1
|
Song T, Bak K, Kyung D, Murshed M, Cerruti M. Poly(vinyl alcohol) reduced and capped gold nanoparticles as contrast enhancers to target and improve detection of medial calcification. Acta Biomater 2025:S1742-7061(25)00385-X. [PMID: 40419071 DOI: 10.1016/j.actbio.2025.05.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 05/01/2025] [Accepted: 05/23/2025] [Indexed: 05/28/2025]
Abstract
Medial calcification is the pathological deposition of calcium phosphate (CaP) minerals in the elastin-rich medial layers of arteries, leading to vessel stiffening and increased risk of heart failure. There are no drugs to treat medial calcification, and thus it would be important to detect the disease as early as possible to enable adequate prevention. In the clinic, X-ray based computed tomography (CT) is used to diagnose medial calcification, but the few and small CaP minerals present in early stages of medial calcification do not provide enough X-ray contrast to be detectable by CT. Herein, we propose poly(vinyl alcohol) (PVA) reduced and capped gold nanoparticles (PVA@AuNPs) to target medial calcification and improve its detection in early stages. AuNPs can greatly absorb X-rays and thus work as contrast enhancers for CT. Results show that PVA@AuNPs can bind to CaP minerals containing hydroxyl ions on their surface, most likely via hydrogen-bond interactions with PVA capping polymers; indeed, mineral binding efficiency depends on the hydrolysis degree of PVA. AuNPs prepared from 99%+ hydrolyzed PVA (PVA99@AuNPs) bind selectively to calcified vs. non-calcified elastin in vitro, and in vivo they improve the contrast of medial calcification in 4-week-old matrix Gla-protein deficient mice imaged through micro-CT. STATEMENT OF SIGNIFICANCE: The few and small calcium phosphate (CaP) minerals present in early stages of medial calcification do not provide enough contrast for clinical detection via computed tomography (CT). Herein, we show that 99%+ hydrolyzed poly(vinyl alcohol) reduced and capped gold nanoparticles (PVA99@AuNPs) selectively bind CaP minerals in medial calcification, thus improving their contrast and (micro)CT detection. Unlike previously proposed targeting agents, PVA99@AuNPs bind to CaP mineral phases present in early-stage medial calcification but not to the extracellular matrix onto which minerals are deposited, thus enabling accurate and specific targeting. Their straightforward synthesis and biocompatibility significantly enhance their potential for clinical translation. Earlier detection of medial calcification would greatly improve disease management, particularly important since no treatments are available for the disease.
Collapse
Affiliation(s)
- Tao Song
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | - Kyoungmi Bak
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada; Shriners Hospital for Children, Montreal, Quebec, H4A 0A9, Canada
| | - Dahyun Kyung
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Monzur Murshed
- Shriners Hospital for Children, Montreal, Quebec, H4A 0A9, Canada; Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada.
| |
Collapse
|
2
|
Yang Y, Zhang Y, Zhang W, Lu K, Wang L, Liu Y, Du L, Yang J, Guan L, Ma H. Flammulina velutipes residue Polysaccharide Alleviates Immunosuppression and Intestinal Injury by Modulating Gut Microbiota and Associated Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7788-7806. [PMID: 40116376 DOI: 10.1021/acs.jafc.4c12105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
This study elucidated the mechanisms underlying the immunoregulatory and gut-microbiota-modulating effects of Flammulina velutipes residue polysaccharide (FVRP) using cyclophosphamide (CTX)-induced mouse models. FVRP supplementation alleviated CTX-induced intestinal damage and boosted antioxidant enzyme activity and cytokine secretion. Additionally, FVRP enhanced the diversity and total species richness of the gut microbiota, promoting the proliferation of beneficial bacteria (e.g., Prevotellaceae), while reducing the abundance of CTX-derived bacteria (Lachnospiraceae and Rikenellaceae). FVRP facilitates the accumulation of short-chain fatty acids. Untargeted metabolomic analyses of cecal content revealed that FVRP treatment notably restored the levels of 32 endogenous metabolites altered by CTX. Based on a pseudosterility mice model, fecal microbiota transplantation (FMT), and fecal filtrate transplantation (FFT), gut microbiota and associated metabolites were demonstrated to play a crucial role in the immunomodulatory and protective effects of FVRP against intestinal injury. In conclusion, FVRP exhibits significant potential as an immune enhancer and natural therapeutic agent for alleviating intestinal inflammatory conditions.
Collapse
Affiliation(s)
- Yiting Yang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Yao Zhang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Wenying Zhang
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, P. R. China
| | - Kunpeng Lu
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Liping Wang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Yanfang Liu
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Linna Du
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Jing Yang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Lili Guan
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Hongxia Ma
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, P. R. China
| |
Collapse
|
3
|
Chen J, Ma C, Li J, Niu X, Fan Y. Collagen-mediated cardiovascular calcification. Int J Biol Macromol 2025; 301:140225. [PMID: 39864707 DOI: 10.1016/j.ijbiomac.2025.140225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Cardiovascular calcification is a pathological process commonly observed in the elderly. Based on the location of the calcification, cardiovascular calcification can be classified into two main types: vascular calcification and valvular calcification. Collagen plays a critical role in the development of cardiovascular calcification lesions. The content and type of collagen are the result of a dynamic balance between synthesis and degradation. Unregulated processes can lead to adverse outcomes. During cardiovascular calcification, collagen not only serves as a scaffold for ectopic mineral deposition but also acts as a signal transduction pathway that mediates calcification by guiding the aggregation and nucleation of matrix vesicles and promoting the proliferation, migration and phenotypic changes of cells involved in the lesion. This review provides an overview of collagen subtypes in the cardiovascular system under physiological conditions and discusses their distribution. Additionally, we introduce pathological changes and mechanisms of collagen in blood vessels and heart valves. Then, the formation process and characteristic stages of cardiovascular calcification are described. Finally, we highlight the role of collagen in cardiovascular calcification, explore strategied for mediating calcification, and suggest potential directions for future research.
Collapse
Affiliation(s)
- Junlin Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Chunyang Ma
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Jinyu Li
- Department of Orthopedic, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, China.
| | - Xufeng Niu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; School of Engineering Medicine, Beihang University, Beijing 100083, China.
| |
Collapse
|
4
|
Wang Z, Gui Z, Zhang L, Wang Z. Advances in the mechanisms of vascular calcification in chronic kidney disease. J Cell Physiol 2025; 240:e31464. [PMID: 39392232 DOI: 10.1002/jcp.31464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Vascular calcification (VC) is common in patients with advanced chronic kidney disease (CKD).A series of factors, such as calcium and phosphorus metabolism disorders, uremic toxin accumulation, inflammation and oxidative stress and cellular senescence, cause osteoblast-like differentiation of vascular smooth muscle cells, secretion of extracellular vesicles, and imbalance of calcium regulatory factors, which together promote the development of VC in CKD. Recent advances in epigenetics have provided better tools for the investigation of VC etiology and new approaches for finding more accurate biomarkers. These advances have not only deepened our understanding of the pathophysiological mechanisms of VC in CKD, but also provided valuable clues for the optimization of clinical predictors and the exploration of potential therapeutic targets. The aim of this article is to provide a comprehensive overview of the pathogenesis of CKD VC, especially the new advances made in recent years, including the various key factors mentioned above. Through the comprehensive analysis, we expect to provide a solid theoretical foundation and research direction for future studies targeting the specific mechanisms of CKD VC, the establishment of clinical predictive indicators and the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Ziyang Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Institute of Cardiovascular Diseases, Jiangsu University, Zhenjiang, China
| | - Zebin Gui
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Institute of Cardiovascular Diseases, Jiangsu University, Zhenjiang, China
| | - Lirong Zhang
- Department of Radiology, Affliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Institute of Cardiovascular Diseases, Jiangsu University, Zhenjiang, China
| |
Collapse
|
5
|
Flores-Roco A, Lago BM, Villa-Bellosta R. Elevated glucose levels increase vascular calcification risk by disrupting extracellular pyrophosphate metabolism. Cardiovasc Diabetol 2024; 23:405. [PMID: 39529124 PMCID: PMC11555999 DOI: 10.1186/s12933-024-02502-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Vascular calcification is a major contributor to cardiovascular disease, especially diabetes, where it exacerbates morbidity and mortality. Although pyrophosphate is a recognized natural inhibitor of vascular calcification, there have been no prior studies examining its specific deficiency in diabetic conditions. This study is the first to analyze the direct link between elevated glucose levels and disruptions in extracellular pyrophosphate metabolism. METHODS Rat aortic smooth muscle cells, streptozotocin (STZ)-induced diabetic rats, and diabetic human aortic smooth muscle cells were used to assess the effects of elevated glucose levels on pyrophosphate metabolism and vascular calcification. The techniques used include extracellular pyrophosphate metabolism assays, thin-layer chromatography, phosphate-induced calcification assays, BrdU incorporation for DNA synthesis, aortic smooth muscle cell viability and proliferation assays, and quantitative PCR for enzyme expression analysis. Additionally, extracellular pyrophosphate metabolism was examined through the use of radiolabeled isotopes to track ATP and pyrophosphate transformations. RESULTS Elevated glucose led to a significant reduction in extracellular pyrophosphate across all diabetic models. This metabolic disruption was marked by notable downregulation of both the expression and activity of ectonucleotide pyrophosphatase/phosphodiesterase 1, a key enzyme that converts ATP to pyrophosphate. We also observed an upregulation of ectonucleoside triphosphate diphosphohydrolase 1, which preferentially hydrolyzes ATP to inorganic phosphate rather than pyrophosphate. Moreover, tissue-nonspecific alkaline phosphatase activity was markedly elevated across all diabetic models. This shift in enzyme activity significantly reduced the pyrophosphate/phosphate ratio. In addition, we noted a marked downregulation of matrix Gla protein, another inhibitor of vascular calcification. The impaired pyrophosphate metabolism was further corroborated by calcification experiments across all three diabetic models, which demonstrated an increased propensity for vascular calcification. CONCLUSIONS This study demonstrated that diabetes-induced high glucose disrupts extracellular pyrophosphate metabolism, compromising its protective role against vascular calcification. These findings identify pyrophosphate deficiency as a potential mechanism in diabetic vascular calcification, highlighting a new therapeutic target. Strategies aimed at restoring or enhancing pyrophosphate levels may offer significant potential in mitigating cardiovascular complications in diabetic patients, meriting further investigation.
