1
|
Bódi B, Vágó RR, Nagy L, Ráduly AP, Gulyás A, Kupecz K, Azar L, Márványkövi FM, Szűcs G, Siska A, Cserni G, Földesi I, Papp Z, Sárközy M. Differential Myocardial Responses in Male and Female Rats with Uremic Cardiomyopathy. Int J Mol Sci 2025; 26:2259. [PMID: 40076880 PMCID: PMC11900185 DOI: 10.3390/ijms26052259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Uremic cardiomyopathy, characterized by diastolic dysfunction, left ventricular hypertrophy (LVH), and fibrosis, is a common cardiovascular complication of chronic kidney disease (CKD). Men are at a higher risk for cardiovascular and renal diseases, compared to age-matched, pre-menopausal women. We aimed to investigate the influence of sex on the severity of uremic cardiomyopathy through the characterization of functional and molecular indices of myocardial remodeling in a rat model. CKD was induced by a 5/6 nephrectomy in 9-week-old male and female Wistar rats. Serum and urine tests, transthoracic echocardiography, left ventricular (LV) histology, and quantitative reverse transcription polymerase chain reaction (RT-qPCR) were performed at week 8 or 9. Moreover, LV alterations were also tested in permeabilized cardiomyocytes (CMs) by force measurements and Western immunoblotting. CKD resulted in the development of a more severe uremic cardiomyopathy in male rats-including LVH, LV diastolic dysfunction, and fibrosis-than in female rats, where only LVH was observed. A uremic cardiomyopathy was also associated with a decrease in maximal Ca2+-activated force (Fmax) in CMs of male rats. Additionally, increases in CM Ca2+-independent passive stiffness (Fpassive) and decreases in cardiac myosin-binding protein C (cMyBP-C) phosphorylation levels were significantly larger in male than female rats. In conclusion, a uremic cardiomyopathy involved cardiac remodeling in both sexes. Nevertheless, male rats exhibited more pronounced signs of macroscopic and microscopic alterations than their female counterparts, illustrating a sex-dependent component of uremic cardiomyopathy.
Collapse
MESH Headings
- Animals
- Female
- Male
- Cardiomyopathies/etiology
- Cardiomyopathies/metabolism
- Cardiomyopathies/physiopathology
- Cardiomyopathies/pathology
- Uremia/metabolism
- Uremia/pathology
- Uremia/complications
- Rats
- Rats, Wistar
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myocardium/metabolism
- Myocardium/pathology
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/etiology
- Renal Insufficiency, Chronic/physiopathology
- Fibrosis
- Disease Models, Animal
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/pathology
- Sex Factors
- Echocardiography
- Carrier Proteins/metabolism
- Carrier Proteins/genetics
Collapse
Affiliation(s)
- Beáta Bódi
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.B.); (R.R.V.); (L.N.); (A.P.R.); (Z.P.)
| | - Rebeka Rita Vágó
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.B.); (R.R.V.); (L.N.); (A.P.R.); (Z.P.)
| | - László Nagy
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.B.); (R.R.V.); (L.N.); (A.P.R.); (Z.P.)
- Department of Cardiology, Division of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Arnold Péter Ráduly
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.B.); (R.R.V.); (L.N.); (A.P.R.); (Z.P.)
- Department of Cardiology, Division of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - András Gulyás
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (A.G.); (K.K.); (L.A.)
| | - Klaudia Kupecz
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (A.G.); (K.K.); (L.A.)
| | - Lilian Azar
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (A.G.); (K.K.); (L.A.)
| | - Fanni Magdolna Márványkövi
- Department of Biochemistry, Interdisciplinary Center of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (F.M.M.); (G.S.)
| | - Gergő Szűcs
- Department of Biochemistry, Interdisciplinary Center of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (F.M.M.); (G.S.)
| | - Andrea Siska
- Department of Laboratory Medicine, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (A.S.); (I.F.)
| | - Gábor Cserni
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary;
| | - Imre Földesi
- Department of Laboratory Medicine, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (A.S.); (I.F.)
| | - Zoltán Papp
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.B.); (R.R.V.); (L.N.); (A.P.R.); (Z.P.)
| | - Márta Sárközy
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (A.G.); (K.K.); (L.A.)
