1
|
Kim SY, Jeong JW, Kim AJ, Lee YR, Lee HS, Lee K, Kim SJ. Effect of hydrophilic polymers on the formation of size-controllable aqueous droplets in water-in-oil emulsion and the fabrication of porous micro-silica particles therefrom. J Colloid Interface Sci 2025; 690:137304. [PMID: 40088820 DOI: 10.1016/j.jcis.2025.137304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Size-controllable droplets were formed in a water in oil (W/O) emulsion using only hydrophilic polymers without a surfactant to fabricate porous micro-silica particles larger than 20 μm. Droplets of various size ranging from 1 to 30 μm were prepared by emulsifying aqueous solutions containing four types of polymers, namely polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), and polypropylene glycol (PPG), in a pentanol oil phase. Following the addition of tetraethyl orthosilicate (TEOS) as a silica precursor, silica particles were grown via hydrolysis and condensation reactions. The silica particle size depends on the degree of hydrophilicity of the polymers, which determines the interfacial tension between the water droplets and oil. Micro-silica particles >20 μm were obtained from PEG-based emulsion droplets. Notably, the distribution and stability of silica particles can be optimized by controlling the molecular weight and concentration of the hydrophilic polymer. A porous silica structure was successfully obtained by decomposing the residual polymer via an appropriate calcination process. The most uniform and stable porous micro-silica particles with an average size of 20 μm were obtained from an emulsion containing 5 wt% PEG (molecular weight: 4000) after calcination at 500 °C. This novel process enables the eco-friendly synthesis of porous micro-silica particles using only hydrophilic polymer without a surfactant and control of pore size and particle size of >20 μm.
Collapse
Affiliation(s)
- Seung-Yeon Kim
- Bio-Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology (KICET), 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea; Department of Applied Bioengineering, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Jin-Woo Jeong
- Bio-Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology (KICET), 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - A-Jin Kim
- Bio-Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology (KICET), 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea; Department of Chemical Engineering, Chung Buk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk 28644, Republic of Korea
| | - Young-Ran Lee
- Bio-Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology (KICET), 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Hye Sun Lee
- Bio-Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology (KICET), 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea.
| | - Seong-Joong Kim
- Bio-Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology (KICET), 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea.
| |
Collapse
|
2
|
Hosseini HA, Sadat-Barati M, Feizy J. Synthesis of GO-SiO 2/ZnO/Fe 3O 4 nano adsorbent for preconcentration of aflatoxins in food samples using SPE-HPLC-FLD method. Food Chem 2025; 470:142264. [PMID: 39755046 DOI: 10.1016/j.foodchem.2024.142264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/17/2024] [Accepted: 11/24/2024] [Indexed: 01/06/2025]
Abstract
This study demonstrates a new extraction method for determination of aflatoxins (AFs) in food samples by a GO-SiO2/ZnO/Fe3O4 nanocomposite as new and effective sorbent. The nanocomposite structure was confirmed by FT-IR, XRD, EDX, FE-SEM, TEM, and mapping techniques. Optimization of the extraction process was conducted by investigating pH, adsorbent amount, sample volume, and solvent volume using central composite design (CCD). The method showed good linearity for AFs B1, B2, G1, and G2 within specified ranges. Detection and quantification limits were 0.06-0.53 and 0.20-1.62 ng mL-1, respectively. The high performance liquid chromatography with fluorescence detector assisted by solid phase extraction (SPE-HPLC-FLD) method was applied to food samples, achieving recoveries of 70.15-97.08 %. Accuracy was confirmed through recovery measurements in spiked samples, with ranges of 70.15-97.85 % in wheat, 70.01-91.97 % in chickpeas, and 71.29-93.92 % in white pepper. Reusability and cost-effectiveness suggest its potential for preconcentration and determination of AFs in food samples.
Collapse
Affiliation(s)
- Hasan Ali Hosseini
- Department of Chemistry, Payame Noor University, 19395-4697 Tehran, Iran.
| | | | - Javad Feizy
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
3
|
Rodriguez-Otero A, Tisler S, Reinhardt LM, Jørgensen MB, Bouyssiere B, Christensen JH. Charge as a key physicochemical factor in adsorption of organic micropollutants from wastewater effluent by rice husk bio-silica. WATER RESEARCH 2024; 268:122748. [PMID: 39504697 DOI: 10.1016/j.watres.2024.122748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/13/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Wastewater treatment plants (WWTPs) often fail to fully remove organic micro-pollutants (OMPs), necessitating advanced treatment methods. This study examines the potential of an agricultural waste-derived adsorbent, rice husk (RH) - silica, for removing a complex mixture of 20 OMPs in MilliQ water and wastewater effluent. While RH-silica shows potential for OMP removal, its performance with multicomponent mixtures in real wastewater has yet to be investigated. Batch experiments demonstrated the efficacy of RH-silica in removing cationic, neutral, polar, and non-polar OMPs across various pH levels, with no adsorption of anionic OMPs. Column elution studies revealed that only positively charged compounds did not reach a breakthrough after 300 specific bed volumes (BVs), even when the filtration velocity was increased fivefold (3.8 m/h) and lower adsorbent-to-volume ratios (0.5 g/L) were employed. This indicates that electrostatic interactions via deprotonated silanol groups are the primary adsorption mechanism. RH-silica's ability to retain cationic pollutants regardless of their hydrophilicity degree highlights its potential as a novel adsorbent targeting positively charged persistent and mobile organic compounds (PMOCs). Moreover, the adsorption efficiency remained high in experiments with real wastewater effluent. Considering practical applications, a RH-silica column could be used to enhance removal of cationic polar compounds. This approach not only improves pollutant removal efficiency but also contributes to sustainability in WWTPs by using agricultural waste resources. Despite significant operational and end-of-life challenges for large-scale implementation, this study represents a crucial advancement in the investigation of RH-silica as an adsorbent.