Collapse
MESH Headings
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Diphosphates/metabolism
- Animals
- Humans
- Phosphoric Diester Hydrolases/metabolism
- Diabetes Mellitus, Experimental/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/drug effects
- Pyrophosphatases/metabolism
- Pyrophosphatases/genetics
- Cells, Cultured
- Male
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Rats, Sprague-Dawley
- Alkaline Phosphatase/metabolism
- Alkaline Phosphatase/blood
- Extracellular Matrix Proteins/metabolism
- Extracellular Matrix Proteins/genetics
- Blood Glucose/metabolism
- Matrix Gla Protein
- Calcium-Binding Proteins/metabolism
- Calcium-Binding Proteins/genetics
- Cell Proliferation/drug effects
- GPI-Linked Proteins/metabolism
- Rats
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Aortic Diseases/genetics
- Aortic Diseases/prevention & control
- Aorta/metabolism
- Aorta/pathology
- Aorta/drug effects
- 5'-Nucleotidase
Collapse
Affiliation(s)
- Alicia Flores-Roco
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS). Campus Vida, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Travesia da Choupana S/N, 15706, Santiago de Compostela, Spain
| | - Belinda M Lago
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS). Campus Vida, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Travesia da Choupana S/N, 15706, Santiago de Compostela, Spain
| | - Ricardo Villa-Bellosta
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS). Campus Vida, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
- Health Research Institute of Santiago de Compostela (IDIS), Travesia da Choupana S/N, 15706, Santiago de Compostela, Spain.
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS). Campus Vida, University of Santiago de Compostela, Avenida de Barcelona S/N, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
6
|
Neutel CHG, Wesley CD, van Loo C, Civati C, Mertens F, Zurek M, Verhulst A, Pintelon I, De Vos WH, Spronck B, Roth L, De Meyer GRY, Martinet W, Guns PJ. Calciprotein particles induce arterial stiffening ex vivo and impair vascular cell function. Commun Biol 2024; 7:1241. [PMID: 39358413 PMCID: PMC11447031 DOI: 10.1038/s42003-024-06895-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
Calciprotein particles (CPPs) are an endogenous buffering system, clearing excessive amounts of Ca2+ and PO43- from the circulation and thereby preventing ectopic mineralization. CPPs circulate as primary CPPs (CPP1), which are small spherical colloidal particles, and can aggregate to form large, crystalline, secondary CPPs (CPP2). Even though it has been reported that CPPs are toxic to vascular smooth muscle cells (VSMC) in vitro, their effect(s) on the vasculature remain unclear. Here we have shown that CPP1, but not CPP2, increased arterial stiffness ex vivo. Interestingly, the effects were more pronounced in the abdominal infrarenal aorta compared to the thoracic descending aorta. Further, we demonstrated that CPP1 affected both endothelial and VSMC function, impairing vasorelaxation and contraction respectively. Concomitantly, arterial glycosaminoglycan accumulation was observed as well, which is indicative of an increased extracellular matrix stiffness. However, these effects were not observed in vivo. Hence, we concluded that CPP1 can induce vascular dysfunction.
Collapse
Affiliation(s)
- Cédric H G Neutel
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.
| | - Callan D Wesley
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Cindy van Loo
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Céline Civati
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Freke Mertens
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Michelle Zurek
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Anja Verhulst
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
- Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
- µNEURO Research Excellence Consortium On Multimodal Neuromics, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
- Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
- µNEURO Research Excellence Consortium On Multimodal Neuromics, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Bart Spronck
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Lynn Roth
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
7
|
Bouderlique E, Kervadec J, Tang E, Zaworski J, Coudert A, Rubera I, Duranton C, Khan E, Haymann JP, Leftheriotis G, Daudon M, Letavernier E. Oral pyrophosphate protects Abcc6 -/- mice against vascular calcification induced by chronic kidney disease. J Mol Med (Berl) 2024; 102:1217-1227. [PMID: 39136767 DOI: 10.1007/s00109-024-02468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 09/22/2024]
Abstract
One of the hallmarks of chronic kidney disease (CKD) is the development of vascular calcification. Inorganic pyrophosphate is a potent inhibitor of calcification, and previous studies have reported low plasma pyrophosphate levels in hemodialysis patients. A long-term mouse model of CKD-accelerated vascular calcification was developed to study pyrophosphate metabolism and to test whether oral pyrophosphate supplementation attenuates the propensity for arterial calcification. CKD was induced by repeated injections of aristolochic acid in wild-type and Abcc6-/- mice, which tend to develop vascular calcifications. CKD accelerated the development of vascular calcifications in Abcc6-/- mice, in the aorta and small renal arteries, and decreased circulating pyrophosphate levels. Oral pyrophosphate supplementation for 6 months attenuated CKD-induced vascular calcification in this model. These results show that oral pyrophosphate may be of interest in preventing vascular calcification in patients with CKD. KEY MESSAGES: Chronic kidney disease accelerates the development of vascular calcification in pyrophosphate-deficient mice. Oral pyrophosphate supplementation for 6 months attenuates chronic kidney disease-induced vascular calcification in a mouse model. Oral pyrophosphate may be of interest in preventing vascular calcification in patients with chronic kidney disease.
Collapse
Affiliation(s)
- Elise Bouderlique
- Sorbonne Université, UMR S 1155, F-75020, Paris, France
- INSERM, UMR S 1155, F-75020, Paris, France
| | - Jennifer Kervadec
- Sorbonne Université, UMR S 1155, F-75020, Paris, France
- INSERM, UMR S 1155, F-75020, Paris, France
| | - Ellie Tang
- Sorbonne Université, UMR S 1155, F-75020, Paris, France
- INSERM, UMR S 1155, F-75020, Paris, France
| | - Jeremy Zaworski
- Sorbonne Université, UMR S 1155, F-75020, Paris, France
- INSERM, UMR S 1155, F-75020, Paris, France
| | - Amélie Coudert
- UFR d'odontologie (Département des Sciences Biologiques), Université Paris Diderot BIOSCAR - INSERM U1132, Hôpital Lariboisière, 75010, Paris, France
| | - Isabelle Rubera
- University Côte d'Azur, CNRS UMR-7370, Laboratoire de Physiomédecine Moléculaire, Labex ICST, Nice, France
| | - Christophe Duranton
- University Côte d'Azur, CNRS UMR-7370, Laboratoire de Physiomédecine Moléculaire, Labex ICST, Nice, France
| | - Edmat Khan
- Sorbonne Université, UMR S 1155, F-75020, Paris, France
- INSERM, UMR S 1155, F-75020, Paris, France
| | - Jean-Philippe Haymann
- Sorbonne Université, UMR S 1155, F-75020, Paris, France
- INSERM, UMR S 1155, F-75020, Paris, France
- Physiology Unit, AP-HP, Hôpital Tenon, F-75020, Paris, France
| | - Georges Leftheriotis
- University Côte d'Azur, CNRS UMR-7370, Laboratoire de Physiomédecine Moléculaire, Labex ICST, Nice, France
- PXE Consultation Center, FAVAMULTI Sud Competence Center for Rare Arterial Calcifying Diseases, Nice University Hospital, 06000, Nice, France
| | - Michel Daudon
- Sorbonne Université, UMR S 1155, F-75020, Paris, France
- INSERM, UMR S 1155, F-75020, Paris, France
- Physiology Unit, AP-HP, Hôpital Tenon, F-75020, Paris, France
| | - Emmanuel Letavernier
- Sorbonne Université, UMR S 1155, F-75020, Paris, France.
- INSERM, UMR S 1155, F-75020, Paris, France.
- Physiology Unit, AP-HP, Hôpital Tenon, F-75020, Paris, France.
- Service des Explorations Fonctionnelles Multidisciplinaires, Hôpital TENON, 4 rue de la Chine, 75020, Paris, France.
| |
Collapse
|
8
|
Song T, Cerruti M. Unraveling the role of carboxylate groups and elastin particle size in medial calcification. Int J Biol Macromol 2024; 274:133267. [PMID: 38906359 DOI: 10.1016/j.ijbiomac.2024.133267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
While it is known that calcium phosphate (CaP) minerals deposit in elastin-rich medial layers of arteries during medial calcification, their nucleation and growth sites are still debated. Neutral carbonyl groups and carboxylate groups are possible candidates. Also, while it is known that elastin degradation leads to calcification, it is unclear whether this is due to formation of new carboxylate groups or elastin fragmentation. In this work, we disentangle effects of carboxylate groups and particle size on elastin calcification; in doing so, we shed light on CaP mineralization sites on elastin. We find carboxylate groups accelerate calcification only in early stages; they mainly function as Ca2+ ion chelation sites but not calcification sites. Their presence promotes formation (likely on Ca2+ ions adsorbed on nearby carbonyl groups) of CaP minerals with high calcium-to-phosphate ratio as intermediate phases. Larger elastin particles calcify slower but reach similar amounts of CaP minerals in late stages; they promote direct formation of hydroxyapatite and CaP minerals with low calcium-to-phosphate ratio as intermediate phases. This work provides new perspectives on how carboxylate groups and elastin particle size influence calcification; these parameters can be tuned to study the mechanism of medial calcification and design drugs to inhibit the process.
Collapse
Affiliation(s)
- Tao Song
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada.
| | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada.
| |
Collapse
|
9
|
Feng C, Lu BQ, Fan Y, Ni H, Zhao Y, Tan S, Zhou Z, Liu L, Hachtel JA, Kepaptsoglou D, Wu B, Gebauer D, He S, Chen F. Amorphous 1-D nanowires of calcium phosphate/pyrophosphate: A demonstration of oriented self-growth of amorphous minerals. J Colloid Interface Sci 2024; 657:960-970. [PMID: 38096779 DOI: 10.1016/j.jcis.2023.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 01/02/2024]
Abstract
Amorphous inorganic solids are traditionally isotropic, thus, it is believed that they only grow in a non-preferential way without the assistance of regulators, leading to the morphologies of nanospheres or irregular aggregates of nanoparticles. However, in the presence of (ortho)phosphate (Pi) and pyrophosphate ions (PPi) which have synergistic roles in biomineralization, the highly elongated amorphous nanowires (denoted ACPPNs) form in a regulator-free aqueous solution (without templates, additives, organics, etc). Based on thorough characterization and tracking of the formation process (e.g., Cryo-TEM, spherical aberration correction high resolution TEM, solid state NMR, high energy resolution monochromated STEM-EELS), the microstructure and its preferential growth behavior are elucidated. In ACPPNs, amorphous calcium orthophosphate and amorphous calcium pyrophosphate are distributed at separated but close sites. The ACPPNs grow via either the preferential attachment of ∼2 nm nanoclusters in a 1-dimension way, or the transformation of bigger nanoparticles, indicating an inherent driving force-governed process. We propose that the anisotropy of ACPPNs microstructure, which is corroborated experimentally, causes their oriented growth. This study proves that, unlike the conventional view, amorphous minerals can form via oriented growth without external regulation, demonstrating a novel insight into the structures and growth behaviors of amorphous minerals.