- Department of Biochemistry, Interdisciplinary Center of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (F.M.M.); (G.S.)
| |
Collapse
|
2
|
Singh V, Adam RJ, Paterson MR, Kriegel AJ. Vacuole membrane protein 1 and acute response to renal ischemia and ischemia/reperfusion. Physiol Genomics 2025; 57:172-178. [PMID: 39928961 DOI: 10.1152/physiolgenomics.00135.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/23/2024] [Accepted: 01/10/2025] [Indexed: 02/12/2025] Open
Abstract
Ischemia-reperfusion (I/R) injury is an important initiating cause of chronic kidney disease and renal failure. Changes in proximal tubule (PT) morphology, including brush border loss, occur rapidly in response to ischemic stress and I/R injury. Vacuole membrane protein 1 (VMP1) is a compelling target for ischemia-associated renal damage because it is a necessary regulator of autophagy, and the genomic location of hypoxia-responsive microRNA miR-21 lies within an intronic region of the Vmp1 gene. Autophagy is reported to have protective and pathological effects on I/R injury. In this study, we find that VMP1 is rapidly upregulated in renal cortex tissue in response to 15 and 30 min of ischemia. Intravenous delivery of Vmp1-targeting GameR or a scrambled GapmeR was performed on adult male Sprague-Dawley rats for 2 days before either 30 min of renal ischemia, 30 min of ischemia followed by 24 h of reperfusion (I/R), or corresponding control procedures. Autophagy markers and PT morphology were assessed in the renal cortex. Suppression of ischemia-induced upregulation of VMP1 attenuated PT brush border loss following 30 min of ischemia and 24 h post-I/R. Our study reveals a novel and mechanistically important dissociation between VMP1 expression, miR-21-5p expression, autophagy markers, and I/R tubular injury in the renal cortex.NEW & NOTEWORTHY The impact of autophagy on renal ischemia/reperfusion injury (IRI) remains unclear. VMP1 promotes autophagy through interaction with beclin-1 and subsequent localization to the endoplasmic reticulum. In this study, GapmeR-mediated suppression of VMP1 in rats and attenuated proximal tubule damage following 30 min of ischemia or following 24 h of reperfusion, without altering autophagy markers following reperfusion. This new insight suggests that increased VMP1 did not afford autophagy-mediated protection from IRI in proximal tubules.
Collapse
Affiliation(s)
- Vaishali Singh
- Department of Pediatrics, Division of Nephrology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Ryan J Adam
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Mark R Paterson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Alison J Kriegel
- Department of Pediatrics, Division of Nephrology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
3
|
Ma X, Mei S, He Y, Wuyun Q, Zhou L, Cai Z, Luo Q, Wen Y, Yan J. Unraveling the association and regulatory role of miR-146b-5p in coronary artery disease. BMC Cardiovasc Disord 2025; 25:81. [PMID: 39910430 PMCID: PMC11796014 DOI: 10.1186/s12872-025-04530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/28/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Coronary artery disease (CAD), one of the most prevalent cardiovascular diseases, is a critical health issue that affects millions of individuals worldwide. It has been reported that miR-146b-5p exhibited a strong correlation with inflammatory responses and atherosclerosis. However, its association with the incidence and severity of CAD has not been substantiated in a large cohort. In the study, we focus on the expression of miR-146b-5p in peripheral blood mononuclear cells (PBMCs) of patients with CAD and preliminarily investigate its function and underlying mechanism. METHODS AND RESULTS The study encompassed a total of 452 participants, consisting 295 patients with CAD and 157 individuals without CAD. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to assess miR-146b-5p expression in PBMCs. We found that miR-146b-5p was significantly increased in PBMCs of patients with CAD compared with the control group. Binary logistic regression revealed that miR-146b-5p was associated with CAD. Receiver Operation Characteristic (ROC) analysis showed that the sensitivity and specificity of miR-146b-5p in discriminating CAD patients from non-CAD patients were meaningful. Subsequent subgroup analysis showed that miR-146b-5p was related to the severity of CAD. Furthermore, gain- and loss-of-function experiments in THP-1 cells showed that miR-146b-5p inhibited inflammation, cell proliferation, and migration. Mechanically, miR-146b-5p was involved in the classical NF-κB inflammatory pathway by directly targeting IKKβ. CONCLUSION Our study revealed that miR-146b-5p was higher in the PBMCs of CAD patients than non-CAD individuals, and established a correlation between miR-146b-5p and occurrence and severity of CAD. In addition, the inflammatory role of miR-146b-5p is mediated by targeting IKKβ.
Collapse
Affiliation(s)
- Xiaozhu Ma
- Department of Cardiology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Shuai Mei
- Department of Cardiology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yi He
- Department of Cardiology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Qidamugai Wuyun
- Department of Cardiology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Li Zhou
- Department of Cardiology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Ziyang Cai
- Department of Cardiology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Qiushi Luo
- Department of Cardiology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yi Wen
- Department of Cardiology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Jiangtao Yan
- Department of Cardiology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China.