Collapse
Affiliation(s)
- Alba Rodriguez-Otero
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark; Universite de Pau et des Pays de l'Adour, E2S UPPA CNRS IPREM UMR5254, Technopôle Hélioparc, 2 Avenue du Président Angot, Pau 64053, France
| | - Selina Tisler
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Lisa M Reinhardt
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Mathias B Jørgensen
- BIOFOS A/S, Refshalevej 250, Copenhagen 1432, Denmark; MSCi, Bøgesvinget 8, Skovlunde 2740, Denmark
| | - Brice Bouyssiere
- Universite de Pau et des Pays de l'Adour, E2S UPPA CNRS IPREM UMR5254, Technopôle Hélioparc, 2 Avenue du Président Angot, Pau 64053, France.
| | - Jan H Christensen
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| |
Collapse
|
4
|
Wang Y, Xu L, Li J, Ren Z, Liu W, Ai Y, Yang K, Qu J, Zhang B, Zhang Y. Synthesis of magnetic chitosan-composite biochar and its removal of copper ions (Cu 2+) and methylene blue (MB) dye from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59866-59881. [PMID: 39358659 DOI: 10.1007/s11356-024-35145-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
This study presents the synthesis and evaluation of a magnetic chitosan-modified biochar (M-BC-CS) composite, developed from waste maize straw, for the efficient removal of copper ions (Cu2+) and methylene blue (MB) dye from aqueous solutions. The composite was characterized using advanced techniques such as SEM, BET, FTIR, XPS, and XRD, confirming its enhanced surface area, porosity, and magnetic properties. The study is aimed at investigating the optimal conditions for adsorption of Cu2+ and MB by M-BC-CS through analysis of the influence of diverse adsorbent dosages, pH levels, reaction times, and initial solution concentrations. The findings demonstrated that the equilibrium duration for the adsorption of Cu2+ and MB by M-BC-CS was 60 min, resulting in corresponding equilibrium adsorption quantities of 54.42 mg/g and 67.23 mg/g, respectively. To elucidate the adsorption mechanism, the present investigation applied the pseudo-second-order kinetic model and the Langmuir isotherm. The outcomes suggested that the adsorption process is attributable to single molecular layer chemisorption. XPS and FTIR analysis determined that ion exchange and electrostatic interactions are the predominant mechanisms responsible for the simultaneous adsorption of Cu2+ and MB, and a competitive relationship exists between these mechanisms. In addition, M-BC-CS exhibited exceptional magnetic separation performance, enabling effortless and effective separation when exposed to an external magnetic field. Furthermore, the results demonstrated that M-BC-CS has good reusability and high adsorption capacity also in real wastewater, thus emphasizing its potential as a promising adsorbent for the elimination of Cu2+ and MB from aqueous solutions.
Collapse
Affiliation(s)
- Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Liang Xu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jianen Li
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zheyi Ren
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wei Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yunhe Ai
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Kaixiang Yang
- Qingdao Municipal Engineering Design & Research Institute Co., Ltd, Qingdao, 266000, China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
5
|
Akhtar MS, Ali S, Zaman W. Innovative Adsorbents for Pollutant Removal: Exploring the Latest Research and Applications. Molecules 2024; 29:4317. [PMID: 39339312 PMCID: PMC11433758 DOI: 10.3390/molecules29184317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The growing presence of diverse pollutants, including heavy metals, organic compounds, pharmaceuticals, and emerging contaminants, poses significant environmental and health risks. Traditional methods for pollutant removal often face limitations in efficiency, selectivity, and sustainability. This review provides a comprehensive analysis of recent advancements in innovative adsorbents designed to address these challenges. It explores a wide array of non-conventional adsorbent materials, such as nanocellulose, metal-organic frameworks (MOFs), graphene-based composites, and biochar, emphasizing their sources, structural characteristics, and unique adsorption mechanisms. The review discusses adsorption processes, including the basic principles, kinetics, isotherms, and the factors influencing adsorption efficiency. It highlights the superior performance of these materials in removing specific pollutants across various environmental settings. The practical applications of these adsorbents are further explored through case studies in industrial settings, pilot studies, and field trials, showcasing their real-world effectiveness. Additionally, the review critically examines the economic considerations, technical challenges, and environmental impacts associated with these adsorbents, offering a balanced perspective on their viability and sustainability. The conclusion emphasizes future research directions, focusing on the development of scalable production methods, enhanced material stability, and sustainable regeneration techniques. This comprehensive assessment underscores the transformative potential of innovative adsorbents in pollutant remediation and their critical role in advancing environmental protection.
Collapse
Affiliation(s)
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
6
|
Nawaz F, Ali M, Ahmad S, Yong Y, Rahman S, Naseem M, Hussain S, Razzaq A, Khan A, Ali F, Al Balushi RA, Al-Hinaai MM, Ali N. Carbon based nanocomposites, surface functionalization as a promising material for VOCs (volatile organic compounds) treatment. CHEMOSPHERE 2024; 364:143014. [PMID: 39121955 DOI: 10.1016/j.chemosphere.2024.143014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Urban residential and industrial growth development affects sustainable and healthful indoor environments. Environmental issues are a global problem. The deterioration of indoor air quality has prompted the creation of several air cleansing techniques. This review explains how carbon-based materials have influenced the development of air purification systems using photocatalysis. These carbon-based materials offer unique properties and advantages in VOC removal processes. Biochar, produced from biomass pyrolysis, provides an environmentally sustainable solution with its porous structure and carbon-rich composition. Carbon quantum dots, with their quantum confinement effects and tunable surface properties, show promise in VOC sensing and removal applications. Polymers incorporating reduced graphene oxide demonstrate enhanced adsorption capabilities owing to the synergistic effects of graphene and polymer matrices. Activated carbon fibers, characterized by their high aspect ratio and interconnected porosity, provide efficient VOC removal with rapid kinetics. With their unique electronic and structural properties, graphitic carbon nitrides offer opportunities for photocatalytic degradation of VOCs under visible light. Catalysts integrated with MXene, a two-dimensional nanomaterial, exhibit enhanced catalytic activity for VOC oxidation reactions. Using various carbon-based materials in VOC removal showcases the versatility and effectiveness of carbon-based approaches in addressing environmental challenges associated with indoor air pollution. Metal-organic-framework materials are carbon-based compounds. It examines the correlation between VOC mineralization and specific characteristics of carbon materials, including surface area, adsorption capability, surface functional groups, and optoelectronic properties. Discussions include the basics of PCO, variables influencing how well catalysts degrade, and degradation mechanisms. It explores how technology will improve in the future to advance studies on healthy and sustainable indoor air quality.