Collapse
Affiliation(s)
- Chaobo Feng
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China
| | - Bing-Qiang Lu
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China.
| | - Yunshan Fan
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China
| | - Haijian Ni
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China
| | - Yunfei Zhao
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China
| | - Shuo Tan
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China
| | - Zhi Zhou
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China
| | - Lijia Liu
- Department of Chemistry, University of Western Ontario, London, ON N6A5B7, Canada
| | - Jordan A Hachtel
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Demie Kepaptsoglou
- SuperSTEM Laboratory, SciTech Daresbury Campus, Daresbury WA4 4AD, UK; Department of Physics, University of York, York YO10 5DD, UK
| | - Baohu Wu
- Forschungszentrum Jülich GmbH, JCNS-4, JCNS at MLZ, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Denis Gebauer
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, D-30167 Hanover, Germany
| | - Shisheng He
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China.
| | - Feng Chen
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001 PR China.
| |
Collapse
|
10
|
Villa-Bellosta R. Vascular Calcification: A Passive Process That Requires Active Inhibition. BIOLOGY 2024; 13:111. [PMID: 38392329 PMCID: PMC10886409 DOI: 10.3390/biology13020111] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
The primary cause of worldwide mortality and morbidity stems from complications in the cardiovascular system resulting from accelerated atherosclerosis and arterial stiffening. Frequently, both pathologies are associated with the pathological calcification of cardiovascular structures, present in areas such as cardiac valves or blood vessels (vascular calcification). The accumulation of hydroxyapatite, the predominant form of calcium phosphate crystals, is a distinctive feature of vascular calcification. This phenomenon is commonly observed as a result of aging and is also linked to various diseases such as diabetes, chronic kidney disease, and several genetic disorders. A substantial body of evidence indicates that vascular calcification involves two primary processes: a passive process and an active process. The physicochemical process of hydroxyapatite formation and deposition (a passive process) is influenced significantly by hyperphosphatemia. However, the active synthesis of calcification inhibitors, including proteins and low-molecular-weight inhibitors such as pyrophosphate, is crucial. Excessive calcification occurs when there is a loss of function in enzymes and transporters responsible for extracellular pyrophosphate metabolism. Current in vivo treatments to prevent calcification involve addressing hyperphosphatemia with phosphate binders and implementing strategies to enhance the availability of pyrophosphate.
Collapse
Affiliation(s)
- Ricardo Villa-Bellosta
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Campus Vida, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- The Health Research Institute of Santiago de Compostela (IDIS), Travesia da Choupana S/N, 15706 Santiago de Compostela, Spain
| |
Collapse
|
11
|
Kauffenstein G, Martin L, Le Saux O. The Purinergic Nature of Pseudoxanthoma Elasticum. BIOLOGY 2024; 13:74. [PMID: 38392293 PMCID: PMC10886499 DOI: 10.3390/biology13020074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
Pseudoxanthoma Elasticum (PXE) is an inherited disease characterized by elastic fiber calcification in the eyes, the skin and the cardiovascular system. PXE results from mutations in ABCC6 that encodes an ABC transporter primarily expressed in the liver and kidneys. It took nearly 15 years after identifying the gene to better understand the etiology of PXE. ABCC6 function facilitates the efflux of ATP, which is sequentially hydrolyzed by the ectonucleotidases ENPP1 and CD73 into pyrophosphate (PPi) and adenosine, both inhibitors of calcification. PXE, together with General Arterial Calcification of Infancy (GACI caused by ENPP1 mutations) as well as Calcification of Joints and Arteries (CALJA caused by NT5E/CD73 mutations), forms a disease continuum with overlapping phenotypes and shares steps of the same molecular pathway. The explanation of these phenotypes place ABCC6 as an upstream regulator of a purinergic pathway (ABCC6 → ENPP1 → CD73 → TNAP) that notably inhibits mineralization by maintaining a physiological Pi/PPi ratio in connective tissues. Based on a review of the literature and our recent experimental data, we suggest that PXE (and GACI/CALJA) be considered as an authentic "purinergic disease". In this article, we recapitulate the pathobiology of PXE and review molecular and physiological data showing that, beyond PPi deficiency and ectopic calcification, PXE is associated with wide and complex alterations of purinergic systems. Finally, we speculate on the future prospects regarding purinergic signaling and other aspects of this disease.
Collapse
Affiliation(s)
- Gilles Kauffenstein
- UMR INSERM 1260, Regenerative Nanomedicine, University of Strasbourg, 67084 Strasbourg, France
| | - Ludovic Martin
- PXE Consultation Center, MAGEC Nord Reference Center for Rare Skin Diseases, Angers University Hospital, 49000 Angers, France
- MITOVASC-UMR CNRS 6015 INSERM 1083, University of Angers, 49000 Angers, France
| | - Olivier Le Saux
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
12
|
Chu Z, Zhao T, Zhang Z, Chu CH, Cai K, Wu J, Wu W, Tang C. Untargeted Metabolomics Analysis of Gingival Tissue in Patients with Severe Periodontitis. J Proteome Res 2024; 23:3-15. [PMID: 38018860 DOI: 10.1021/acs.jproteome.3c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The purpose of this study was to determine potential metabolic biomarkers and therapeutic drugs in the gingival tissue of individuals with periodontitis. Liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) were used to analyze the gingival tissue samples from 20 patients with severe periodontitis and 20 healthy controls. Differential metabolites were identified using variable important in projection (VIP) values from the orthogonal partial least squares discrimination analysis (OPLS-DA) model and then verified for significance between groups using a two-tailed Student's t test. In total, 65 metabolites were enriched in 33 metabolic pathways, with 40 showing a significant increase and 25 expressing a significant decrease. In addition, it was found that patients with severe periodontitis have abnormalities in metabolic pathways, such as glucose metabolism, purine metabolism, amino acid metabolism, and so on. Furthermore, based on a multidimensional analysis, 12 different metabolites may be the potential biomarkers of severe periodontitis. The experiment's raw data have been uploaded to the MetaboLights database, and the project number is MTBLS8357. Moreover, osteogenesis differentiation characteristics were detected in the selected metabolites. The findings may provide a basis for the study of diagnostic biomarkers and therapeutic metabolites in severe periodontitis.
Collapse
Affiliation(s)
- Zhuangzhuang Chu
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Laboratory of Oral Diseases,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Tong Zhao
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Laboratory of Oral Diseases,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Zhewei Zhang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Laboratory of Oral Diseases,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Catherine Huihan Chu
- Department of Orthodontic, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Laboratory of Oral Diseases,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Kunzhan Cai
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Laboratory of Oral Diseases,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Jin Wu
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Laboratory of Oral Diseases,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Wei Wu
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Laboratory of Oral Diseases,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Chunbo Tang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Laboratory of Oral Diseases,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| |
Collapse
|
13
|
Gu W, Wei Y, Tang Y, Zhang S, Li S, Shi Y, Tang F, Awad AM, Zhang X, Tang F. Supplement of exogenous inorganic pyrophosphate inhibits atheromatous calcification in Apolipoprotein E knockout mice. Heliyon 2023; 9:e19214. [PMID: 37654451 PMCID: PMC10465865 DOI: 10.1016/j.heliyon.2023.e19214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
Inorganic pyrophosphate (PPi) is the endogenous inhibitor for vascular calcification (VC). The present study was to investigate the effects of adenosine disodium triphosphate (ADTP) and alendronate sodium (AL), two exogenous PPi sources, on the atheromatous calcification (AC) in Apolipoprotein E knockout (ApoE KO) mice. ApoE KO mice were randomly divided into five groups: ApoE KO group, ApoE KO + ADTP (Low) group, ApoE KO + ADTP (High) group, ApoE KO + AL (Low) group and ApoE KO + AL (High) group. The mice in ApoE KO + ADTP (Low) group and ApoE KO + ADTP (High) group were intraperitoneally injected with ADTP with dose of 0.5 and 1.0 mg/kg/day for 2 months respectively. The mice in ApoE KO + AL (Low) group and ApoE KO + AL (High) group were intraperitoneally injected with AL with dose of 0.6 and 1.2 mg/kg/day for 2 months respectively. The age matched C57 mice were used as control group. All ApoE KO and C57 mice were fed with normal chow throughout the experiment. The calcification was evaluated using von Kossa method. The contents of PPi, triglyceride (TG), total cholesterol (TC), high density lipoprotein (HDL) and low density lipoprotein (LDL), tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), interferon-γ (IFN-γ) and interleukin-10 (IL-10) as well as the activity of alkaline phosphatase (ALP) in serum were measured. The results showed that compared with C57 mice, ApoE KO mice developed severe AC accompanied with high levels of TC, TG, LDL, IL-6, TNF-α and IFN-γ in serum and with low levels of PPi and IL-10 in serum. Both ADTP and AL dose-dependently reduced the AC in ApoE KO mice compared with that of ApoE mice, without affecting the contents of lipid profiles. In addition, ADTP and AL increased the contents of PPi and IL-10 while decreased the contents of TNF-α, IL-6 and IFN-γ in serum of ApoE KO mice, having no affection on ALP activity. The results suggested that ADTP and AL reduced AC in ApoE KO mice by increasing the PPi level and regulating the inflammation.
Collapse
Affiliation(s)
- Wenjiao Gu
- Second Clinical School of Medicine, Lanzhou University, Lanzhou 730030, China
- Department of Cardiovascular Diseases, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Yujie Wei
- Second Clinical School of Medicine, Lanzhou University, Lanzhou 730030, China
- Department of Cardiovascular Diseases, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Yu Tang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Shining Zhang
- Department of Cardiovascular Diseases, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Shuangyi Li
- Second Clinical School of Medicine, Lanzhou University, Lanzhou 730030, China
- Department of Cardiovascular Diseases, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Youming Shi
- Second Clinical School of Medicine, Lanzhou University, Lanzhou 730030, China
- Department of Cardiovascular Diseases, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Fenxia Tang
- Department of Cardiovascular Diseases, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Ali Mohamed Awad
- Second Clinical School of Medicine, Lanzhou University, Lanzhou 730030, China
- Department of Cardiovascular Diseases, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Xiaowei Zhang
- Department of Cardiovascular Diseases, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Futian Tang
- Second Clinical School of Medicine, Lanzhou University, Lanzhou 730030, China
- Department of Cardiovascular Diseases, Lanzhou University Second Hospital, Lanzhou 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| |
Collapse
|
14
|
Ohnishi T, Tran V, Sao K, Ramteke P, Querido W, Barve RA, van de Wetering K, Risbud MV. Loss of function mutation in Ank causes aberrant mineralization and acquisition of osteoblast-like-phenotype by the cells of the intervertebral disc. Cell Death Dis 2023; 14:447. [PMID: 37468461 PMCID: PMC10356955 DOI: 10.1038/s41419-023-05893-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/21/2023]
Abstract
Pathological mineralization of intervertebral disc is debilitating and painful and linked to disc degeneration in a subset of human patients. An adenosine triphosphate efflux transporter, progressive ankylosis (ANK) is a regulator of extracellular inorganic pyrophosphate levels and plays an important role in tissue mineralization. However, the function of ANK in intervertebral disc has not been fully explored. Herein we analyzed the spinal phenotype of Ank mutant mice (ank/ank) with attenuated ANK function. Micro-computed tomography and histological analysis showed that loss of ANK function results in the aberrant annulus fibrosus mineralization and peripheral disc fusions with cranial to caudal progression in the spine. Vertebrae in ank mice exhibit elevated cortical bone mass and increased tissue non-specific alkaline phosphatase-positive endplate chondrocytes with decreased subchondral endplate porosity. The acellular dystrophic mineral inclusions in the annulus fibrosus were localized adjacent to apoptotic cells and cells that acquired osteoblast-like phenotype. Fourier transform infrared spectral imaging showed that the apatite mineral in the outer annulus fibrosus had similar chemical composition to that of vertebral bone. Transcriptomic analysis of annulus fibrosus and nucleus pulposus tissues showed changes in several biological themes with a prominent dysregulation of BMAL1/CLOCK circadian regulation. The present study provides new insights into the role of ANK in the disc tissue compartments and highlights the importance of local inorganic pyrophosphate metabolism in inhibiting the mineralization of this important connective tissue.
