1
|
Li Y, Wang J. Possible mechanism for the protective effect of active ingredients of astragalus membranaceus on diabetes nephropathy. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1276-1284. [PMID: 38856077 DOI: 10.1080/10286020.2024.2364350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Astragali Radix (AR), a common traditional Chinese medicinal herb, exhibits protective effects on diabetic nephropathy (DN) in extensive researches. Aticles focusing on AR in PubMed were collected and reviewed in order to summarize the latest pharmacological effects on DN. The action mechanisms for protectiving effects of AR were associated with regulation of anti-fibrosis, anti-inflammation, anti-oxidative stress, anti-podocyte apoptosis, restoration of mitochondrial function, restoration of endothelial function in diabetes nephropathy experimental models. Consequently, AR hold promise as potential novel therapeutics for the treatment of DN.
Collapse
Affiliation(s)
- Yu Li
- Department of Nephropathy, Luohu Hospital of Traditional Chinese Medicine, Shenzhen518001, China
| | - Jing Wang
- Department of Nephropathy, Luohu Hospital of Traditional Chinese Medicine, Shenzhen518001, China
| |
Collapse
|
2
|
Yang R, Duan C, Zhang S, Guo Y, Shan X, Chen M, Yue S, Zhang Y, Liu Y. High Prolactin Concentration Induces Ovarian Granulosa Cell Oxidative Stress, Leading to Apoptosis Mediated by L-PRLR and S-PRLR. Int J Mol Sci 2023; 24:14407. [PMID: 37833858 PMCID: PMC10573079 DOI: 10.3390/ijms241914407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
High prolactin (PRL) concentration has been shown to induce the apoptosis of ovine ovarian granulosa cells (GCs), but the underlying mechanisms are unclear. This study aimed to investigate the mechanism of apoptosis induced by high PRL concentration in GCs. Trial 1: The optimal concentration of glutathion was determined according to the detected cell proliferation. The results showed that the optimal glutathione concentration was 5 μmol/mL. Trial 2: 500 ng/mL PRL was chosen as the high PRL concentration. The GCs were treated with 0 ng/mL PRL (C group), 500 ng/mL PRL (P group) or 500 ng/mL PRL, and 5 μmol/mL glutathione (P-GSH group). The results indicated that the mitochondrial respiratory chain complex (MRCC) I-V, ATP production, total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and thioredoxin peroxidase (TPx) in the C group were higher than those in the P group (p < 0.05), while they were lower than those in the P-GSH group (p < 0.05). Compared to the C group, the P group exhibited elevated levels of reactive oxygen species (ROS) and apoptosis (p < 0.05) and increased expression of ATG7 and ATG5 (p < 0.05). However, MRCC I-V, ATP, SOD, A-TOC, TPx, ROS, and apoptosis were decreased after the addition of glutathione (p < 0.05). The knockdown of either L-PRLR or S-PRLR in P group GCs resulted in a significant reduction (p < 0.05) in MRCC I-V, ATP, T-AOC, SOD and TPx, while the overexpression of either receptor showed an opposite trend (p < 0.05). Our findings suggest that high PRL concentrations induce apoptotic cell death in ovine ovarian GCs by downregulating L-PRLR and S-PRLR, activating oxidative stress and autophagic pathways.
Collapse
Affiliation(s)
- Ruochen Yang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (R.Y.); (C.D.); (X.S.); (M.C.); (S.Y.)
| | - Chunhui Duan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (R.Y.); (C.D.); (X.S.); (M.C.); (S.Y.)
| | - Shuo Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing 100089, China;
| | - Yunxia Guo
- College of Life Sciences, Hebei Agricultural University, Baoding 071000, China;
| | - Xinyu Shan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (R.Y.); (C.D.); (X.S.); (M.C.); (S.Y.)
| | - Meijing Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (R.Y.); (C.D.); (X.S.); (M.C.); (S.Y.)
| | - Sicong Yue
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (R.Y.); (C.D.); (X.S.); (M.C.); (S.Y.)
| | - Yingjie Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (R.Y.); (C.D.); (X.S.); (M.C.); (S.Y.)
| | - Yueqin Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (R.Y.); (C.D.); (X.S.); (M.C.); (S.Y.)
| |
Collapse
|
3
|
Lv T, Lu Y, Liu Y, Feng H, Li C, Sheng W, Cui Z, Zhu S, Gu X, Yang Z, Wan Q. General Control of Amino Acid Synthesis 5-Like 1-Mediated Acetylation of Manganese Superoxide Dismutase Regulates Oxidative Stress in Diabetic Kidney Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6691226. [PMID: 33680286 PMCID: PMC7906818 DOI: 10.1155/2021/6691226] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/18/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023]
Abstract
Diabetic kidney disease (DKD) is the major cause of end-stage renal disease (ESRD). In the past few decades, there has been a large amount of evidence to highlight the pivotal role of oxidative stress in the development and progression of DKD. However, the detailed molecular mechanisms are not fully elucidated. A new sight has been established that the mitochondrial acetyltransferase GCN5L1 participates in cellular redox homeostasis maintenance in DKD. Firstly, we found that the expression of GCN5L1 is significantly elevated both in human and mouse kidney tissues with DKD and in hyperglycemic renal tubular epithelial cells (TECs), while deletion of GCN5L1 could effectively ameliorate oxidative stress-induced renal injury in DKD. Furthermore, deletion of GCN5L1 could reduce MnSOD acetylation on lysine 68 and activate its activity, thereby scavenging excessive ROS and relieving oxidative stress-induced renal inflammation and fibrosis. In general, GCN5L1-mediated acetylation of MnSOD exacerbated oxidative stress-induced renal injury, suggesting that GCN5L1 might be a potential intervention target in DKD.
Collapse
Affiliation(s)
- Tingting Lv
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yao Lu
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yi Liu
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Hong Feng
- Cancer Centre, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chensheng Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wei Sheng
- Cancer Centre, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhengguo Cui
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Suwei Zhu
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xia Gu
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhe Yang
- Cancer Centre, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qiang Wan
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
4
|
Honda T, Hirakawa Y, Nangaku M. The role of oxidative stress and hypoxia in renal disease. Kidney Res Clin Pract 2019; 38:414-426. [PMID: 31558011 PMCID: PMC6913586 DOI: 10.23876/j.krcp.19.063] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
Oxygen is required to sustain aerobic organisms. Reactive oxygen species (ROS) are constantly released during mitochondrial oxygen consumption for energy production. Any imbalance between ROS production and its scavenger system induces oxidative stress. Oxidative stress, a critical contributor to tissue damage, is well-known to be associated with various diseases. The kidney is susceptible to hypoxia, and renal hypoxia is a common final pathway to end stage kidney disease, regardless of the underlying cause. Renal hypoxia aggravates oxidative stress, and elevated oxidative stress, in turn, exacerbates renal hypoxia. Oxidative stress is also enhanced in chronic kidney disease, especially diabetic kidney disease, through various mechanisms. Thus, the vicious cycle between oxidative stress and renal hypoxia critically contributes to the progression of renal injury. This review examines recent evidence connecting chronic hypoxia and oxidative stress in renal disease and subsequently describes several promising therapeutic approaches against oxidative stress.
Collapse
Affiliation(s)
- Tomoko Honda
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yosuke Hirakawa
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|