| |
Collapse
|
4
|
Mirzaei S, Ahangari F, Faramarzi F, Khoshnazar SM, Khormizi FZ, Aghagolzadeh M, Rostami M, Asghariazar V, Alimohammadi M, Rahimzadeh P, Farahani N. MicroRNA-146 family: Molecular insights into their role in regulation of signaling pathways in glioma progression. Pathol Res Pract 2024; 264:155707. [PMID: 39536541 DOI: 10.1016/j.prp.2024.155707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Glioma is a highly lethal brain cancer in humans. Despite advancements in treatment, the prognosis for patients remains unfavorable. Epigenetic factors, along with their interactions and non-coding RNAs (ncRNAs), are crucial in glioma cells' development and aggressive characteristics. MicroRNAs (miRNAs) are a class of small non-coding RNAs (ncRNAs) that modulate the expression of various genes by binding to target mRNA molecules. They play a critical role in regulating essential biological mechanisms such as cell proliferation and differentiation, cell cycle, and apoptosis. MiR-146a/miR-146b is a significant and prevalent miRNA whose expression alterations are linked to various pathological changes in cancer cells, as well as the modulation of several cellular signaling pathways, including NF-κB, TGF-β, PI3K/Akt, and Notch-1. Scientists may identify novel targets in clinical settings by studying the complicated link between Mir-146a/mir-146b, drug resistance, molecular pathways, and pharmacological intervention in gliomas. Additionally, its interactions with other ncRNAs, such as circular RNA and long non-coding RNA, contribute to the pathogenesis of glioma. As well as miR-146 holds potential as both a diagnostic and therapeutic biomarker for patients with this condition. In the current review, we investigate the significance of miRNAs in the context of glioma, with a particular focus on the critical role of Mir-146a/mir-146b in glioma tumors. Additionally, we examined the clinical relevance of this miRNA, highlighting its potential implications for diagnosis and treatment.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Fatemeh Ahangari
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Faramarzi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mahboobeh Aghagolzadeh
- Department of Biology, Faculty of Basic Sciences, University of Shahid Chamran of Ahvaz, Ahvaz, Iran
| | - Mohammadreza Rostami
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Vahid Asghariazar
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Zeper LW, Bos C, Leermakers PA, Franssen GM, Raavé R, Hoenderop JGJ, de Baaij JHF. Liver and spleen predominantly mediate calciprotein particle clearance in a rat model of chronic kidney disease. Am J Physiol Renal Physiol 2024; 326:F622-F634. [PMID: 38420675 DOI: 10.1152/ajprenal.00239.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Calciprotein particles (CPPs) provide an efficient mineral buffering system to prevent the complexation of phosphate and calcium in the circulation. However, in chronic kidney disease (CKD), the phosphate load exceeds the mineral buffering capacity, resulting in the formation of crystalline CPP2 particles. CPP2 have been associated with cardiovascular events and mortality. Moreover, CPP2 have been demonstrated to induce calcification in vitro. In this study, we examined the fate of CPP2 in a rat model of CKD. Calcification was induced in Sprague-Dawley rats by 5/6 nephrectomy (5/6-Nx) combined with a high-phosphate diet. Control rats received sham surgery and high-phosphate diet. Twelve weeks after surgery, kidney failure was significantly induced in 5/6-Nx rats as determined by enhanced creatinine and urea plasma levels and abnormal kidney histological architecture. Subsequently, radioactive and fluorescent (FITC)-labeled CPP2 ([89Zr]Zr-CPP2-FITC) were injected intravenously to determine clearance in vivo. Using positron emission tomography scans and radioactive biodistribution measurements, it was demonstrated that [89Zr]Zr-CPP2-FITC are mainly present in the liver and spleen in both 5/6-Nx and sham rats. Immunohistochemistry showed that [89Zr]Zr-CPP2-FITC are predominantly taken up by Kupffer cells and macrophages. However, [89Zr]Zr-CPP2-FITC could also be detected in hepatocytes. In the different parts of the aorta and in the blood, low values of [89Zr]Zr-CPP2-FITC were detectable, independent of the presence of calcification. CPP2 are cleared rapidly from the circulation by the liver and spleen in a rat model of CKD. In the liver, Kupffer cells, macrophages, and hepatocytes contribute to CPP2 clearance.NEW & NOTEWORTHY Calciprotein particles (CPPs) buffer calcium and phosphate in the blood to prevent formation of crystals. In CKD, increased phosphate levels may exceed the buffering capacity of CPPs, resulting in crystalline CPPs that induce calcification. This study demonstrates that labeled CPPs are predominantly cleared from the circulation in the liver by Kupffer cells, macrophages, and hepatocytes. Our results suggest that targeting liver CPP clearance may reduce the burden of crystalline CPP in the development of vascular calcification.