Collapse
Affiliation(s)
- Takashi Ohnishi
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, 060-8638, Japan
| | - Victoria Tran
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Kimheak Sao
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Pranay Ramteke
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - William Querido
- Department of Bioengineering, Temple University, Philadelphia, PA, 19122, USA
| | - Ruteja A Barve
- Department of Genetics, Genome Technology Access Centre at the McDonnell Genome Institute, Washington University, School of Medicine, St. Louis, MO, 63110, USA
| | - Koen van de Wetering
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
15
|
Jia J, Zhang J, Ma D, Zhang Z, Zhao L, Wang T, Xu H. Association between healthy eating index-2015 and abdominal aortic calcification among US Adults. Front Nutr 2023; 9:1027136. [PMID: 36742001 PMCID: PMC9889545 DOI: 10.3389/fnut.2022.1027136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Aims To evaluate the relationship of the healthy eating index-2015 (HEI-2015) with abdominal aortic calcification (AAC) in US adults. Methods We conducted a cross-sectional study with data extracted from the National Health and Nutrition Examination Survey (NHANES). AAC score was measured using the scoring system of Kauppila (AAC-24) and Schousboe (AAC-8). HEI-2015, which was used for evaluating compliance with Dietary Guidelines for Americans (DGA), was calculated through two rounds of 24-h recall interviews. HEI-2015 was categorized as inadequate (<50), average (50~70), and optimal (≥70) groups for analysis, while the AAC-24 score was grouped by whether the score was >0. Weighted multiple regression analyses were conducted to estimate the association of HEI-2015 with AAC score and the presence of AAC. Moreover, smooth curve fittings, based on a generalized additive model (GAM), were applied to evaluate a possible non-linear relationship. Sensitivity analysis and subgroup analysis were performed to provide more supporting information. Results A total of 2,704 participants were included in the study (mean age, 57.61 ± 11.40 years; 51.78% were women). The mean score of HEI-2015 was 56.09 ± 13.40 (41.33 ± 6.28, 59.44 ± 5.54, and 76.90 ± 5.37 for inadequate, average, and optimal groups, respectively). After adjusting for covariates, higher HEI-2015 was associated with decreased AAC score (AAC-24: β = -0.121, 95% CI: -0.214, -0.028, P = 0.010; AAC-8: β= -0.054, 95% CI: -0.088, -0.019, P = 0.003) and lower risk of AAC (OR = 0.921, 95% CI: 0.855, 0.993, P = 0.031). Among the components of HEI-2015, a higher intake of fruits, greens, and beans was associated with a lower AAC score. Subgroup analysis showed that an inverse association of HEI-2015 with AAC score existed among different groups. Conclusion The study presented that higher HEI-2015 was related to a lower AAC score and decreased risk of having AAC, indicating that greater compliance with 2015-2020 DGA, assessed by HEI-2015, might be beneficial for preventing vascular calcification and CVD among US adults.
Collapse
Affiliation(s)
- Jundi Jia
- Graduate School, Beijing University of Chinese Medicine, Beijing, China,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dan Ma
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zihao Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Zhao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongxin Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Hao Xu ✉
| |
Collapse
|
16
|
Vascular calcification in different arterial beds in ex vivo ring culture and in vivo rat model. Sci Rep 2022; 12:11861. [PMID: 35831341 PMCID: PMC9279329 DOI: 10.1038/s41598-022-15739-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/28/2022] [Indexed: 11/08/2022] Open
Abstract
Vascular calcification is a risk factor for cardiovascular and kidney diseases. Medial calcification may differently affect the arterial tree depending on vessel location and smooth muscle injury. The aim was to map the anatomical distribution of vascular calcifications on different arteries and artery locations, in cultured artery rings (ex vivo) and in a rat model of elastocalcinosis (in vivo). Vascular calcification was assessed histologically (von Kossa staining of the media) and by calcium content measurement. Arteries of different sizes were harvested from untreated rats for ring culture and from the vitamin D3-nicotine (VDN) rat model for direct observation. When cultured in pro-calcifying conditions, thoracic aorta exhibited similar calcification from the arch to the diaphragm. Calcification increased in abdominal aorta along with the reduction in cross sectional area. Carotid and renal arteries exhibited similar ex vivo calcification. In VDN rats, calcification was greater in carotid artery than in aorta, and was accompanied by fibrosis and apoptosis. Ex vivo, calcification was increased by the induction of lesions on arteries. Along the vascular tree, calcification of the arterial wall increases with the narrowing of vessels in ex vivo ring culture and in vivo. The observed differences represent local susceptibility of the vessels to the calcifying processes.
Collapse
|
17
|
Ren SC, Mao N, Yi S, Ma X, Zou JQ, Tang X, Fan JM. Vascular Calcification in Chronic Kidney Disease: An Update and Perspective. Aging Dis 2022; 13:673-697. [PMID: 35656113 PMCID: PMC9116919 DOI: 10.14336/ad.2021.1024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/24/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease is a devastating condition resulting from irreversible loss of nephron numbers and function and leading to end-stage renal disease and mineral disorders. Vascular calcification, an ectopic deposition of calcium-phosphate salts in blood vessel walls and heart valves, is an independent risk factor of cardiovascular morbidity and mortality in chronic kidney disease. Moreover, aging and related metabolic disorders are essential risk factors for chronic kidney disease and vascular calcification. Marked progress has been recently made in understanding and treating vascular calcification in chronic kidney disease. However, there is a paucity of systematic reviews summarizing this progress, and investigating unresolved issues is warranted. In this systematic review, we aimed to overview the underlying mechanisms of vascular calcification in chronic kidney diseases and discuss the impact of chronic kidney disease on the pathophysiology of vascular calcification. Additionally, we summarized potential clinical diagnostic biomarkers and therapeutic applications for vascular calcification with chronic kidney disease. This review may offer new insights into the pathogenesis, diagnosis, and therapeutic intervention of vascular calcification.
Collapse
Affiliation(s)
- Si-Chong Ren
- Chengdu Medical College, Chengdu, China.
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
- Center for Translational Medicine, Sichuan Academy of Traditional Chinese Medicine, Chengdu, China.
| | - Nan Mao
- Chengdu Medical College, Chengdu, China.
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
| | - Si Yi
- Chengdu Medical College, Chengdu, China.
- Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, China.
| | - Xin Ma
- Chengdu Medical College, Chengdu, China.
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
| | - Jia-Qiong Zou
- Chengdu Medical College, Chengdu, China.
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jun-Ming Fan
- Chengdu Medical College, Chengdu, China.
- Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, China.
| |
Collapse
|
18
|
Villa-Bellosta R. Role of the extracellular ATP/pyrophosphate metabolism cycle in vascular calcification. Purinergic Signal 2022:10.1007/s11302-022-09867-1. [PMID: 35511317 DOI: 10.1007/s11302-022-09867-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/19/2022] [Indexed: 10/18/2022] Open
Abstract
Conventionally, ATP is considered to be the principal energy source in cells. However, over the last few years, a novel role for ATP as a potent extracellular signaling molecule and the principal source of extracellular pyrophosphate, the main endogenous inhibitor of vascular calcification, has emerged. A large body of evidence suggests that two principal mechanisms are involved in the initiation and progression of ectopic calcification: high phosphate concentration and pyrophosphate deficiency. Pathologic calcification of cardiovascular structures, or vascular calcification, is a feature of several genetic diseases and a common complication of chronic kidney disease, diabetes, and aging. Previous studies have shown that the loss of function of several enzymes and transporters involved in extracellular ATP/pyrophosphate metabolism is associated with vascular calcification. Therefore, pyrophosphate homeostasis should be further studied to facilitate the design of novel therapeutic approaches for ectopic calcification of cardiovascular structures, including strategies to increase pyrophosphate concentrations by targeting the ATP/pyrophosphate metabolism cycle.
Collapse
Affiliation(s)
- Ricardo Villa-Bellosta
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Av Barcelona, Campus Vida, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain. .,Department of Biochemistry and Molecular Biology, Universidade de Santiago de Compostela, Plaza do Obradoiro s/n, Santiago de Compostela, Spain.
| |
Collapse
|
19
|
Machado SE, Spangler D, Black LM, Traylor AM, Balla J, Zarjou A. A Reproducible Mouse Model of Moderate CKD With Early Manifestations of Osteoblastic Transition of Cardiovascular System. Front Physiol 2022; 13:897179. [PMID: 35574469 PMCID: PMC9099146 DOI: 10.3389/fphys.2022.897179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Chronic kidney disease (CKD) is a significant public health challenge with a substantial associated risk of mortality, morbidity, and health care expenditure. Culprits that lead to development and progression of CKD are multifaceted and heterogenous in nature. This notion underscores the need for diversification of animal models to investigate its pathophysiology, related complications, and to subsequently enable discovery of novel therapeutics. Importantly, animal models that could recapitulate complications of CKD in both genders are desperately needed. Cardiovascular disease is the most common cause of death in CKD patients that may be due in part to high prevalence of vascular calcification (VC). Using DBA/2 mice that are susceptible to development of VC, we sought to investigate the feasibility and reproducibility of a unilateral ischemia-reperfusion model followed by contralateral nephrectomy (UIRI/Nx) to induce CKD and its related complications in female and male mice. Our results demonstrate that irrespective of gender, mice faithfully displayed complications of moderate CKD following UIRI/Nx as evidenced by significant rise in serum creatinine, albuminuria, higher degree of collagen deposition, elevated expression of classic fibrotic markers, higher circulating levels of FGF-23, PTH and hepcidin. Moreover, we corroborate the osteoblastic transition of aortic smooth muscle cells and cardiomyocytes based on higher levels of osteoblastic markers namely, Cbfa-1, osteopontin, osteocalcin, and osterix. Our data confirms a viable, and consistent model of moderate CKD and its associated complications in both male and female mice. Furthermore, early evidence of osteoblastic transition of cardiovascular system in this model confirms its suitability for studying and implementing potential preventive and/or therapeutic approaches that are urgently needed in this field.