Collapse
Affiliation(s)
- Farooq Nawaz
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Muhammad Ali
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Shakeel Ahmad
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Yang Yong
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Suhaib Rahman
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Muhammad Naseem
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Sadam Hussain
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology(NUST), Islamabad, 44000, Pakistan.
| | - Abdul Razzaq
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan.
| | - Farman Ali
- Department of Chemistry, Hazara University, Mansehra, 21300, Pakistan.
| | - Rayya Ahmed Al Balushi
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra P.O. 400, Sultanate of Oman.
| | - Mohammad M Al-Hinaai
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra P.O. 400, Sultanate of Oman.
| | - Nisar Ali
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China; Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra P.O. 400, Sultanate of Oman.
| |
Collapse
|
7
|
Ali N, Khan F, Song W, Khan I, Kareem A, Rahman S, Khan A, Ali F, Al Balushi RA, Al-Hinaai MM, Nawaz A. Robust polymer hybrid and assembly materials from structure tailoring to efficient catalytic remediation of emerging pollutants. CHEMOSPHERE 2024; 360:142408. [PMID: 38789056 DOI: 10.1016/j.chemosphere.2024.142408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
A massive amount of toxic substances and harmful chemicals are released every day into the outer environment, imposing serious environmental impacts on both land and aquatic animals. To date, research is constantly in progress to determine the best catalytic material for the effective remediation of these harmful pollutants. Hybrid nanomaterials prepared by combining functional polymers with inorganic nanostructures got attention as a promising area of research owing to their remarkable multifunctional properties deriving from their entire nanocomposite structure. The versatility of the existing nanomaterials' design in polymer-inorganic hybrids, with respect to their structure, composition, and architecture, opens new prospects for catalytic applications in environmental remediation. This review article provides comprehensive detail on catalytic polymer nanocomposites and highlights how they might act as a catalyst in the remediation of toxic pollutants. Additionally, it provides a detailed clarification of the processing of design and synthetic ways for manufacturing polymer nanocomposites and explores further into the concepts of precise design methodologies. Polymer nanocomposites are used for treating pollutants (electrocatalytic, biocatalytic, catalytic, and redox degradation). The three catalytic techniques that are frequently used are thoroughly illustrated. Furthermore, significant improvements in the method through which the aforementioned catalytic process and pollutants are extensively discussed. The final section summarizes challenges in research and the potential of catalytic polymer nanocomposites for environmental remediation.
Collapse
Affiliation(s)
- Nisar Ali
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China; Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra P.O. 400, Sultanate of Oman.
| | - Fawad Khan
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Wang Song
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Ibrahim Khan
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Abdul Kareem
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Suhaib Rahman
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, Mansehra, 21300, Pakistan
| | - Rayya Ahmed Al Balushi
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra P.O. 400, Sultanate of Oman
| | - Mohammad M Al-Hinaai
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra P.O. 400, Sultanate of Oman
| | - Arif Nawaz
- Henan Key Laboratory of Photovoltaic Materials, School of Physics, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
8
|
Sheraz N, Shah A, Haleem A, Iftikhar FJ. Comprehensive assessment of carbon-, biomaterial- and inorganic-based adsorbents for the removal of the most hazardous heavy metal ions from wastewater. RSC Adv 2024; 14:11284-11310. [PMID: 38595713 PMCID: PMC11002728 DOI: 10.1039/d4ra00976b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
Owing to the high cost of recycling waste, underdeveloped countries discharge industrial, agricultural, and anthropogenic effluents without pretreatment. As a result, pollutant-loaded waste enters water bodies. Among the diverse toxic contaminants, heavy metal ions are the most detrimental because of their chronic toxicity, non-degradability, prevalence, and bioaccumulation. The growing shortage of water resources demands the removal of heavy metal ions from wastewater. Three SDGs of the sustainability agenda of the United Nations appeal for clean water to protect life beneath water and on land depending on the water sources. Therefore, efficient environmentally friendly approaches for wastewater treatment are urgently required. In this regard, several methods have been developed for the removal of heavy metal ions from wastewater, including adsorption as the most widely used method owing to its eco-friendly, cost-effective, and sustainable nature. The present review discusses the progress in the preparation and application of various adsorbents based on carbon, micro-organisms, agricultural waste and inorganic materials for the extraction of toxic metal ions such as Pb2+, Cr6+, As3+, As5+, Hg2+ and Cd2+. Herein, we provide information on the role of the homogeneity and heterogeneity of adsorbents, kinetics of the adsorption of an adsorbate on the surface of an adsorbent, insights into adsorption reaction pathways, the mechanism of the sorption process, and the uptake of solutes from solution. The present review will be useful for researchers working on environmental protection and clean environment.
Collapse
Affiliation(s)
- Nashra Sheraz
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Abdul Haleem
- School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 China
| | - Faiza Jan Iftikhar
- NUTECH School of Applied Science & Humanities, National University of Technology Islamabad 44000 Pakistan
| |
Collapse
|
9
|
Chen Y, Lei C, Zhao YG, Ye ML, Yang K. Orientation Growth of N-Doped and Iron-Based Metal-Organic Framework and Its Application for Removal of Cr(VI) in Wastewater. Molecules 2024; 29:1007. [PMID: 38474519 PMCID: PMC10934015 DOI: 10.3390/molecules29051007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
A series of NH2-functionalized nano-sized magnetic metal-organic frameworks (MOFs) were prepared in this study for Cr(VI) removal from wastewater. It was observed that not only the morphological, i.e., orientation growth of N-doped and iron-based metal-organic frameworks, but also the adsorption of magnetic MOFs is largely related to the used amount of ammonium hydroxide in preparation. For example, with increasing amounts of ammonium hydroxide used in preparation, the morphology of magnetic MOFs changed from spherical to cube and triangular cone. Moreover, the maximum adsorption capacity of spherical-magnetic MOFs, cubic-magnetic MOFs and triangular cone-magnetic MOFs could be up to 204.08 mg/g, 232.56 mg/g and 270.27 mg/g, respectively. Under optimal conditions, the adsorption process of magnetic MOFs for Cr(VI) was consistent with the pseudo-second-order rate equation (R2 = 1) and Langmuir isotherm model (R2 > 0.99). Therefore, magnetic MOFs developed in this work offered a viable option for the removal of Cr(VI) from wastewater.