Collapse
Affiliation(s)
- Lara W Zeper
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caro Bos
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pieter A Leermakers
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerben M Franssen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René Raavé
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen H F de Baaij
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Jin F, Jin L, Wei B, Li X, Li R, Liu W, Guo S, Fan H, Duan C. miR-96-5p alleviates cerebral ischemia-reperfusion injury in mice by inhibiting pyroptosis via downregulating caspase 1. Exp Neurol 2024; 374:114676. [PMID: 38190934 DOI: 10.1016/j.expneurol.2024.114676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/12/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Ischemic stroke is one of the leading causes of global mortality and disability. Nevertheless, successful treatment remains limited. In this study, we investigated the efficacy and the mechanism of miR-96-5p in protecting acute ischemic brain injury in adult mice. Focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in adult male C57BL/6 mice. MiR-96-5p or the negative control was administered via intracerebroventricular injection. The expression of pyroptosis-related genes and activation of various resident cells in the brain was assessed by RT-qPCR, western blot, immunohistochemistry, and immunofluorescence. Modified neurological severity score, rotarod test, cylinder test, brain water content, and cerebral infarction volume were used to evaluate the behavioral deficits and the severity of brain injury after MCAO. Flow cytometry, TUNEL staining, and Nissl staining were employed to assess the neuron damage. MiR-96-5p decreased markedly in the ischemic stroke model in vivo and in vitro. MiR-96-5p mimics suppressed the expression of caspase 1 and alleviated the apoptosis rate in OGD/R treatment N2a cells, however, the miR-96-5p inhibitor caused the opposite results. Intracerebroventricular delivery of miR-96-5p agomir significantly mitigated behavioral deficits, brain water content, and cerebral infarction volume after MCAO. In addition, treatment with miR-96-5p agomir downregulated the expression of caspase 1/cleaved caspase 1 and Gsdmd/Gsdmd-N, while alleviating the neuron damage. In summary, overexpression of miR-96-5p suppresses pyroptosis and reduces brain damage in the acute phase of ischemic stroke, providing new insight into the treatment of acute ischemic stroke.
Collapse
Affiliation(s)
- Fa Jin
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Lei Jin
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Boyang Wei
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xifeng Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Ran Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Wenchao Liu
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Shenquan Guo
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Haiyan Fan
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Chuanzhi Duan
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
7
|
Hao S, DelliPizzi A, Lasaracina AP, Ferreri NR. TNF inhibits AQP2 expression via a miR137-dependent pathway. Am J Physiol Renal Physiol 2024; 326:F152-F164. [PMID: 37969102 PMCID: PMC11198993 DOI: 10.1152/ajprenal.00210.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023] Open
Abstract
As miR-137 is a regulator of aquaporin (AQP)2 expression and tumor necrosis factor (TNF) inhibits the expression of several extrarenal AQPs, we tested the hypothesis that TNF inhibits AQP2 in the kidney via a miR-137-dependent mechanism. AQP2 mRNA and protein expression decreased ∼70% and 53%, respectively, in primary renal inner medullary collecting duct (IMCD) cells transfected with a miRNA mimic of mmu-miR-137, suggesting that miR-137 directly targets AQP2 mRNA in these cells. Exposure of IMCD cells for 2 h to 400 mosmol/kgH2O medium increased mmu-miR-137 mRNA expression about twofold, conditions that also increased TNF production approximately fourfold. To determine if the increase in mmu-miR-137 mRNA expression was related to the concomitant increase in TNF, IMCD cells were transfected with a lentivirus construct to silence TNF. This construct decreased mmu-miR-137 mRNA expression by ∼63%, suggesting that TNF upregulates the expression of miR-137. Levels of miR-137 also increased approximately twofold in IMCD tubules isolated from male mice given 1% NaCl in the drinking water for 3 days. Intrarenal lentivirus silencing of TNF increased AQP2 mRNA levels and protein expression concomitant with a decrease in miR-137 levels in tubules isolated from mice given NaCl. The changes in AQP2 expression levels affected the diluting ability of the kidney, which was assessed by measuring urine osmolality and urine volume, as the decrease in these parameters after renal silencing of TNF was prevented on intrarenal administration of miR-137. The study reveals a novel TNF function via a miR-137-dependent mechanism that regulates AQP2 expression and function.NEW & NOTEWORTHY An emerging intratubular tumor necrosis factor system, functioning during normotensive noninflammatory conditions, acts as a breaking mechanism that attenuates both the increases in Na+-K+-2Cl- cotransporter and aquaporin-2 induced by arginine vasopressin, thereby contributing to the regulation of electrolyte balance and blood pressure. A greater appreciation for the role of cytokines as mediators of immunophysiological responses may help reveal the relationship between the immune system and other physiological systems.