Collapse
Affiliation(s)
- Sarah E Machado
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Hungary
| | - Daryll Spangler
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Hungary
| | - Laurence M. Black
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Hungary
| | - Amie M. Traylor
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Hungary
| | - József Balla
- ELKH-UD Vascular Biology and Myocardial Pathophysiology Research Group, Division of Nephrology, Department of Medicine, Faculty of Medicine, Hungarian Academy of Sciences, University of Debrecen, Debrecen, Hungary
| | - Abolfazl Zarjou
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Hungary,*Correspondence: Abolfazl Zarjou,
| |
Collapse
|
20
|
Niu Z, Su G, Li T, Yu H, Shen Y, Zhang D, Liu X. Vascular Calcification: New Insights Into BMP Type I Receptor A. Front Pharmacol 2022; 13:887253. [PMID: 35462911 PMCID: PMC9019578 DOI: 10.3389/fphar.2022.887253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular calcification (VC) is a complex ectopic calcification process and an important indicator of increased risk for diabetes, atherosclerosis, chronic kidney disease, and other diseases. Therefore, clarifying the pathogenesis of VC is of great clinical significance. Numerous studies have shown that the onset and progression of VC are similar to bone formation. Members of the bone morphogenetic protein (BMP) family of proteins are considered key molecules in the progression of vascular calcification. BMP type I receptor A (BMPR1A) is a key receptor of BMP factors acting on the cell membrane, is widely expressed in various tissues and cells, and is an important “portal” for BMP to enter cells and exert their biological effect. In recent years, many discoveries have been made regarding the occurrence and treatment of ectopic ossification-related diseases involving BMP signaling targets. Studies have confirmed that BMPR1A is involved in osteogenic differentiation and that its high expression in vascular endothelial cells and smooth muscle cells can lead to vascular calcification. This article reviews the role of BMPR1A in vascular calcification and the possible underlying molecular mechanisms to provide clues for the clinical treatment of such diseases.
Collapse
Affiliation(s)
- Zhixing Niu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guanyue Su
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Tiantian Li
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Hongchi Yu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yang Shen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Demao Zhang, ; Xiaoheng Liu,
| | - Xiaoheng Liu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Demao Zhang, ; Xiaoheng Liu,
| |
Collapse
|
21
|
Jang Y, Park S, Lee H, Kim YH, Lee JP, Park SK, Jung IM, Ha J, Lim CS, Kim YS, Kwon H, Kim YC. Prognostic Value of Pre- and Post-Serum Alkaline Phosphatase Among Renal Transplant Recipients. Transplant Proc 2022; 54:678-684. [DOI: 10.1016/j.transproceed.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/01/2022] [Indexed: 12/01/2022]
|
22
|
Vascular Calcification: Key Roles of Phosphate and Pyrophosphate. Int J Mol Sci 2021; 22:ijms222413536. [PMID: 34948333 PMCID: PMC8708352 DOI: 10.3390/ijms222413536] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular complications due to accelerated arterial stiffening and atherosclerosis are the leading cause of morbimortality in Western society. Both pathologies are frequently associated with vascular calcification. Pathologic calcification of cardiovascular structures, or vascular calcification, is associated with several diseases (for example, genetic diseases, diabetes, and chronic kidney disease) and is a common consequence of aging. Calcium phosphate deposition, mainly in the form of hydroxyapatite, is the hallmark of vascular calcification and can occur in the medial layer of arteries (medial calcification), in the atheroma plaque (intimal calcification), and cardiac valves (heart valve calcification). Although various mechanisms have been proposed for the pathogenesis of vascular calcification, our understanding of the pathogenesis of calcification is far from complete. However, in recent years, some risk factors have been identified, including high serum phosphorus concentration (hyperphosphatemia) and defective synthesis of pyrophosphate (pyrophosphate deficiency). The balance between phosphate and pyrophosphate, strictly controlled by several genes, plays a key role in vascular calcification. This review summarizes the current knowledge concerning phosphate and pyrophosphate homeostasis, focusing on the role of extracellular pyrophosphate metabolism in aortic smooth muscle cells and macrophages.
Collapse
|
23
|
Protective effects of spironolactone on vascular calcification in chronic kidney disease. Biochem Biophys Res Commun 2021; 582:28-34. [PMID: 34678593 DOI: 10.1016/j.bbrc.2021.10.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/09/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Vascular calcification is common in chronic kidney disease (CKD) and associated with increased cardiovascular mortality. Aldosterone has been implicated as an augmenting factor in the progression of vascular calcification. The present study further explored putative beneficial effects of aldosterone inhibition by the mineralocorticoid receptor antagonist spironolactone on vascular calcification in CKD. METHODS Serum calcification propensity was determined in serum samples from the MiREnDa trial, a prospective, randomized controlled clinical trial to investigate efficacy and safety of spironolactone in maintenance hemodialysis patients. Experiments were conducted in mice with subtotal nephrectomy and cholecalciferol treatment, and in calcifying primary human aortic smooth muscle cells (HAoSMCs). RESULTS Serum calcification propensity was improved by spironolactone treatment in patients on hemodialysis from the MiREnDa trial. In mouse models and HAoSMCs, spironolactone treatment ameliorated vascular calcification and expression of osteogenic markers. CONCLUSIONS These observations support a putative benefit of spironolactone treatment in CKD-associated vascular calcification. Further research is required to investigate possible improvements in cardiovascular outcomes by spironolactone and whether the benefits outweigh the risks in patients with CKD.
Collapse
|
24
|
Randall's plaque and calcium oxalate stone formation: role for immunity and inflammation. Nat Rev Nephrol 2021; 17:417-433. [PMID: 33514941 DOI: 10.1038/s41581-020-00392-1] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 01/30/2023]
Abstract
Idiopathic calcium oxalate (CaOx) stones often develop attached to Randall's plaque present on kidney papillary surfaces. Similar to the plaques formed during vascular calcification, Randall's plaques consist of calcium phosphate crystals mixed with an organic matrix that is rich in proteins, such as inter-α-trypsin inhibitor, as well as lipids, and includes membrane-bound vesicles or exosomes, collagen fibres and other components of the extracellular matrix. Kidney tissue surrounding Randall's plaques is associated with the presence of classically activated, pro-inflammatory macrophages (also termed M1) and downregulation of alternatively activated, anti-inflammatory macrophages (also termed M2). In animal models, crystal deposition in the kidneys has been associated with the production of reactive oxygen species, inflammasome activation and increased expression of molecules implicated in the inflammatory cascade, including osteopontin, matrix Gla protein and fetuin A (also known as α2-HS-glycoprotein). Many of these molecules, including osteopontin and matrix Gla protein, are well known inhibitors of vascular calcification. We propose that conditions of urine supersaturation promote kidney damage by inducing the production of reactive oxygen species and oxidative stress, and that the ensuing inflammatory immune response promotes Randall's plaque initiation and calcium stone formation.
Collapse
|
25
|
Alesutan I, Luong TTD, Schelski N, Masyout J, Hille S, Schneider MP, Graham D, Zickler D, Verheyen N, Estepa M, Pasch A, Maerz W, Tomaschitz A, Pilz S, Frey N, Lang F, Delles C, Müller OJ, Pieske B, Eckardt KU, Scherberich J, Voelkl J. Circulating uromodulin inhibits vascular calcification by interfering with pro-inflammatory cytokine signalling. Cardiovasc Res 2021; 117:930-941. [PMID: 32243494 DOI: 10.1093/cvr/cvaa081] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/15/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
AIMS Uromodulin is produced exclusively in the kidney and secreted into both urine and blood. Serum levels of uromodulin are correlated with kidney function and reduced in chronic kidney disease (CKD) patients, but physiological functions of serum uromodulin are still elusive. This study investigated the role of uromodulin in medial vascular calcification, a key factor associated with cardiovascular events and mortality in CKD patients. METHODS AND RESULTS Experiments were performed in primary human (HAoSMCs) and mouse (MOVAS) aortic smooth muscle cells, cholecalciferol overload and subtotal nephrectomy mouse models and serum from CKD patients. In three independent cohorts of CKD patients, serum uromodulin concentrations were inversely correlated with serum calcification propensity. Uromodulin supplementation reduced phosphate-induced osteo-/chondrogenic transdifferentiation and calcification of HAoSMCs. In human serum, pro-inflammatory cytokines tumour necrosis factor α (TNFα) and interleukin-1β (IL-1β) co-immunoprecipitated with uromodulin. Uromodulin inhibited TNFα and IL-1β-induced osteo-/chondrogenic signalling and activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated β cells (NF-kB) as well as phosphate-induced NF-kB-dependent transcriptional activity in HAoSMCs. In vivo, adeno-associated virus (AAV)-mediated overexpression of uromodulin ameliorated vascular calcification in mice with cholecalciferol overload. Conversely, cholecalciferol overload-induced vascular calcification was aggravated in uromodulin-deficient mice. In contrast, uromodulin overexpression failed to reduce vascular calcification during renal failure in mice. Carbamylated uromodulin was detected in serum of CKD patients and uromodulin carbamylation inhibited its anti-calcific properties in vitro. CONCLUSIONS Uromodulin counteracts vascular osteo-/chondrogenic transdifferentiation and calcification, at least in part, through interference with cytokine-dependent pro-calcific signalling. In CKD, reduction and carbamylation of uromodulin may contribute to vascular pathology.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Aorta/immunology
- Aorta/metabolism
- Cell Transdifferentiation/drug effects
- Cells, Cultured
- Chondrogenesis
- Cytokines/genetics
- Cytokines/metabolism
- Disease Models, Animal
- Female
- Humans
- Inflammation Mediators/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Knockout
- Middle Aged
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/immunology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/immunology
- Myocytes, Smooth Muscle/metabolism
- Osteogenesis
- Phenotype
- Protein Carbamylation
- Renal Insufficiency, Chronic/blood
- Renal Insufficiency, Chronic/immunology
- Signal Transduction
- Uromodulin/blood
- Uromodulin/genetics
- Uromodulin/pharmacology
- Vascular Calcification/blood
- Vascular Calcification/immunology
- Vascular Calcification/prevention & control
- Young Adult
- Mice
Collapse
Affiliation(s)
- Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
- Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch 2, 10178 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Hessische Strasse 3-4, 10115 Berlin, Germany
| | - Trang T D Luong
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
- Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nadeshda Schelski
- Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Jaber Masyout
- Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Susanne Hille
- Department of Internal Medicine III, University of Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistr. 52, 20246 Hamburg, Germany
| | - Markus P Schneider
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Ulmenweg 18, 91054 Erlangen, Germany
- German Chronic Kidney Disease (GCKD) Study
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Daniel Zickler
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nicolas Verheyen
- Department of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Misael Estepa
- Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Andreas Pasch
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
- Calciscon AG, Aarbergstrasse 5, 2560 Nidau-Biel, Switzerland
- Nierenpraxis Bern, Bubenbergplatz 5, 3011 Bern, Switzerland
- Department of Nephrology, Lindenhofspital, Bremgartenstrasse 117, 3001 Bern, Switzerland
| | - Winfried Maerz
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
- Medical Clinic V (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Ludolf Krehl Street 7-11, 68167 Mannheim, Germany
- Synlab Academy, SYNLAB Holding Deutschland GmbH, P5,7, 68161 Mannheim, Germany
| | | | - Stefan Pilz
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Norbert Frey
- Department of Internal Medicine III, University of Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistr. 52, 20246 Hamburg, Germany
| | - Florian Lang
- Department of Physiology, Eberhard-Karls University, Wilhelmstr. 56, 72076 Tübingen, Germany
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistr. 52, 20246 Hamburg, Germany
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch 2, 10178 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Hessische Strasse 3-4, 10115 Berlin, Germany
- Department of Internal Medicine and Cardiology, German Heart Center Berlin (DHZB), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Ulmenweg 18, 91054 Erlangen, Germany
- German Chronic Kidney Disease (GCKD) Study
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Juergen Scherberich
- Department of Nephrology and Clinical Immunology, Klinikum München-Harlaching, Teaching Hospital of the Ludwig-Maximilians-Universität, Sanatoriumsplatz 2, 81545 München, Germany
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
- Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Hessische Strasse 3-4, 10115 Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
26
|
Vidavsky N, Kunitake JAMR, Estroff LA. Multiple Pathways for Pathological Calcification in the Human Body. Adv Healthc Mater 2021; 10:e2001271. [PMID: 33274854 PMCID: PMC8724004 DOI: 10.1002/adhm.202001271] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/16/2020] [Indexed: 12/12/2022]
Abstract
Biomineralization of skeletal components (e.g., bone and teeth) is generally accepted to occur under strict cellular regulation, leading to mineral-organic composites with hierarchical structures and properties optimized for their designated function. Such cellular regulation includes promoting mineralization at desired sites as well as inhibiting mineralization in soft tissues and other undesirable locations. In contrast, pathological mineralization, with potentially harmful health effects, can occur as a result of tissue or metabolic abnormalities, disease, or implantation of certain biomaterials. This progress report defines mineralization pathway components and identifies the commonalities (and differences) between physiological (e.g., bone remodeling) and pathological calcification formation pathways, based, in part, upon the extent of cellular control within the system. These concepts are discussed in representative examples of calcium phosphate-based pathological mineralization in cancer (breast, thyroid, ovarian, and meningioma) and in cardiovascular disease. In-depth mechanistic understanding of pathological mineralization requires utilizing state-of-the-art materials science imaging and characterization techniques, focusing not only on the final deposits, but also on the earlier stages of crystal nucleation, growth, and aggregation. Such mechanistic understanding will further enable the use of pathological calcifications in diagnosis and prognosis, as well as possibly provide insights into preventative treatments for detrimental mineralization in disease.
