosage
- Sapogenins/pharmacology
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Yunxia Wang
- Institute of Cardiovascular Sciences, Health Science CenterPeking UniversityBeijingChina
- Key Laboratory of Molecular Cardiovascular SciencesMinistry of EducationBeijingChina
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery SystemsBeijingChina
| | - Cong Chen
- Institute of Cardiovascular Sciences, Health Science CenterPeking UniversityBeijingChina
- Key Laboratory of Molecular Cardiovascular SciencesMinistry of EducationBeijingChina
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery SystemsBeijingChina
| | - Qinyu Wang
- Institute of Cardiovascular Sciences, Health Science CenterPeking UniversityBeijingChina
- Key Laboratory of Molecular Cardiovascular SciencesMinistry of EducationBeijingChina
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery SystemsBeijingChina
| | - Yini Cao
- Institute of Cardiovascular Sciences, Health Science CenterPeking UniversityBeijingChina
- Key Laboratory of Molecular Cardiovascular SciencesMinistry of EducationBeijingChina
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery SystemsBeijingChina
| | - Lu Xu
- Institute of Cardiovascular Sciences, Health Science CenterPeking UniversityBeijingChina
- Key Laboratory of Molecular Cardiovascular SciencesMinistry of EducationBeijingChina
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery SystemsBeijingChina
| | - Rong Qi
- Institute of Cardiovascular Sciences, Health Science CenterPeking UniversityBeijingChina
- Key Laboratory of Molecular Cardiovascular SciencesMinistry of EducationBeijingChina
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery SystemsBeijingChina
| |
Collapse
|
13
|
Upregulated interleukins (IL-6, IL-10, and IL-13) in immunoglobulin G4-related aortic aneurysm patients. J Vasc Surg 2018; 67:1248-1262. [DOI: 10.1016/j.jvs.2016.12.140] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/16/2016] [Indexed: 12/18/2022]
|
14
|
Yu M, Dong A, Chen C, Xu S, Cao Y, Liu S, Zhang Q, Qi R. Thermosensitive Hydrogel Containing Doxycycline Exerts Inhibitory Effects on Abdominal Aortic Aneurysm Induced By Pancreatic Elastase in Mice. Adv Healthc Mater 2017; 6. [PMID: 28885781 DOI: 10.1002/adhm.201700671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Indexed: 01/27/2023]
Abstract
Doxycycline (DOX) is reported to exert therapeutic effects against abdominal aortic aneurysm (AAA), a severe degenerative disease. In this study, a DOX hydrogel formulation of DOX/PECTgel is studied, and its phase transition behavior and in vitro release profiles are explored. In addition, the anti-AAA effects and bioavailability of DOX/PECTgel are evaluated in an elastase induced AAA mouse model. The results show that the phase transition temperature of 30% poly(e-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-undecanone) (PECT) solution is above 34 °C. In vitro release profiles of DOX/PECTgel indicate a fast release of DOX at the first two days, followed by a slow and sustained release for 14 d. In vivo single-dose single subcutaneous injection of DOX/PECTgel containing 8.4 or 4.2 mg mL-1 DOX presents comparatively preventive effects on AAA, compared to intraperitoneal injections of DOX alone at a dose of 15 mg kg-1 for seven injections, while DOX bioavailability of the DOX/PECTgel treated groups is 1.39 times or 1.19 times of the DOX alone treated group, respectively.