Collapse
Affiliation(s)
- Yan Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; (Y.C.); (K.Y.)
- Polytechnic Institute, Zhejiang University, Hangzhou 310027, China
| | - Chao Lei
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China;
| | - Yong-Gang Zhao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China;
| | - Ming-Li Ye
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China;
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; (Y.C.); (K.Y.)
- Polytechnic Institute, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
10
|
Pandey M, Shabuddhin S, Tsunoji N, Das S, Bandyopadhyay M. Extraction of heavy metals from wastewater using amine-modified mesoporous silica. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113409-113423. [PMID: 37848788 DOI: 10.1007/s11356-023-30092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
Presence of heavy metals in wastewater is a critical environmental issue, and efficient extraction of the metals remains a challenging task. In this study, the adsorption behavior of Ce(III), Hg(II), and Cu(II) metal ions using MCM-48 material modified with acid and base functional groups was examined. The modified materials were characterized using various techniques, including XRD, BET, FT-IR, NMR, and SEM, which revealed that the materials' properties remained unchanged after modification. The adsorption capacity of the modified materials for metal ions was then evaluated and was found that the amine-modified MCM-48 material exhibited the highest adsorption efficiency. Precisely, the amine-modified material achieved an adsorption capacity of 97% for Ce(III), 98% for Hg(II), and 90% for Cu(II) after 180 min of adsorption. These results highlight the effectiveness of amine functionalization in enhancing the adsorption capacity of silica material for heavy metals.
Collapse
Affiliation(s)
- Madhu Pandey
- Institute of Infrastructure, Technology, Research and Management, IITRAM, Maninagar, Ahmedabad, Gujarat, India
| | - Syed Shabuddhin
- Department of Chemistry, Pandit Deendayal Energy University, Gujarat, India
| | - Nao Tsunoji
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi‑Hiroshima, 739‑8527, Japan
| | - Sourav Das
- Institute of Infrastructure, Technology, Research and Management, IITRAM, Maninagar, Ahmedabad, Gujarat, India
| | - Mahuya Bandyopadhyay
- Institute of Infrastructure, Technology, Research and Management, IITRAM, Maninagar, Ahmedabad, Gujarat, India.
| |
Collapse
|
11
|
Grisolia A, Dell’Olio G, Spadafora A, De Santo M, Morelli C, Leggio A, Pasqua L. Hybrid Polymer-Silica Nanostructured Materials for Environmental Remediation. Molecules 2023; 28:5105. [PMID: 37446768 PMCID: PMC10343502 DOI: 10.3390/molecules28135105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Due to the ever-growing global population, it is necessary to develop highly effective processes that minimize the impact of human activities and consumption on the environment. The levels of organic and inorganic contaminants have rapidly increased in recent years, posing a threat to ecosystems. Removing these toxic pollutants from the environment is a challenging task that requires physical, chemical, and biological methods. An effective solution involves the use of novel engineered materials, such as silica-based nanostructured materials, which exhibit a high removal capacity for various pollutants. The starting materials are also thermally and mechanically stable, allowing for easy design and development at the nanoscale through versatile functionalization procedures, enabling their effective use in pollutant capture. However, improvements concerning mechanical properties or applicability for repeated cycles may be required to refine their structural features. This review focuses on hybrid/composite polymer-silica nanostructured materials. The state of the art in nanomaterial synthesis, different techniques of functionalization, and polymer grafting are described. Furthermore, it explores the application of polymer-modified nanostructured materials for the capture of heavy metals, dyes, hydrocarbons and petroleum derivatives, drugs, and other organic compounds. The paper concludes by offering recommendations for future research aimed at advancing the application of polymer-silica nanostructured materials in the efficiency of pollutant uptake.
Collapse
Affiliation(s)
- Antonio Grisolia
- Department of Environmental Engineering, University of Calabria, via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (A.G.); (G.D.); (A.S.)
| | - Gianluca Dell’Olio
- Department of Environmental Engineering, University of Calabria, via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (A.G.); (G.D.); (A.S.)
| | - Angelica Spadafora
- Department of Environmental Engineering, University of Calabria, via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (A.G.); (G.D.); (A.S.)
| | - Marzia De Santo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (M.D.S.); (C.M.)
| | - Catia Morelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (M.D.S.); (C.M.)
| | - Antonella Leggio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (M.D.S.); (C.M.)
| | - Luigi Pasqua
- Department of Environmental Engineering, University of Calabria, via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (A.G.); (G.D.); (A.S.)