Collapse
Affiliation(s)
- Netta Vidavsky
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Jennie A M R Kunitake
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, 14853, USA
| |
Collapse
|
27
|
Pongbangli N, Pitipakorn K, Jai-aue S, Sirijanchune P, Pongpittayut S, Wongcharoen W. A 13-Year-Old Boy from Thailand with Hutchinson-Gilford Progeria Syndrome with Coronary Artery and Aortic Calcification and Non-ST-Segment Elevation Myocardial Infarction (NSTEMI). AMERICAN JOURNAL OF CASE REPORTS 2021; 22:e928969. [PMID: 33414362 PMCID: PMC7805248 DOI: 10.12659/ajcr.928969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/17/2020] [Accepted: 11/03/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Hutchinson-Gilford progeria syndrome (HGPS), also known as progeria, is due to a mutation in the LMNA gene, resulting in a life expectancy of no more than 13 years, and a high mortality rate due to cardiovascular disease. We report the case of a 13-year-old boy from Thailand with Hutchinson-Gilford progeria syndrome with coronary artery and aortic calcification and non-ST-segment elevation myocardial infarction (NSTEMI). CASE REPORT A 13-year-old Thai boy was diagnosed with progeria. His physical appearance included short stature and thin limbs with prominent joint stiffness. He had craniofacial disproportion, with the absence of earlobes and with micrognathia. His skin had a generalized scleroderma-like lesion and hair loss with prominent scalp veins. His mental and cognitive functions were normal. Unfortunately, the mutation status in the LMNA gene was not available for testing in Thailand. He was diagnosed as having NSTEMI based on clinical chest pain, 12-lead ECG, and elevated cardiac troponin level. The coronary calcium score reflected severe calcification of the aortic valve and coronary artery disease along the left main and left anterior descending arteries. The patient received treatment with medication and aggressive risk factor control. After 3 months of follow-up, the patient reported no recurrence of symptoms. CONCLUSIONS This case of Hutchinson-Gilford progeria syndrome is rare in that most patients do not live beyond 13 years of age. This patient presented with typical accelerated degenerative changes of the cardiovascular system, including NSTEMI.
Collapse
Affiliation(s)
- Natnicha Pongbangli
- Division of Cardiology, Department of Internal Medicine, Chiang-Rai Prachanukroh Hospital, Chiang-Rai, Thailand
| | - Kannika Pitipakorn
- Division of Cardiology, Department of Pediatric, Chiang-Rai Prachanukroh Hospital, Chiang-Rai, Thailand
| | - Sasivimon Jai-aue
- Division of Cardiology, Department of Internal Medicine, Chiang-Rai Prachanukroh Hospital, Chiang-Rai, Thailand
| | - Piyaporn Sirijanchune
- Division of Pulmonology, Department of Internal Medicine, Chiang-Rai Prachanukroh Hospital, Chiang-Rai, Thailand
| | - Sorawit Pongpittayut
- Division of Cardiology, Department of Pediatric, Chiang-Rai Prachanukroh Hospital, Chiang-Rai, Thailand
| | - Wanwarang Wongcharoen
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
28
|
Villa-Bellosta R. Dietary magnesium supplementation improves lifespan in a mouse model of progeria. EMBO Mol Med 2020; 12:e12423. [PMID: 32875720 PMCID: PMC7539193 DOI: 10.15252/emmm.202012423] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 01/11/2023] Open
Abstract
Aging is associated with redox imbalance according to the redox theory of aging. Consistently, a mouse model of premature aging (LmnaG609G/+) showed an increased level of mitochondrial reactive oxygen species (ROS) and a reduced basal antioxidant capacity, including loss of the NADPH‐coupled glutathione redox system. LmnaG609G/+ mice also exhibited reduced mitochondrial ATP synthesis secondary to ROS‐induced mitochondrial dysfunction. Treatment of LmnaG609G/+ vascular smooth muscle cells with magnesium‐enriched medium improved the intracellular ATP level, enhanced the antioxidant capacity, and thereby reduced mitochondrial ROS production. Moreover, treatment of LmnaG609G/+ mice with dietary magnesium improved the proton pumps (complexes I, III, and IV), stimulated extramitochondrial NADH oxidation and enhanced the coupled mitochondrial membrane potential, and thereby increased H+‐coupled mitochondrial NADPH and ATP synthesis, which is necessary for cellular energy supply and survival. Consistently, magnesium treatment reduced calcification of vascular smooth muscle cells in vitro and in vivo, and improved the longevity of mice. This antioxidant property of magnesium may be beneficial in children with HGPS.
Collapse
Affiliation(s)
- Ricardo Villa-Bellosta
- Fundación Instituto de Investigación Sanitaria, Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
29
|
Thrivikraman G, Johnson SL, Syedain ZH, Hill RC, Hansen KC, Lee HS, Tranquillo RT. Biologically-engineered mechanical model of a calcified artery. Acta Biomater 2020; 110:164-174. [PMID: 32305446 DOI: 10.1016/j.actbio.2020.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/27/2020] [Accepted: 04/08/2020] [Indexed: 12/22/2022]
Abstract
Vascular calcification is a commonly occurring pathological process and is recognized as an independent prognostic marker for cardiovascular morbidity and mortality. Recent progress in developing novel therapies to modify vascular calcification is critically hampered due to the lack of reliable in vitro experimental models that recapitulate the structural and mechanical attributes of calcified arteries. In this study, we show the ability to model the behavior of diffuse vascular calcification in vitro using biologically-engineered grafts approximating the composition, structure, and mechanical properties of arteries. Transmural calcification was achieved by exposing the acellular grafts of collagenous ECM to complete medium containing elevated Calcium (Ca) and Phosphate (P) concentrations. It was found that increasing the serum concentration from 2% to 10% increased the extent and degree of calcification based on histochemical, ultrastructural, chemical and thermal analyses. The presence of variably-sized spherical calcific deposits within the matrix further confirmed its morphological similarity to pathologic calcification. Mechanical testing demonstrated up to a 16-fold decrease in compliance due to the calcification, consistent with prior reports for calcified arteries. The model developed thus has potential to improve the design and development of interventional devices and therapies for the diagnosis and treatment of arterial calcification. STATEMENT OF SIGNIFICANCE: The presence of extensive vascular calcification makes angiographic/interventional procedures difficult due to reduced arterial compliance. Current attempts to develop safe and effective non-surgical adjunctive techniques to treat calcified arteries are largely limited by the lack of a physiologically relevant testing platform that mimics the structural and mechanical features of vascular calcification. Herein, we developed an off-the-shelf calcified artery model, with the goal to accelerate the pre-clinical development of novel therapies for the management of arterial calcification. To the extent of our knowledge, this is the first report of an in vitro tissue-engineered model of diffuse arterial calcification.
Collapse
|
30
|
Alesutan I, Moritz F, Haider T, Shouxuan S, Gollmann-Tepeköylü C, Holfeld J, Pieske B, Lang F, Eckardt KU, Heinzmann SS, Voelkl J. Impact of β-glycerophosphate on the bioenergetic profile of vascular smooth muscle cells. J Mol Med (Berl) 2020; 98:985-997. [PMID: 32488546 PMCID: PMC7343738 DOI: 10.1007/s00109-020-01925-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
Abstract
Abstract In chronic kidney disease, hyperphosphatemia is a key pathological factor promoting medial vascular calcification, a common complication associated with cardiovascular events and mortality. This active pathophysiological process involves osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs) via complex intracellular mechanisms that are still incompletely understood. Little is known about the effects of phosphate on the bioenergetic profile of VSMCs during the onset of this process. Therefore, the present study explored the effects of the phosphate donor β-glycerophosphate on cellular bioenergetics of VSMCs. Mitochondrial and glycolytic functions were determined utilizing extracellular flux analysis in primary human aortic VSMCs following exposure to β-glycerophosphate. In VSMCs, β-glycerophosphate increased basal respiration, mitochondrial ATP production as well as proton leak and decreased spare respiratory capacity and coupling efficiency, but did not modify non-mitochondrial or maximal respiration. β-Glycerophosphate-treated VSMCs had higher ability to increase mitochondrial glutamine and long-chain fatty acid usage as oxidation substrates to meet their energy demand. β-Glycerophosphate did not modify glycolytic function or basal and glycolytic proton efflux rate. In contrast, β-glycerophosphate increased non-glycolytic acidification. β-Glycerophosphate-treated VSMCs had a more oxidative and less glycolytic phenotype, but a reduced ability to respond to stressed conditions via mitochondrial respiration. Moreover, compounds targeting components of mitochondrial respiration modulated β-glycerophosphate-induced oxidative stress, osteo-/chondrogenic signalling and mineralization of VSMCs. In conclusion, β-glycerophosphate modifies key parameters of mitochondrial function and cellular bioenergetics in VSMCs that may contribute to the onset of phenotypical transdifferentiation and calcification. These observations advance the understanding of the role of energy metabolism in VSMC physiology and pathophysiology of vascular calcification during hyperphosphatemia. Key messages β-Glycerophosphate modifies key parameters of mitochondrial respiration in VSMCs. β-Glycerophosphate induces changes in mitochondrial fuel choice in VSMCs. β-Glycerophosphate promotes a more oxidative and less glycolytic phenotype of VSMCs. β-Glycerophosphate triggers mitochondrial-dependent oxidative stress in VSMCs. Bioenergetics impact β-glycerophosphate-induced VSMC calcification.