Collapse
Affiliation(s)
- Maomao Yu
- Peking University Institute of Cardiovascular Sciences; Key Laboratory of Molecular Cardiovascular Sciences; Ministry of Education; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems; Peking University Health Science Center; 38 Xueyuan Road Beijing 100191 China
| | - Anjie Dong
- School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
| | - Cong Chen
- Peking University Institute of Cardiovascular Sciences; Key Laboratory of Molecular Cardiovascular Sciences; Ministry of Education; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems; Peking University Health Science Center; 38 Xueyuan Road Beijing 100191 China
| | - Shuxin Xu
- School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
| | - Yini Cao
- Peking University Institute of Cardiovascular Sciences; Key Laboratory of Molecular Cardiovascular Sciences; Ministry of Education; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems; Peking University Health Science Center; 38 Xueyuan Road Beijing 100191 China
| | - Shu Liu
- Peking University Institute of Cardiovascular Sciences; Key Laboratory of Molecular Cardiovascular Sciences; Ministry of Education; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems; Peking University Health Science Center; 38 Xueyuan Road Beijing 100191 China
- Shihezi University College of Pharmacy/Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education; Xinjiang 832003 China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems; School of Pharmaceutical Sciences; Peking University; 38 Xueyuan Road Beijing 100191 China
| | - Rong Qi
- Peking University Institute of Cardiovascular Sciences; Key Laboratory of Molecular Cardiovascular Sciences; Ministry of Education; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems; Peking University Health Science Center; 38 Xueyuan Road Beijing 100191 China
| |
Collapse
|
15
|
Rocca A, Tafuri D, Paccone M, Giuliani A, Zamboli AGI, Surfaro G, Paccone A, Compagna R, Amato M, Serra R, Amato B. Cell Based Therapeutic Approach in Vascular Surgery: Application and Review. Open Med (Wars) 2017; 12:308-322. [PMID: 29071303 PMCID: PMC5651406 DOI: 10.1515/med-2017-0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 08/16/2017] [Indexed: 01/14/2023] Open
Abstract
Multipotent stem cells - such as mesenchymal stem/stromal cells and stem cells derived from different sources like vascular wall are intensely studied to try to rapidly translate their discovered features from bench to bedside. Vascular wall resident stem cells recruitment, differentiation, survival, proliferation, growth factor production, and signaling pathways transduced were analyzed. We studied biological properties of vascular resident stem cells and explored the relationship from several factors as Matrix Metalloproteinases (MMPs) and regulations of biological, translational and clinical features of these cells. In this review we described a translational and clinical approach to Adult Vascular Wall Resident Multipotent Vascular Stem Cells (VW-SCs) and reported their involvement in alternative clinical approach as cells based therapy in vascular disease like arterial aneurysms or peripheral arterial obstructive disease.
Collapse
Affiliation(s)
- Aldo Rocca
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, ItalyVia Sergio Pansini, 80131Naples, Italy
| | - Domenico Tafuri
- Department of Sport Sciences and Wellness, University of Naples “Parthenope”, Naples, Italy
| | - Marianna Paccone
- Department of Medicine and Health Sciences Vincenzo Tiberio, University of Molise, Campobasso, Italy
| | - Antonio Giuliani
- A.O.R.N. A. Cardarelli Hepatobiliary and Liver Transplatation Center, Naples, Italy
| | | | - Giuseppe Surfaro
- Antonio Cardarelli Hospital, General Surgery Unit, Campobasso, Italy
| | - Andrea Paccone
- Department of Medicine and Health Sciences Vincenzo Tiberio, University of Molise, Campobasso, Italy
| | - Rita Compagna
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Maurizo Amato
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro, Italy
| | - Bruno Amato
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
16
|
Li G, Yang L, Yuan H, Liu Y, He Y, Wu X, Jin X. Cold-inducible RNA-binding protein plays a central role in the pathogenesis of abdominal aortic aneurysm in a murine experimental model. Surgery 2016; 159:1654-1667. [PMID: 26936526 DOI: 10.1016/j.surg.2016.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/13/2016] [Accepted: 01/23/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Cold-inducible RNA-binding protein (CIRP) is a recently identified proinflammatory cytokine. We hypothesize that CIRP is involved in the progression of abdominal aortic aneurysms (AAA) and that anti-CIRP treatment could inhibit this progression. METHODS We investigated CIRP expression in the sera and aneurysmal tissues of human AAA patients and elastase-induced AAA rats. To further examine the role of CIRP in the development of AAA, anti-CIRP antibody (1 mg/kg) or nonimmunized control immunoglobulin (Ig)G (1 mg/kg) was injected via the caudal vein in the experimental AAA model. To further investigate the underlying mechanisms, RAW 267.4 cells were stimulated with recombinant murine CIRP (rmCIRP). RESULTS In human AAA tissue, CIRP exhibited a 5.6-fold and 93% increase in mRNA and protein expression, respectively. In a rat AAA model, CIRP was upregulated significantly in a time-dependent manner in the serum and AAA tissue. The anti-CIRP antibody treatment significantly suppressed the dilation of experimental AAA. Simultaneously, inhibition of CIRP significantly attenuated the expression of matrix metalloproteinase (MMP)-2, MMP-9, tumor necrosis factor-α, and monocyte chemoattractant protein-1, and the number of CD68-positive macrophages in the experimental AAA tissue. In vitro, rmCIRP significantly increased MMP-9 messenger RNA expression in a dose-dependent manner by 1.2-fold, 2.9-fold, and 5.5-fold, respectively. Simultaneously, rmCIRP promoted RAW 264.7 cell migration, with an approximately 2.7-fold increase in the number of migrated cells. CONCLUSION Our findings demonstrate that CIRP mediates experimental AAA development by promoting the inflammatory response and inducing MMP-9 expression, demonstrating its potential as a novel target for inhibiting the progression of AAA.