| |
Collapse
|
12
|
Wu G, Zhang C, Liu C, Li X, Cai Y, Wang M, Chu D, Liu L, Meng T, Chen Z. Magnetic tubular nickel@silica-graphene nanocomposites with high preconcentration capacity for organothiophosphate pesticide removal in environmental water: Fabrication, magnetic solid-phase extraction, and trace detection. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131788. [PMID: 37302192 DOI: 10.1016/j.jhazmat.2023.131788] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 06/13/2023]
Abstract
Organothiophosphate pesticides (OPPs) are the most common water contaminants, significantly endangering human health and bringing serious public safety issues. Thus, developing effective technologies for the removal or trace detection of OPPs from water is urgent. Herein, a novel graphene-based silica-coated core-shell tubular magnetic nanocomposite (Ni@SiO2-G) was fabricated for the first time and used for the efficient magnetic solid-phase extraction (MSPE) of the OPPs chlorpyrifos, diazinon, and fenitrothion from environmental water. The experimental factors affecting extraction efficiency such as adsorbent dosage, extraction time, desorption solvent, desorption mode, desorption time, and adsorbent type were evaluated. The synthesized Ni@SiO2-G nanocomposites showed a higher preconcentration capacity than the Ni nanotubes, Ni@SiO2 nanotubes, and graphene. Under the optimized conditions, 5 mg of tubular nano-adsorbent displayed good linearity within the range of 0.1-1 μg·mL-1, low limits of detection (0.04-0.25 pg·mL-1), low limits of quantification (0.132-0.834 pg·mL-1), good reusability (n = 5; relative standard deviations between 1.46% and 9.65%), low dosage (5 mg), and low real detection concentration (< 3.0 ng·mL-1). Moreover, the possible interaction mechanism was investigated by density functional theory calculation. Results showed that Ni@SiO2-G was a potential magnetic material for the preconcentration and extraction of formed OPPs at ultra-trace levels from environmental water.
Collapse
Affiliation(s)
- Guoxin Wu
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Chuanqi Zhang
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Chang Liu
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Xiangzi Li
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu 241002, China; Anhui Laboratory of Molecule-based Materials, College of Chemistry and Materials, Anhui Normal University, Wuhu 241002, China.
| | - Yuanyuan Cai
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Meifang Wang
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Deqiang Chu
- Criminal Police Detachment Material Evidence Identification Center, Wuhu Municipal Public Security Bureau, Wuhu 241000, China
| | - Liyun Liu
- Criminal Police Detachment Material Evidence Identification Center, Wuhu Municipal Public Security Bureau, Wuhu 241000, China
| | - Tian Meng
- Criminal Police Detachment Material Evidence Identification Center, Wuhu Municipal Public Security Bureau, Wuhu 241000, China
| | - Zhiming Chen
- College of Biochemical Engineering, Anhui Polytechnic University, Wuhu 241000, China
| |
Collapse
|
13
|
Ahmad A, Jamil SNAM, Choong TSY, Abdullah AH, Faujan NH, Adeyi AA, Daik R, Othman N. Removal of Cationic Dyes by Iron Modified Silica/Polyurethane Composite: Kinetic, Isotherm and Thermodynamic Analyses, and Regeneration via Advanced Oxidation Process. Polymers (Basel) 2022; 14:polym14245416. [PMID: 36559783 PMCID: PMC9786703 DOI: 10.3390/polym14245416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Emerging dye pollution from textile industrial effluents is becoming more challenging for researchers worldwide. The contamination of water by dye effluents affects the living organisms in an ecosystem. Methylene blue (MB) and malachite green (MG) are soluble dyes with a high colour intensity even at low concentration and are hazardous to living organisms. The adsorption method is used in most wastewater plants for the removal of organic pollutants as it is cost-effective, has a high adsorption capacity, and good mechanical stabilities. In this study, a composite adsorbent was prepared by impregnating iron modified silica (FMS) onto polyurethane (PU) foam to produce an iron modified silica/polyurethane (FMS/PU) composite. The composite adsorbent was utilised in batch adsorption of the cationic dyes MB and MG. The effect of adsorption parameters such as the adsorbent load, pH, initial dye concentration, and contact time were discussed. Adsorption kinetics and isotherm were implemented to understand the adsorption mechanism for both dyes. It was found that the adsorption of MB and MG followed the pseudo-second order model. The Langmuir model showed a better fit than the Freundlich model for the adsorption of MB and MG, indicating that the adsorption occurred via the monolayer adsorption system. The maximum adsorption capacity of the FMS/PU obtained for MB was 31.7 mg/g, while for MG, it was 34.3 mg/g. The thermodynamic study revealed that the adsorption of MB and MG were exothermic and spontaneous at room temperature. In addition, the regeneration of FMS/PU was conducted to investigate the composite efficiency in adsorbing dyes for several cycles. The results showed that the FMS/PU composite could be regenerated up to four times when the regeneration efficiency dropped drastically to less than 20.0%. The impregnation of FMS onto PU foam also minimised the adsorbent loss into the environment.
Collapse
Affiliation(s)
- Afiqah Ahmad
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Siti Nurul Ain Md. Jamil
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence:
| | - Thomas S. Y. Choong
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Abdul Halim Abdullah
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Nur Hana Faujan
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Abel A. Adeyi
- Department of Chemical and Petroleum Engineering, College of Engineering, Afe Babalola University Ado-Ekiti, ABUAD, KM. 8.5, Afe Babalola Way, PMB 5454, Ado-Ekiti 360101, Nigeria
| | - Rusli Daik
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Nurhanisah Othman
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
14
|
The Adsorptive and Photocatalytic Performance of Granite and Basalt Waste in the Discoloration of Basic Dye. Catalysts 2022. [DOI: 10.3390/catal12101076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present work explored the adsorptive capacity and catalytic activity of rock powders from basaltic and granitic rocks in the discoloration of synthetic and industrial effluents containing the yellow dye Basic Yellow 96. The rock powders were characterized with scanning electron microscopy associated with energy-dispersive spectroscopy, photoacoustic spectroscopy, N2 physisorption and X-ray diffraction, the latter confirming the abundant presence of silica in the four materials studied. The basaltic powders presented specific surface areas between 7 and 10 times greater than those of granitic materials, which allowed up to 92% removal of the dye in 3 h of test using the basaltic powder. Despite the smaller area, the granitic materials showed considerable photocatalytic activity in 3 h, 94%, the same as that of the basaltic materials in the photocatalysis. Granitic and basaltic photocatalysts proved to be efficient in the discoloration of synthetic and industrial effluents, although TOC analyses indicated that it was not possible to promote the pollutant mineralization in the industrial effluent. Both artificial light and sunlight were effective in the photocatalysis of the dye, although the former was slightly faster.