Collapse
Affiliation(s)
- Shoujin Hao
- Department of Pharmacology, New York Medical College, Valhalla, New York, United States
| | - AnnMarie DelliPizzi
- Department of Biology, Dominican University New York, Orangeburg, New York, United States
| | - Anna Pia Lasaracina
- Department of Pharmacology, New York Medical College, Valhalla, New York, United States
| | - Nicholas R Ferreri
- Department of Pharmacology, New York Medical College, Valhalla, New York, United States
| |
Collapse
|
8
|
Wang C, Cheng H, Yan F, Zhang H, Zhang J, Li C, Zhao M, Shi D, Xiong H. MicroRNA-146b protects kidney injury during urinary tract infections by modulating macrophage polarization. mBio 2023; 14:e0209423. [PMID: 37909731 PMCID: PMC10870822 DOI: 10.1128/mbio.02094-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/14/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Kidney injury during acute urinary tract infections (UTIs) caused by uropathogenic Escherichia coli (UPEC) is an important public health problem. However, how kidney injury develops during UPEC infection is still unclear. Although antibiotic therapy is currently an effective treatment for UTI, it cannot avoid kidney injury. MicroRNAs have gained extensive attention as essential molecules capable of regulating the autoimmune response. Among these, microRNA-146b (miR-146b) is involved in regulating inflammatory responses. In the present study, we demonstrated that miR-146b played an essential role in the development of kidney injury during UTIs caused by UPEC. The results showed that miR-146b may suppress M1 macrophage polarization and alleviate acute kidney injury. Furthermore, the miR-146b activator, agomir, in order to upregulate miR-146b, was effective in treating kidney damage by inhibiting the activation of M1 macrophages. In conclusion, our findings elucidated the mechanisms by which miR-146b alleviated kidney injury induced by UTIs, shed new light on the relationship between microRNA and bacterial infection, and provided a novel therapeutic target for treating this common bacterial infection.
Collapse
Affiliation(s)
- Changying Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Hongyan Cheng
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Mingsheng Zhao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Dongmei Shi
- Department of Dermatology and Laboratory of Medical Mycology, Jining No. 1 People’s Hospital, Jining, Shandong, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| |
Collapse
|
9
|
Gocer Z, Elek A, Caska H, Bozgeyik I. MicroRNAs and cardiac fibrosis: A comprehensive update on mechanisms and consequences. Pathol Res Pract 2023; 251:154853. [PMID: 37857035 DOI: 10.1016/j.prp.2023.154853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Fibrosis is a pathological wound-healing mechanism that results by the overactivation of fibroblasts. Fibrosis can become obstructive and deleterious during regeneration of various body tissues including cardiac muscle. This ultimately results in the development of cardiac fibrosis, characterized by an excessive buildup of extracellular matrix proteins. Thus, it could lead to arrhythmias and heart failure which creates a leading public health burden worldwide. MiRNAs are small non-coding RNAs with great potential for diagnostic and therapeutic purposes. Mounting evidence indicates that miRNAs are involved in the deregulation of tissue homeostasis during myocardial fibrosis. For instance, miRNAs that are implicated in the regulation of TGF-beta signaling pathway have been reported to be significantly altered in myocardial fibrosis. Accordingly, in this comprehensive review, we discuss and highlight recent available data on the role of miRNAs during myocardial fibrosis, providing valuable insights into the miRNA modulation of cardiac fibrosis and miRNAs targets that can be used in the future therapeutic interventions to cardiac fibrosis.
Collapse
Affiliation(s)
- Zekihan Gocer
- Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Alperen Elek
- Faculty of Medicine, Ege University, Izmir, Turkey
| | - Halil Caska
- Department of Medical Biology and Genetics, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ibrahim Bozgeyik
- Department of Medical Biology, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey.
| |
Collapse
|
10
|
Dalle Carbonare L, Minoia A, Braggio M, Bertacco J, Piritore FC, Zouari S, Vareschi A, Elia R, Vedovi E, Scumà C, Carlucci M, Bhandary L, Mottes M, Romanelli MG, Valenti MT. Modulation of miR-146b Expression during Aging and the Impact of Physical Activity on Its Expression and Chondrogenic Progenitors. Int J Mol Sci 2023; 24:13163. [PMID: 37685971 PMCID: PMC10488278 DOI: 10.3390/ijms241713163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The finding of molecules associated with aging is important for the prevention of chronic degenerative diseases and for longevity strategies. MicroRNAs (miRNAs) are post-transcriptional regulators involved in many biological processes and miR-146b-5p has been shown to be involved in different degenerative diseases. However, miR-146b-5p modulation has not been evaluated in mesenchymal stem cells (MSCs) commitment or during aging. Therefore, the modulation of miR-146b-5p in the commitment and differentiation of mesenchymal cells as well as during maturation and aging in zebrafish model were analyzed. In addition, circulating miR-146b-5p was evaluated in human subjects at different age ranges. Thus, the role of physical activity in the modulation of miR-146b-5p was also investigated. To achieve these aims, RT (real-time)-PCR, Western blot, cell transfections, and three-dimensional (3D) culture techniques were applied. Our findings show that miR-146b-5p expression drives MSCs to adipogenic differentiation and increases during zebrafish maturation and aging. In addition, miR-146b-5p expression is higher in females compared to males and it is associated with the aging in humans. Interestingly, we also observed that the physical activity of walking downregulates circulating miR-146b-5p levels in human females and increases the number of chondroprogenitors. In conclusion, miR-146b-5p can be considered an age-related marker and can represent a useful marker for identifying strategies, such as physical activity, aimed at counteracting the degenerative processes of aging.