Electronic supplementary material The online version of this article (10.1007/s00109-020-01925-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria. .,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany. .,Berlin Institute of Health (BIH), Berlin, Germany. .,Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.
| | - Franco Moritz
- Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tatjana Haider
- Institute for Physiology and Pathophysiology, Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria
| | - Sun Shouxuan
- Institute for Physiology and Pathophysiology, Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria
| | - Can Gollmann-Tepeköylü
- University Clinic of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Holfeld
- University Clinic of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Burkert Pieske
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,Department of Internal Medicine and Cardiology, German Heart Center Berlin (DHZB), Berlin, Germany
| | - Florian Lang
- Department of Physiology I, Eberhard-Karls University, Tubingen, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Silke Sophie Heinzmann
- Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
31
|
An overview of the mechanisms in vascular calcification during chronic kidney disease. Curr Opin Nephrol Hypertens 2020; 28:289-296. [PMID: 30985336 DOI: 10.1097/mnh.0000000000000507] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Chronic kidney disease (CKD) facilitates a unique environment to strongly accelerate vascular calcification - the pathological deposition of calcium-phosphate in the vasculature. These calcifications are associated with the excessive cardiovascular mortality of CKD patients. RECENT FINDINGS Vascular calcification is a multifaceted active process, mediated, at least partly, by vascular smooth muscle cells. These cells are able to transdifferentiate into cells with osteo/chondrogenic properties, which exert multiple effects to facilitate vascular tissue mineralization. As the understanding of the underlying pathophysiology increases, first therapeutic concepts begin to emerge. SUMMARY This brief review provides an overview on the so far known mechanisms involved in the initiation and progression of vascular calcification in CKD.
Collapse
|
32
|
Yan JF, Qin WP, Xiao BC, Wan QQ, Tay FR, Niu LN, Jiao K. Pathological calcification in osteoarthritis: an outcome or a disease initiator? Biol Rev Camb Philos Soc 2020; 95:960-985. [PMID: 32207559 DOI: 10.1111/brv.12595] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022]
Abstract
In the progression of osteoarthritis, pathological calcification in the affected joint is an important feature. The role of these crystallites in the pathogenesis and progression of osteoarthritis is controversial; it remains unclear whether they act as a disease initiator or are present as a result of joint damage. Recent studies reported that the molecular mechanisms regulating physiological calcification of skeletal tissues are similar to those regulating pathological or ectopic calcification of soft tissues. Pathological calcification takes place when the equilibrium is disrupted. Calcium phosphate crystallites are identified in most affected joints and the presence of these crystallites is closely correlated with the extent of joint destruction. These observations suggest that pathological calcification is most likely to be a disease initiator instead of an outcome of osteoarthritis progression. Inhibiting pathological crystallite deposition within joint tissues therefore represents a potential therapeutic target in the management of osteoarthritis.
Collapse
Affiliation(s)
- Jian-Fei Yan
- Department of Oral Mucosal Diseases, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, 145 changle xi road, Xi'an, Shaanxi, 710032, China
| | - Wen-Pin Qin
- Department of Oral Mucosal Diseases, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, 145 changle xi road, Xi'an, Shaanxi, 710032, China
| | - Bo-Cheng Xiao
- Department of Oral Mucosal Diseases, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, 145 changle xi road, Xi'an, Shaanxi, 710032, China
| | - Qian-Qian Wan
- Department of Oral Mucosal Diseases, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, 145 changle xi road, Xi'an, Shaanxi, 710032, China
| | - Franklin R Tay
- Department of Oral Mucosal Diseases, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, 145 changle xi road, Xi'an, Shaanxi, 710032, China.,Department of Endodontics, College of Graduate Studies, Augusta University, 1430, John Wesley Gilbert Drive, Augusta, GA, 30912, U.S.A
| | - Li-Na Niu
- Department of Oral Mucosal Diseases, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, 145 changle xi road, Xi'an, Shaanxi, 710032, China
| | - Kai Jiao
- Department of Oral Mucosal Diseases, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, 145 changle xi road, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
33
|
Villa-Bellosta R. New insights into endogenous mechanisms of protection against arterial calcification. Atherosclerosis 2020; 306:68-74. [PMID: 32209233 DOI: 10.1016/j.atherosclerosis.2020.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/24/2020] [Accepted: 03/11/2020] [Indexed: 12/31/2022]
Abstract
Cardiovascular complications due to accelerated atherosclerosis and arterial stiffening are the leading cause of morbidity and mortality in the Western society. Both pathologies are frequently associated with vascular calcification. Deposits of calcium phosphate salts, mainly in form of hydroxyapatite, is the hallmark of vascular calcification. Calcification is frequently observed in atherosclerotic lesions (intimal calcification) associated with vascular smooth muscle cells (VSMCs) and macrophages. By contrast, medial calcification, occurring in the elastic region of the arteries, is almost exclusively associated with VSMCs, and is common in arteriosclerosis related to aging, diabetes, and chronic kidney disease. In extracellular fluids, a range of endogenous low- and high-molecular weight calcification inhibitors are present, including osteopontin, matrix-Gla proteins and Fetuin A. Moreover, pyrophosphate deficiency plays a key role in vascular calcification. Pyrophosphate is produced by extracellular hydrolysis of ATP and is degraded to phosphate by tissue non-specific alkaline phosphatase. Loss of function in the enzymes and transporters involved in the extracellular pyrophosphate metabolism leads to excessive deposition of calcium-phosphate salts. This review summarizes the current knowledge about endogenous mechanisms of protection against calcification in the aortic wall, focusing on the role of extracellular pyrophosphate metabolism in vascular smooth muscle cells and macrophages.
Collapse
Affiliation(s)
- Ricardo Villa-Bellosta
- Fundación Instituto de Investigación Sanitaria, Fundación Jiménez Díaz (FIIS-FJD), Avenida Reyes Católicos 2, 28040, Madrid, Spain.
| |
Collapse
|
34
|
Babler A, Schmitz C, Buescher A, Herrmann M, Gremse F, Gorgels T, Floege J, Jahnen-Dechent W. Microvasculopathy and soft tissue calcification in mice are governed by fetuin-A, magnesium and pyrophosphate. PLoS One 2020; 15:e0228938. [PMID: 32074140 PMCID: PMC7029863 DOI: 10.1371/journal.pone.0228938] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/27/2020] [Indexed: 12/18/2022] Open
Abstract
Calcifications can disrupt organ function in the cardiovascular system and the kidney, and are particularly common in patients with chronic kidney disease (CKD). Fetuin-A deficient mice maintained against the genetic background DBA/2 exhibit particularly severe soft tissue calcifications, while fetuin-A deficient C57BL/6 mice remain healthy. We employed molecular genetic analysis to identify risk factors of calcification in fetuin-A deficient mice. We sought to identify pharmaceutical therapeutic targets that could be influenced by dietary of parenteral supplementation. We studied the progeny of an intercross of fetuin-A deficient DBA/2 and C57BL/6 mice to identify candidate risk genes involved in calcification. We determined that a hypomorphic mutation of the Abcc6 gene, a liver ATP transporter supplying systemic pyrophosphate, and failure to regulate the Trpm6 magnesium transporter in kidney were associated with severity of calcification. Calcification prone fetuin-A deficient mice were alternatively treated with parenteral administration of fetuin-A dietary magnesium supplementation, phosphate restriction, or by or parenteral pyrophosphate. All treatments markedly reduced soft tissue calcification, demonstrated by computed tomography, histology and tissue calcium measurement. We show that pathological ectopic calcification in fetuin-A deficient DBA/2 mice is caused by a compound deficiency of three major extracellular and systemic inhibitors of calcification, namely fetuin-A, magnesium, and pyrophosphate. All three of these are individually known to contribute to stabilize protein-mineral complexes and thus inhibit mineral precipitation from extracellular fluid. We show for the first time a compound triple deficiency that can be treated by simple dietary or parenteral supplementation. This is of special importance in patients with advanced CKD, who commonly exhibit reduced serum fetuin-A, magnesium and pyrophosphate levels.
Collapse
Affiliation(s)
- Anne Babler
- Helmholtz Institute for Biomedical Engineering, Biointerface Lab, RWTH Aachen University Hospital, Aachen, Germany
| | - Carlo Schmitz
- Helmholtz Institute for Biomedical Engineering, Biointerface Lab, RWTH Aachen University Hospital, Aachen, Germany
| | - Andrea Buescher
- Helmholtz Institute for Biomedical Engineering, Biointerface Lab, RWTH Aachen University Hospital, Aachen, Germany
| | - Marietta Herrmann
- Helmholtz Institute for Biomedical Engineering, Biointerface Lab, RWTH Aachen University Hospital, Aachen, Germany
- IZKF Research Group Tissue Regeneration in Musculoskeletal Regeneration, Orthopedic Center for Musculoskeletal Research, University of Würzburg, Würzburg, Germany
| | - Felix Gremse
- Helmholtz Institute for Biomedical Engineering, Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Theo Gorgels
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Juergen Floege
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Willi Jahnen-Dechent
- Helmholtz Institute for Biomedical Engineering, Biointerface Lab, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
35
|
Hamczyk MR, Villa-Bellosta R. Pyrophosphate metabolism and calcification. Aging (Albany NY) 2020; 10:3652-3653. [PMID: 30530922 PMCID: PMC6326657 DOI: 10.18632/aging.101703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/04/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Magda R Hamczyk
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
| | | |
Collapse
|
36
|
Villa-Bellosta R. New treatments for progeria. Aging (Albany NY) 2019; 11:11801-11802. [PMID: 31866585 PMCID: PMC6949067 DOI: 10.18632/aging.102626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/09/2019] [Indexed: 11/25/2022]
Affiliation(s)
- Ricardo Villa-Bellosta
- Fundación Instituto de Investigación Sanitaria, Fundación Jiménez Díaz (FIIS-FJD), Universidad Autónoma de Madrid, 28040 Madrid, Spain
| |
Collapse
|
37
|
Pseudoxanthoma Elasticum, Kidney Stones and Pyrophosphate: From a Rare Disease to Urolithiasis and Vascular Calcifications. Int J Mol Sci 2019; 20:ijms20246353. [PMID: 31861118 PMCID: PMC6940945 DOI: 10.3390/ijms20246353] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022] Open
Abstract
Pseudoxanthoma elasticum is a rare disease mainly due to ABCC6 gene mutations and characterized by ectopic biomineralization and fragmentation of elastic fibers resulting in skin, cardiovascular and retinal calcifications. It has been recently described that pyrophosphate (a calcification inhibitor) deficiency could be the main cause of ectopic calcifications in this disease and in other genetic disorders associated to mutations of ENPP1 or CD73. Patients affected by Pseudoxanthoma Elasticum seem also prone to develop kidney stones originating from papillary calcifications named Randall’s plaque, and to a lesser extent may be affected by nephrocalcinosis. In this narrative review, we summarize some recent discoveries relative to the pathophysiology of this mendelian disease responsible for both cardiovascular and renal papillary calcifications, and we discuss the potential implications of pyrophosphate deficiency as a promoter of vascular calcifications in kidney stone formers and in patients affected by chronic kidney disease.