Collapse
|
15
|
Ali N, Funmilayo OR, Khan A, Ali F, Bilal M, Yang Y, Akhter MS, Zhou C, Wenjie Y, Iqbal HMN. Nanoarchitectonics: Porous Hydrogel as Bio-sorbent for Effective Remediation of Hazardous Contaminants. J Inorg Organomet Polym Mater 2022; 32:3301-3320. [DOI: 10.1007/s10904-022-02388-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/14/2022] [Indexed: 12/23/2022]
|
16
|
Malik S, Khan A, Rahman G, Ali N, Khan H, Khan S, Sotomayor MDPT. Core-shell magnetic molecularly imprinted polymer for selective recognition and detection of sunset yellow in aqueous environment and real samples. ENVIRONMENTAL RESEARCH 2022; 212:113209. [PMID: 35378121 DOI: 10.1016/j.envres.2022.113209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Magnetic Molecularly imprinted polymers (MMIPs) have been recently recognized as an exceptional tool for monitoring and decontamination of environmental and biological samples of diverse nature. Based on the potential applications as sorbents and biomimetic sensors, herein, a core-shell magnetic-molecularly imprinted polymer (MMIP) was developed as a selective material for separation and sensing of sunset yellow (SY) dye in an aqueous environment and real samples. The MMIP was synthesized via precipitation polymerization using SY as a template, MAA as a functional monomer (chosen based on simulation studies), EGDMA as a cross-linking agent, and AIBN as an initiator. To elaborate the specificity of MMIP, a comparative agent, magnetic non-imprinted polymer (MNIP) was also synthesized. The XRD results showed that the MMIP showed both crystalline and amorphous structure attributed to the presence and polymeric and non-polymeric groups. The FTIR spectra confirmed synthesis of intermediate and final MMIP product. The SEM results showed spherical morphology and porous structure of the MMIP with an average particle size of 0.636 μm in diameter. The MMIP was first employed as a sorbent for the removal of SY from the aqueous environment. The binding experiments performed at optimized operating conditions (pH 2; time 30 min; sorbent dosage 3 mg; sorbate concentration 80 ppm) showed more selectivity when compared with MNIP. The data fitted best to Langmuir's sorption isotherm (Qo 359.8 mg/g) and followed the pseudo-second-order kinetic model. The synthesized MMIP was also used as an electrochemical sensor for detection of SY dye in the aqueous environment, which exhibited a linear range of detection as (1.51 × 10-6 - 1.5 × 10-3 M). The limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.00413 M and 0.0137 M, respectively. While the R2 value was found to be 0.997 at optimized analytical conditions. These results suggested that the synthesized MMIP can be applied for the selective separation and quantification of SY dye in sample of diverse nature.
Collapse
Affiliation(s)
- Sumeet Malik
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan.
| | - Gul Rahman
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Nauman Ali
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Hamayun Khan
- Department of Chemistry, Islamia College University, Peshawar, KP, 25120, Pakistan
| | - Sabir Khan
- Laboratory of Physical Chemistry Research, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac, Lima, Peru; Institute of Chemistry, São Paulo State University (UNESP) and National Institute of Alternative Technologies for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), 14801-970, Araraquara, SP, Brazil
| | - Maria D P T Sotomayor
- Institute of Chemistry, São Paulo State University (UNESP) and National Institute of Alternative Technologies for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), 14801-970, Araraquara, SP, Brazil.
| |
Collapse
|
17
|
Synthesis of a novel EDTA-functionalized nanocomposite of Fe3O4-Eucalyptus camaldulensis green carbon fiber for selective separation of lead ions from synthetic wastewater: isotherm and kinetic studies. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02420-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
18
|
Zhang H, Chen J, Ni S, Bie C, Zhi H, Sun X. A clean process for selective recovery of copper from industrial wastewater by extraction-precipitation with p-tert-octyl phenoxy acetic acid. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114164. [PMID: 34864416 DOI: 10.1016/j.jenvman.2021.114164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
A novel method for the selective removal and recovery of copper ion from copper-containing wastewater by extraction-precipitation with p-tert-octyl phenoxy acetic acid as a precipitant is presented. The morphology, thermal stability and solubility of POAA were synthesized and characterized. Then the application of POAA to precipitate copper from simulated copper-containing wastewater was studied. The effects of some factors (i.e., time, pH, temperature, dosage of precipitant) on copper precipitation efficiency (P%) and water solubility of POAA were discussed. The extraction-precipitation mechanism of POAA and Cu2+ was investigated by slope analysis combined with SEM, EDS, XPS and IR spectra. The concentration and purity of copper from industrial wastewater increased from 100.2 mg/L to 27,916 mg/L and 13.71%-93.01% respectively, treating by the proposed extraction-precipitation. Moreover, POAA revealed good stability in the recycling processes. Extraction-precipitation strategy is simple, efficient and sustainable, which can effectively reduce the volume of sludge in the process of wastewater treatment and produce copper concentrated solution with industrial value, which has revealed application potential for the clean production of copper smelting enterprises.
Collapse
Affiliation(s)
- Hepeng Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China; Fujian Research Center for Rare Earth Engineering Technology, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, PR China; Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Jinqing Chen
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Shuainan Ni
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China; Fujian Research Center for Rare Earth Engineering Technology, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China
| | - Chao Bie
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China; Fujian Research Center for Rare Earth Engineering Technology, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China
| | - Hailan Zhi
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China; Fujian Research Center for Rare Earth Engineering Technology, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Xiaoqi Sun
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China; Fujian Research Center for Rare Earth Engineering Technology, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, PR China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China.
| |
Collapse
|
19
|
Dzumbira W, Ali N, Duanmu C, Yang Y, Khan A, Ali F, Bilal M, Aleya L, Iqbal HMN. Separation and remediation of environmental pollutants using metal-organic framework-based tailored materials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:4822-4842. [PMID: 34787811 DOI: 10.1007/s11356-021-17446-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/05/2021] [Indexed: 02/08/2023]
Abstract
Metal-organic frameworks (MOFs) are a polymer hybrid family of compounds comprising metal ions that have been deliberately incorporated in organic ligands to form several multi-dimensional structures with unique structural and functional attributes. They have the typical properties of brittleness, major porosity, and randomly crystalline. These three factors hampered their potential incorporation into modern technologies. However, with the discovery of their polymers, hope was rekindled. Polymers, unlike their counterparts, are versatile and malleable and can be tailored into solids with a wide range of technical applications. MOFs can be effectively incorporated into polymer structures, resulting in polymers with enhanced properties and increased demand, according to recent studies. This review focuses on the synthetic procedures of MOFs used to create hybrid materials, as well as their potential environmentally related applications. Desalination, hazardous heavy metal removal and mitigation, gas and liquid separations and purifications, and dye removal will all be extensively discussed as applications. To assemble this review, we will add insight from recent papers and discoveries, as well as seminal reports from experts on the advancement of MOF-polymers.