Collapse
Affiliation(s)
- Luca Dalle Carbonare
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.B.); (S.Z.); (A.V.); (R.E.)
| | - Arianna Minoia
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.B.); (S.Z.); (A.V.); (R.E.)
| | - Michele Braggio
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.B.); (S.Z.); (A.V.); (R.E.)
| | - Jessica Bertacco
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (J.B.); (F.C.P.); (M.M.); (M.G.R.)
| | - Francesca Cristiana Piritore
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (J.B.); (F.C.P.); (M.M.); (M.G.R.)
| | - Sharazed Zouari
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.B.); (S.Z.); (A.V.); (R.E.)
| | - Anna Vareschi
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.B.); (S.Z.); (A.V.); (R.E.)
| | - Rossella Elia
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.B.); (S.Z.); (A.V.); (R.E.)
| | - Ermes Vedovi
- Recovery and Functional Rehabilitation, Integrated University Hospital of Verona, 37100 Verona, Italy; (E.V.); (C.S.)
| | - Cristina Scumà
- Recovery and Functional Rehabilitation, Integrated University Hospital of Verona, 37100 Verona, Italy; (E.V.); (C.S.)
| | - Matilde Carlucci
- Health Directorate, Integrated University Hospital of Verona, 37100 Verona, Italy;
| | | | - Monica Mottes
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (J.B.); (F.C.P.); (M.M.); (M.G.R.)
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (J.B.); (F.C.P.); (M.M.); (M.G.R.)
| | - Maria Teresa Valenti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (J.B.); (F.C.P.); (M.M.); (M.G.R.)
| |
Collapse
|
11
|
Saberi F, Dehghan Z, Noori E, Zali H. Identification of Renal Transplantation Rejection Biomarkers in Blood Using the Systems Biology Approach. IRANIAN BIOMEDICAL JOURNAL 2023; 27:375-87. [PMID: 38224029 PMCID: PMC10826908 DOI: 10.52547/ibj.3871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 08/19/2023] [Indexed: 01/16/2024]
Abstract
Background Renal transplantation plays an essential role in the quality of life of patients with end-stage renal disease. At least 12% of the renal patients receiving transplantations show graft rejection. One of the methods used to diagnose renal transplantation rejection is renal allograft biopsy. This procedure is associated with some risks such as bleeding and arteriovenous fistula formation. In this study, we applied a bioinformatics approach to identify serum markers for graft rejection in patients receiving a renal transplantation. Methods Transcriptomic data were first retrieved from the blood of renal transplantation rejection patients using the GEO database. The data were then used to construct the protein-protein interaction and gene regulatory networks using Cytoscape software. Next, network analysis was performed to identify hub-bottlenecks, and key blood markers involved in renal graft rejection. Lastly, the gene ontology and functional pathways related to hub-bottlenecks were detected using PANTHER and DAVID servers. Results In PPIN and GRN, SYNCRIP, SQSTM1, GRAMD1A, FAM104A, ND2, TPGS2, ZNF652, RORA, and MALAT1 were the identified critical genes. In GRN, miR-155, miR17, miR146b, miR-200 family, and GATA2 were the factors that regulated critical genes. The MAPK, neurotrophin, and TNF signaling pathways, IL-17, and human cytomegalovirus infection, human papillomavirus infection, and shigellosis were identified as significant pathways involved in graft rejection. Concusion The above-mentioned genes can be used as diagnostic and therapeutic serum markers of transplantation rejection in renal patients. The newly predicted biomarkers and pathways require further studies.
Collapse
Affiliation(s)
- Fatemeh Saberi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Dehghan
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Effat Noori
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
D’Agostino M, Mauro D, Zicarelli M, Carullo N, Greco M, Andreucci M, Coppolino G, Bolignano D. miRNAs in Uremic Cardiomyopathy: A Comprehensive Review. Int J Mol Sci 2023; 24:5425. [PMID: 36982497 PMCID: PMC10049249 DOI: 10.3390/ijms24065425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
Uremic Cardiomyopathy (UCM) is an irreversible cardiovascular complication that is highly pervasive among chronic kidney disease (CKD) patients, particularly in End-Stage Kidney Disease (ESKD) individuals undergoing chronic dialysis. Features of UCM are an abnormal myocardial fibrosis, an asymmetric ventricular hypertrophy with subsequent diastolic dysfunction and a complex and multifactorial pathogenesis where underlying biological mechanisms remain partly undefined. In this paper, we reviewed the key evidence available on the biological and clinical significance of micro-RNAs (miRNAs) in UCM. miRNAs are short, noncoding RNA molecules with regulatory functions that play a pivotal role in myriad basic cellular processes, such as cell growth and differentiation. Deranged miRNAs expression has already been observed in various diseases, and their capacity to modulate cardiac remodeling and fibrosis under either physiological or pathological conditions is well acknowledged. In the context of UCM, robust experimental evidence confirms a close involvement of some miRNAs in the key pathways that are known to trigger or worsen ventricular hypertrophy or fibrosis. Moreover, very preliminary findings may set the stage for therapeutic interventions targeting specific miRNAs for ameliorating heart damage. Finally, scant but promising clinical evidence may suggest a potential future application of circulating miRNAs as diagnostic or prognostic biomarkers for improving risk stratification in UCM as well.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Davide Bolignano