Collapse
Affiliation(s)
- Gang Li
- Department of Vascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Le Yang
- Department of Vascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Hai Yuan
- Department of Vascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Yang Liu
- Department of Vascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Yuxiang He
- Department of Vascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Xuejun Wu
- Department of Vascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China.
| | - Xing Jin
- Department of Vascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China.
| |
Collapse
|
17
|
Kuivaniemi H, Ryer EJ, Elmore JR, Tromp G. Understanding the pathogenesis of abdominal aortic aneurysms. Expert Rev Cardiovasc Ther 2016; 13:975-87. [PMID: 26308600 DOI: 10.1586/14779072.2015.1074861] [Citation(s) in RCA: 265] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An aortic aneurysm is a dilatation in which the aortic diameter is ≥3.0 cm. If left untreated, the aortic wall continues to weaken and becomes unable to withstand the forces of the luminal blood pressure resulting in progressive dilatation and rupture, a catastrophic event associated with a mortality of 50-80%. Smoking and positive family history are important risk factors for the development of abdominal aortic aneurysms (AAA). Several genetic risk factors have also been identified. On the histological level, visible hallmarks of AAA pathogenesis include inflammation, smooth muscle cell apoptosis, extracellular matrix degradation and oxidative stress. We expect that large genetic, genomic, epigenetic, proteomic and metabolomic studies will be undertaken by international consortia to identify additional risk factors and biomarkers, and to enhance our understanding of the pathobiology of AAA. Collaboration between different research groups will be important in overcoming the challenges to develop pharmacological treatments for AAA.
Collapse
Affiliation(s)
- Helena Kuivaniemi
- a 1 Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA 17822, USA
| | | | | | | |
Collapse
|
18
|
Amato B, Compagna R, Amato M, Grande R, Butrico L, Rossi A, Naso A, Ruggiero M, de Franciscis S, Serra R. Adult vascular wall resident multipotent vascular stem cells, matrix metalloproteinases, and arterial aneurysms. Stem Cells Int 2015; 2015:434962. [PMID: 25866513 PMCID: PMC4381852 DOI: 10.1155/2015/434962] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 02/23/2015] [Accepted: 03/06/2015] [Indexed: 12/20/2022] Open
Abstract
Evidences have shown the presence of multipotent stem cells (SCs) at sites of arterial aneurysms: they can differentiate into smooth muscle cells (SMCs) and are activated after residing in a quiescent state in the vascular wall. Recent studies have implicated the role of matrix metalloproteinases in the pathogenesis of arterial aneurysms: in fact the increased synthesis of MMPs by arterial SMCs is thought to be a pivotal mechanism in aneurysm formation. The factors and signaling pathways involved in regulating wall resident SC recruitment, survival, proliferation, growth factor production, and differentiation may be also related to selective expression of different MMPs. This review explores the relationship between adult vascular wall resident multipotent vascular SCs, MMPs, and arterial aneurysms.
Collapse
Affiliation(s)
- Bruno Amato
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Magna Graecia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy ; Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80100 Naples, Italy
| | - Rita Compagna
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Magna Graecia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy ; Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80100 Naples, Italy
| | - Maurizio Amato
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80100 Naples, Italy
| | - Raffaele Grande
- Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| | - Lucia Butrico
- Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| | - Alessio Rossi
- Department of Medicine and Health Sciences, University of Molise, 88100 Campobasso, Italy
| | - Agostino Naso
- Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| | - Michele Ruggiero
- Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| | - Stefano de Franciscis
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Magna Graecia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy ; Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| | - Raffaele Serra
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Magna Graecia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy ; Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|