Collapse
Affiliation(s)
- Walter Dzumbira
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, People's Republic of China
| | - Nisar Ali
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, People's Republic of China.
| | - Chuansong Duanmu
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, People's Republic of China
| | - Yong Yang
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, People's Republic of China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, Peshawar, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, KPK, Mansehra, 21300, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
| |
Collapse
|
20
|
Natarajan R, Saikia K, Ponnusamy SK, Rathankumar AK, Rajendran DS, Venkataraman S, Tannani DB, Arvind V, Somanna T, Banerjee K, Mohideen N, Vaidyanathan VK. Understanding the factors affecting adsorption of pharmaceuticals on different adsorbents - A critical literature update. CHEMOSPHERE 2022; 287:131958. [PMID: 34454222 DOI: 10.1016/j.chemosphere.2021.131958] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/07/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Remediation of emerging pharmaceutically active compounds (PhACs) as micropollutants in wastewater is of foremost importance as they can cause extremely detrimental effects on life upon bioaccumulation and generation of drug-resistance microorganisms. Presently used physicochemical treatments, such as electrochemical oxidation, nanofiltration and reverse osmosis, are not feasible owing to high operating costs, incomplete removal of contaminants along with toxic by-products formation. Adsorption with the utilization of facile and efficient nanoparticulate adsorbents having distinctive properties of high surface area, excellent adsorption capacity, ability to undergo surface engineering and good regeneration displays great potential in this aspect along with the incorporation of nanotechnology for effective treatment. The application of such nanosorbents provides optimal performance under a wide range of physicochemical conditions, decreased secondary pollution with reduced mechanical stress along with excellent organic compound sequestration capacity, which in turn improves the quality of potable water in a sustainable way compared to current treatments. The present review intends to consolidate the range of factors that affect the process of adsorption of different PhACs on to various nanosorbents and also highlights the adsorption mechanism aiding in the retrieval.
Collapse
Affiliation(s)
- Ramesh Natarajan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Kongkona Saikia
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Senthil Kumar Ponnusamy
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - Abiram Karanam Rathankumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Diya Bharat Tannani
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Varshni Arvind
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Tanya Somanna
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Koyena Banerjee
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Nizar Mohideen
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India.
| |
Collapse
|
21
|
Khan MJ, Rai A, Ahirwar A, Sirotiya V, Mourya M, Mishra S, Schoefs B, Marchand J, Bhatia SK, Varjani S, Vinayak V. Diatom microalgae as smart nanocontainers for biosensing wastewater pollutants: recent trends and innovations. Bioengineered 2021; 12:9531-9549. [PMID: 34709977 PMCID: PMC8810035 DOI: 10.1080/21655979.2021.1996748] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022] Open
Abstract
Microalgae have been recognized as one of the most efficient microorganisms to remediate industrial effluents. Among microalgae diatoms are silica shelled unicellular eukaryotes, found in all types of water bodies and flourish very well even in wastewater. They have their silica cell wall made up of nano arrayed pores arranged in a uniform fashion. Therefore, they act as smart nanocontainers to adsorb various trace metals, dyes, polymers, and drugs which are hazardous to human as well to aquatic life. The beautiful nanoarchitecture in diatoms allows them to easily bind to ligands of choice to form a nanocomposite structure with the pollutants which can be a chemical or biological component. Such naturally available diatom nanomaterials are economical and highly sensitive compared to manmade artificial silica nanomaterials to help in facile removal of the toxic pollutants from wastewater. This review is thus focused on employing diatoms to remediate various pollutants such as heavy metals, dyes, hydrocarbons detected in the wastewater. It also includes different microalgae as biosensors for determination of pollutants in effluents and the perspectives for nanotechnological applications in the field of remediating pollutants through microalgae. The review also discusses in length the hurdles and perspectives of employing microalgae in wastewater remediation.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Anshuman Rai
- School of Engineering, Department of Biotechnology, Mmu, Deemed University, Ambala,India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, Le Mans, France
| | - Vandana Sirotiya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Megha Mourya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Sudhanshu Mishra
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Benoit Schoefs
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, Le Mans, France
| | - Justine Marchand
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, Le Mans, France
| | | | - Sunita Varjani
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| |
Collapse
|
22
|
Ali N, Hassan Riead MM, Bilal M, Yang Y, Khan A, Ali F, Karim S, Zhou C, Wenjie Y, Sher F, Iqbal HMN. Adsorptive remediation of environmental pollutants using magnetic hybrid materials as platform adsorbents. CHEMOSPHERE 2021; 284:131279. [PMID: 34175517 DOI: 10.1016/j.chemosphere.2021.131279] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023]
Abstract
Effective separation and remediation of environmentally hazardous pollutants are burning areas of research because of a constant increase in environmental pollution problems. An extensive number of emerging contaminants in the environmental matrices result in serious health consequences in animals, humans, and plants, even at trace levels. Therefore, it is of paramount significance to quantify these undesirable pollutants, even at a very low concentration, from the natural environment. Magnetic solid-phase extraction (MSPE) has recently achieved huge attention because of its strong magnetic domain and easy separation through an external magnetic field compared with simple solid-phase extraction. Therefore, MSPE appeared the most promising technique for removing and pre-concentration of emerging pollutants at trace level. Compared to the normal solid-phase extraction, MSPE as magnetic hybrid adsorbents offers the unique advantages of distinct nanomaterials and magnetic hybrid materials. It can exhibit efficient dispersion and rapid recycling when applying to a very complex matrix. This review highlights the possible environmental applications of magnetic hybrid nanoscale materials as effective MSPE sorbents to remediate a diverse range of environmentally toxic pollutants. We believe this study tends to evoke a variety of research thrust that may lead to novel remediation approaches in the forthcoming years.