- Nephrology and Dialysis Unit, Department of Medical and Surgical Sciences, University “Magna-Graecia” of Catanzaro, Viale Europa SNC, 88100 Catanzaro, Italy
| |
Collapse
|
13
|
Hao S, Zhao H, Hao DH, Ferreri NR. MicroRNA-195a-5p Regulates Blood Pressure by Inhibiting NKCC2A. Hypertension 2023; 80:426-439. [PMID: 36448465 PMCID: PMC9852070 DOI: 10.1161/hypertensionaha.122.19794] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Previous studies showed that miR-195a-5p was among the most abundant microRNAs (miRNAs) expressed in the kidney. METHODS Lentivirus silencing of tumor necrosis factor-α (TNF) was performed in vivo and in vitro. Luciferase reporter assays confirmed that bumetanide-sensitive Na+-K+-2Cl- cotransporter isoform A (NKCC2A) mRNA is targeted and repressed by miR-195a-5p. Radiotelemetry was used to measure mean arterial pressure. RESULTS TNF upregulates mmu-miR-195a-5p, and -203 and downregulates mmu-miR-30c and -100 in the medullary thick ascending limb of male mice. miR-195a-5p was >3-fold higher in the renal outer medulla of mice given an intrarenal injection of murine recombinant TNF, whereas silencing TNF inhibited miR-195a-5p expression by ≈51%. Transient transfection of a miR-195a-5p mimic into medullary thick ascending limb cells suppressed NKCC2A mRNA by ≈83%, whereas transfection with Anti-miR-195a-5p increased NKCC2A mRNA. Silencing TNF in medullary thick ascending limb cells prevented increases in miR-195 induced by 400 mosmol/kg H2O medium, an effect reversed by transfection with a miR-195a-5p mimic. Expression of phosphorylated NKCC2 increased 1.5-fold in medullary thick ascending limb cells transfected with Anti-miR-195a-5p and a miR-195a-5p mimic prevented the increase, which was induced by silencing TNF in cells exposed to 400 mosmol/kg H2O medium after osmolality was increased by adding NaCl. Intrarenal injection of TNF suppressed NKCC2A mRNA, whereas injection of miR-195a-5p prevented the increase of NKCC2A mRNA abundance and phosphorylated NKCC2 expression when TNF was silenced. Intrarenal injection with miR-195a-5p markedly attenuated MAP after renal silencing of TNF in mice given 1% NaCl. CONCLUSIONS The study identifies miR-195a-5p as a salt-sensitive and TNF-inducible miRNA that attenuates NaCl-mediated increases in blood pressure by inhibiting NKCC2A.
Collapse
Affiliation(s)
- Shoujin Hao
- Department of Pharmacology, New York Medical College, Valhalla
| | - Hong Zhao
- Department of Pharmacology, New York Medical College, Valhalla
| | - David H Hao
- Department of Pharmacology, New York Medical College, Valhalla
| | | |
Collapse
|
14
|
Xu W, Huang L, Xie B, Yang B. Serum microRNA-4297 is a sex-specific predictive biomarker of glioma grade and prognosis. Front Neurol 2022; 13:888221. [PMID: 35968285 PMCID: PMC9363699 DOI: 10.3389/fneur.2022.888221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Background Gliomas account for nearly 80% of brain cancers, tending to occur more frequently in men with adverse outcomes. Emerging microRNAs have been positioned as promising predictors for glioma's histological grade and prognosis. However, there have been few studies concerning the sex-biased impacts on the clinical approach for the potential microRNA-4297 (miR-4297). Methods We utilized GSE139031micro-RNAs profiling to analyze serum miR-4297 expression in glioma. A total of 114 newly diagnosed glioma patients at the First Affiliated Hospital of Fujian Medical University from January 2017 to February 2021 were recruited and prospectively followed up. The association of miR-4297 levels with glioma grade and prognosis was investigated. Luciferase reporter gene assays and genotype analyses were carried out to explore the potential mechanism of sexually dimorphic miR-4297 in glioma. Results Serum miR-4297 levels were notably down-regulated in glioma. Besides, serum miR-4297 levels were positively associated with the high grades, which were exclusively present for females. The positive correlations of miR-4297 with O6-methylguanine-DNA methyltransferase (MGMT) protein and mean platelet volume were also observed in females. IDH-mutant females had decreased miR-4297. Median PFS time for females with miR-4297 ≥ 1.392 was distinctly shorter than those with miR-4297 <1.392 (12.3 months vs. 42.89 months, p = 0.0289). Based on multivariate logistic regression, miR-4297-based equation model was established as FHGRS. AU-ROC analysis revealed FHGRS exhibited a robust performance in predicting high-grade glioma in females (p < 0.001), whereas there was no such relationship in males. Furthermore, the MGMT-3'UTR variant rs7896488 in the specific binding region of miR-4297 was correlated with prognosis. Conclusion Our study uncovers sex-dependent characterization of serum miR-4297 in predicting glioma grade and the relapse risk for female patients, which underscores the clinical benefits of sex-specific analysis in non-coding RNA research.