Collapse
|
38
|
ATP-based therapy prevents vascular calcification and extends longevity in a mouse model of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A 2019; 116:23698-23704. [PMID: 31690656 DOI: 10.1073/pnas.1910972116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pyrophosphate deficiency may explain the excessive vascular calcification found in children with Hutchinson-Gilford progeria syndrome (HGPS) and in a mouse model of this disease. The present study found that hydrolysis products of ATP resulted in a <9% yield of pyrophosphate in wild-type blood and aortas, showing that eNTPD activity (ATP → phosphate) was greater than eNPP activity (ATP → pyrophosphate). Moreover, pyrophosphate synthesis from ATP was reduced and pyrophosphate hydrolysis (via TNAP; pyrophosphate → phosphate) was increased in both aortas and blood obtained from mice with HGPS. The reduced production of pyrophosphate, together with the reduction in plasma ATP, resulted in marked reduction of plasma pyrophosphate. The combination of TNAP inhibitor levamisole and eNTPD inhibitor ARL67156 increased the synthesis and reduced the degradation of pyrophosphate in aortas and blood ex vivo, suggesting that these combined inhibitors could represent a therapeutic approach for this devastating progeroid syndrome. Treatment with ATP prevented vascular calcification in HGPS mice but did not extend longevity. By contrast, combined treatment with ATP, levamisole, and ARL67156 prevented vascular calcification and extended longevity by 12% in HGPS mice. These findings suggest a therapeutic approach for children with HGPS.
Collapse
|
39
|
Disthabanchong S, Srisuwarn P. Mechanisms of Vascular Calcification in Kidney Disease. Adv Chronic Kidney Dis 2019; 26:417-426. [PMID: 31831120 DOI: 10.1053/j.ackd.2019.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
The increase in prevalence and severity of vascular calcification in chronic kidney disease is a result of complex interactions between changes in the vascular bed, mineral metabolites, and other uremic factors. Vascular calcification can occur in the intima and the media of arterial wall. Under permissive conditions, vascular smooth muscle cells (VSMCs) can transform to osteoblast-like phenotype. The membrane-bound vesicles released from transformed VSMCs and the apoptotic bodies derived from dying VSMCs serve as nucleating structures for calcium crystal formation. Alterations in the quality and the quantity of endogenous calcification inhibitors also give rise to an environment that potentiates calcification.
Collapse
Affiliation(s)
- Sinee Disthabanchong
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| | - Praopilad Srisuwarn
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
40
|
|
41
|
Serum Alkaline Phosphatase as a Predictor of Cardiac and Cerebrovascular Complications after Lumbar Spinal Fusion Surgery in Elderly: A Retrospective Study. J Clin Med 2019; 8:jcm8081111. [PMID: 31357535 PMCID: PMC6723677 DOI: 10.3390/jcm8081111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 12/20/2022] Open
Abstract
We retrospectively enrolled 1395 patients aged > 65 years undergoing posterior lumbar spinal fusion surgery and classified them into tertiles based on serum Alkaline Phosphatase (ALP) levels (<63, 63–79, >79 IU/L). The primary outcome was the incidence of 30-day major adverse cardiac and cerebrovascular events (MACCE; composite endpoint defined as the occurrence of ≥1 of the following events: new-onset myocardial infarction, stroke, or cardiovascular mortality). The incidence of the composite endpoint was the highest in the third serum ALP tertile (0.4% vs. 0.2% vs. 2.2% in the first, second, and third tertile, respectively, p = 0.003). Multivariate analysis showed that the third serum ALP tertile was an independent predictor of the composite endpoint of MACCE (odds ratio 4.507, 95% confidence interval 1.378–14.739, p = 0.013). The optimal cut-off value of preoperative serum ALP showing the best discriminatory capacity to predict postoperative MACCE (measured by receiver-operating characteristic curve analysis) was 83 IU/L (area under curve 0.694, 95% confidence interval 0.574–0.813, p = 0.016). Preoperative serum ALP levels were independently associated with the composite endpoint of postoperative 30-days MACCE. We suggest that serum ALP can be used as a biomarker to predict cardiac and cerebrovascular complications following lumbar spinal fusion surgery in elderly patients.
Collapse
|
42
|
Azpiazu D, Gonzalo S, Villa-Bellosta R. Tissue Non-Specific Alkaline Phosphatase and Vascular Calcification: A Potential Therapeutic Target. Curr Cardiol Rev 2019; 15:91-95. [PMID: 30381085 PMCID: PMC6520574 DOI: 10.2174/1573403x14666181031141226] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 12/17/2022] Open
Abstract
Vascular calcification is a pathologic phenomenon consisting of calcium phosphate crystal deposition in the vascular walls. Vascular calcification has been found to be a risk factor for cardiovascular diseases, due to its correlation with cardiovascular events and mortality, and it has been associated with aging, diabetes, and chronic kidney disease. Studies of vascular calcification have focused on phosphate homeostasis, primarily on the important role of hyperphosphatemia. Moreover, vascular calcification has been associated with loss of plasma pyrophosphate, one of the main inhibitors of calcification, thus indicating the importance of the phosphate/pyrophosphate ratio. Extracellular pyrophosphate can be synthesized from extracellular ATP by ecto-nucleotide pyrophosphatase/ phosphodiesterase, whereas pyrophosphate is hydrolyzed to phosphate by tissuenonspecific alkaline phosphatase, contributing to the formation of hydroxyapatite crystals. Over the last decade, vascular calcification has been the subject of numerous reviews and studies, which have revealed new agents and activities that may aid in explaining the complex physiology of this condition. This review summarizes current knowledge about alkaline phosphatase and its role in the process of vascular calcification as a key regulator of the phosphate/pyrophosphate ratio.
Collapse
Affiliation(s)
- Daniel Azpiazu
- Fundacion Instituto de Investigacion Sanitaria, Fundacion Jimenez Diaz, Avenida Reyes Catolicos 2, Madrid, Spain
| | - Sergio Gonzalo
- Fundacion Instituto de Investigacion Sanitaria, Fundacion Jimenez Diaz, Avenida Reyes Catolicos 2, Madrid, Spain
| | - Ricardo Villa-Bellosta
- Fundacion Instituto de Investigacion Sanitaria, Fundacion Jimenez Diaz, Avenida Reyes Catolicos 2, Madrid, Spain
| |
Collapse
|
43
|
Chellan B, Sutton NR, Hofmann Bowman MA. S100/RAGE-Mediated Inflammation and Modified Cholesterol Lipoproteins as Mediators of Osteoblastic Differentiation of Vascular Smooth Muscle Cells. Front Cardiovasc Med 2018; 5:163. [PMID: 30467547 PMCID: PMC6235906 DOI: 10.3389/fcvm.2018.00163] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/19/2018] [Indexed: 01/01/2023] Open
Abstract
Arterial calcification is a feature of atherosclerosis and shares many risk factors including diabetes, dyslipidemia, chronic kidney disease, hypertension, and age. Although there is overlap in risk factors, anti-atherosclerotic therapies, including statins, fail to reduce arterial, and aortic valve calcifications. This suggests that low density lipoprotein (LDL) may not be the main driver for aortic valve disease and arterial calcification. This review focuses on modified LDLs and their role in mediating foam cell formation in smooth muscle cells (SMCs), with special emphasis on enzyme modified non-oxidized LDL (ELDL). In vivo, ELDL represents one of the many forms of modified LDLs present in the atherosclerotic vessel. Phenotypic changes of macrophages and SMCs brought about by the uptake of modified LDLs overlap significantly in an atherosclerotic milieu, making it practically impossible to differentiate between the effects from oxidized LDL, ELDL, and other LDL modification. By studying in vitro-generated modifications of LDL, we were able to demonstrate marked differences in the transcriptome of human coronary artery SMCs (HCASMCs) upon uptake of ELDL, OxLDL, and native LDL, indicating that specific modifications of LDL in atherosclerotic plaques may determine the biology and functional consequences in vasculature. Enzyme-modified non-oxidized LDL (ELDL) induces calcification of SMCs and this is associated with reduced mRNA levels for genes protective for calcification (ENPP1, MGP) and upregulation of osteoblastic genes. A second focus of this review is on the synergy between hyperlipidemia and accelerated calcification In vivo in a mouse models with transgenic expression of human S100A12. We summarize mechanisms of S100A12/RAGE mediated vascular inflammation promoting vascular and valve calcification in vivo.
Collapse
Affiliation(s)
- Bijoy Chellan
- Department of Medicine, University of Illinois, Chicago, IL, United States
| | - Nadia R Sutton
- Department of Medicine, University of Michigan, Ann Arbor, MI, United States
| | | |
Collapse
|
44
|
Xie Y, Cheng W, Jin B, Liang C, Ding Y, Zhang W. Solvent directed selective and sensitive fluorescence detection of target ions using a coumarin–pyridine probe. Analyst 2018; 143:5583-5588. [DOI: 10.1039/c8an01736k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The solvatochromic properties of a coumarin–pyridine probe were utilized as a cheap and effective way for designing fluorescent probes for Mg2+ and PPi with high selectivity and nanomolar level sensitivity.
Collapse
Affiliation(s)
- Yiting Xie
- Jiangsu Key Laboratory of Pesticide Science
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing
| | - Wenjing Cheng
- Jiangsu Key Laboratory of Pesticide Science
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing
| | - Bing Jin
- Jiangsu Key Laboratory of Pesticide Science
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing
| | - Chaogen Liang
- Jiangsu Key Laboratory of Pesticide Science
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing
| | - Yubin Ding
- Jiangsu Key Laboratory of Pesticide Science
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing
| | - Weihua Zhang
- Jiangsu Key Laboratory of Pesticide Science
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing
| |
Collapse
|