Collapse
Affiliation(s)
- Nisar Ali
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, PR China.
| | - Md Mahamudul Hassan Riead
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, PR China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Yong Yang
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, PR China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, KPK, Mansehra, 21300, Pakistan
| | - Shafiul Karim
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, PR China
| | - Cao Zhou
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, PR China
| | - Ye Wenjie
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, PR China
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey, 64849, Mexico.
| |
Collapse
|
23
|
Zhang S, Bilal M, Adeel M, Barceló D, Iqbal HMN. MXene-based designer nanomaterials and their exploitation to mitigate hazardous pollutants from environmental matrices. CHEMOSPHERE 2021; 283:131293. [PMID: 34182621 DOI: 10.1016/j.chemosphere.2021.131293] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 02/08/2023]
Abstract
MXenes are a rapidly expanding and large family of two-dimensional (2D) materials that have recently garnered incredible research interests for diverse applications domains in various industrial sectors. Owing to unique inherent structural and physicochemical characteristics, such as high surface area, biological compatibility, robust electrochemistry, and high hydrophilicity, MXenes are appraised as a prospective avenue for environmental-clean-up technologies to detect and mitigate an array of recalcitrant hazardous contaminants from environmental matrices. MXene-based nanoarchitectures are thought to mitigate inorganic pollutants via interfacial chemical transformation and sorption, while three different mechanisms, including i) surface complexation and sorption (ii) catalytic activation and removal and (iii) radical's generation-based photocatalytic degradation, are involved in the removal of organic contaminants. Considering the application performance of MXenes on the incessant rise to expansion, in this review, we discuss the wide-spectrum applicability of diverse MXenes-based hybrid nanocomposites in environmental remediation. A brief description related to environmental pollutants, structural properties, chemical abilities, and synthesis route of MXenes is delineated at the start. Afterwards, the adsorption and degradative robustness of MXene-based designer nanomaterials for various contaminants including organic dyes, toxic heavy metals, pesticide residues, phenolics, antibiotics, radionuclides, and many others are thoroughly vetted to prove their potentiality in the arena of wastewater purification and remediation. Lastly, challenges and trends in assessing the wide-range applicability and scalability of MXenes are outlined. Seeing encouraging outcomes in plenty of reports, it can be concluded that MXenes-based nanostructures could be considered the next-generation candidates for water sustainability.
Collapse
Affiliation(s)
- Shuangshuang Zhang
- School of Food Science and Technology, Jiangsu Food and Pharmaceutical Science College, Huai'an, 223003, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Muhammad Adeel
- Faculty of Applied Engineering, iPRACS, University of Antwerp, 2020, Antwerp, Belgium
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18-26, 08034, Barcelona, Spain; Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H2O, 17003, Girona, Spain; College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
24
|
Billah REK, Khan MA, Park YK, AM A, Majdoubi H, Haddaji Y, Jeon BH. A Comparative Study on Hexavalent Chromium Adsorption onto Chitosan and Chitosan-Based Composites. Polymers (Basel) 2021; 13:3427. [PMID: 34641242 PMCID: PMC8512014 DOI: 10.3390/polym13193427] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 01/21/2023] Open
Abstract
Chitosan (Cs)-based composites were developed by incorporating silica (Cs-Si), and both silica and hydroxyapatite (Cs-Si-Hap), comparatively tested to sequester hexavalent (Cr(VI)) ions from water. XRD and FT-IR data affirmed the formation of Cs-Si and Cs-Si-Hap composite. Morphological images exhibits homogeneous Cs-Si surface, decorated with SiO2 nanoparticles, while the Cs-Si-Hap surface was non-homogeneous with microstructures, having SiO2 and Hap nanoparticles. Thermal analysis data revealed excellent thermal stability of the developed composites. Significant influence of pH, adsorbent dose, contact time, temperature, and coexisting anions on Cr(VI) adsorption onto composites was observed. Maximum Cr(VI) uptakes on Cs and developed composites were observed at pH 3. The equilibration time for Cr(VI) adsorption on Cs-Si-Hap was 10 min, comparatively better than Cs and Cs-Si. The adsorption data was fitted to pseudo-second-order kinetic and Langmuir isotherm models with respective maximum monolayer adsorption capacities (qm) of 55.5, 64.4, and 212.8 mg/g for Cs, Cs-Si, and Cs-Si-Hap. Regeneration studies showed that composites could be used for three consecutive cycles without losing their adsorption potential.
Collapse
Affiliation(s)
- Rachid El Kaim Billah
- Laboratory of Coordination and Analytical Chemistry, Department of Chemistry, Faculty of Sciences, University of Chouaib Doukkali, Avenue Jabran Khalil Jabran, El Jadida 24000, Morocco;
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Korea;
| | - Amira AM
- Laboratory of Analytical Chemistry and Physico-Chemistry of Materials, Department of Chemistry, Faculty of Sciences Ben M’Sik, University of Hassan II-Casablanca, Casablanca 20000, Morocco;
| | - Hicham Majdoubi
- Laboratory of Engineering and Materials, Department of Chemistry, Faculty of Sciences Ben M’Sik, University of Hassan II-Casablanca, Casablanca 21100, Morocco; (H.M.); (Y.H.)
| | - Younesse Haddaji
- Laboratory of Engineering and Materials, Department of Chemistry, Faculty of Sciences Ben M’Sik, University of Hassan II-Casablanca, Casablanca 21100, Morocco; (H.M.); (Y.H.)
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Korea;
| |
Collapse
|