Collapse
Affiliation(s)
- Wenshen Xu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Liming Huang
- Department of Oncology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Molecular Oncology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Bingsen Xie
- Department of Neurosurgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Bin Yang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- *Correspondence: Bin Yang
| |
Collapse
|
15
|
Liao KW, Chien LC, Chen YC, Kao HC. Sex-specific differences in early renal impairment associated with arsenic, lead, and cadmium exposure among young adults in Taiwan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:52655-52664. [PMID: 35274206 PMCID: PMC8911167 DOI: 10.1007/s11356-022-19521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/25/2022] [Indexed: 05/06/2023]
Abstract
Exposure to a single metal has been reported to damage renal function in humans. However, information regarding the association between multiple-metal exposure and markers for early renal impairment in different sexes among the young adult Taiwanese population is scarce. We assessed the association between exposure to arsenic (As), cadmium (Cd), and lead (Pb), and early renal impairment markers using urinary microalbumin (MA), β2-microglobulin (β2MG), and N-acetyl-beta-D-glucosaminidase (NAG) by analyzing 157 young adults aged 20‒29 years, in Taiwan. Inductively coupled plasma mass spectrometry was used to determine urinary As, Cd, and Pb levels. Regression models were applied to different sex groups. The results showed that after adjusting for potential confounding factors and each metal, urinary Cd levels were significantly positively associated with urinary MA (β = 0.523, 95% CI: 0.147-0.899) and β2MG (β = 1.502, 95% CI: 0.635-2.370) in males. However, the urinary Cd level was significantly positively associated with only urinary NAG (β = 0.161, 95% CI: 0.027-0.296) in females. This study thus indicates that the effect of exposure to metals (especially Cd) on early renal impairment among young adults in Taiwan is sex-specific. Our study results could contribute toward developing early intervention programs for decreasing the incidence of renal dysfunction. Further studies are warranted to confirm our findings and clarify the potential mechanisms involved.
Collapse
Affiliation(s)
- Kai-Wei Liao
- School of Food Safety, College of Nutrition, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan.
- Research Center of Food Safety Inspection and Function Development, Taipei Medical University, Taipei, Taiwan.
| | - Ling-Chu Chien
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yang-Ching Chen
- Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ho-Ching Kao
- Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
16
|
Liu F, Chen J, Li Z, Meng X. Recent Advances in Epigenetics of Age-Related Kidney Diseases. Genes (Basel) 2022; 13:genes13050796. [PMID: 35627181 PMCID: PMC9142069 DOI: 10.3390/genes13050796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/03/2023] Open
Abstract
Renal aging has attracted increasing attention in today’s aging society, as elderly people with advanced age are more susceptible to various kidney disorders such as acute kidney injury (AKI) and chronic kidney disease (CKD). There is no clear-cut universal mechanism for identifying age-related kidney diseases, and therefore, they pose a considerable medical and public health challenge. Epigenetics refers to the study of heritable modifications in the regulation of gene expression that do not require changes in the underlying genomic DNA sequence. A variety of epigenetic modifiers such as histone deacetylases (HDAC) inhibitors and DNA methyltransferase (DNMT) inhibitors have been proposed as potential biomarkers and therapeutic targets in numerous fields including cardiovascular diseases, immune system disease, nervous system diseases, and neoplasms. Accumulating evidence in recent years indicates that epigenetic modifications have been implicated in renal aging. However, no previous systematic review has been performed to systematically generalize the relationship between epigenetics and age-related kidney diseases. In this review, we aim to summarize the recent advances in epigenetic mechanisms of age-related kidney diseases as well as discuss the application of epigenetic modifiers as potential biomarkers and therapeutic targets in the field of age-related kidney diseases. In summary, the main types of epigenetic processes including DNA methylation, histone modifications, non-coding RNA (ncRNA) modulation have all been implicated in the progression of age-related kidney diseases, and therapeutic targeting of these processes will yield novel therapeutic strategies for the prevention and/or treatment of age-related kidney diseases.
Collapse
Affiliation(s)
- Feng Liu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Jiefang Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Zhenqiong Li
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
- Correspondence: (Z.L.); (X.M.)
| | - Xianfang Meng
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (Z.L.); (X.M.)
| |
Collapse
|
17
|
Ilatovskaya DV, Levchenko V, Winsor K, Blass GR, Spires DR, Sarsenova E, Polina I, Zietara A, Paterson M, Kriegel AJ, Staruschenko A. Effects of elevation of ANP and its deficiency on cardiorenal function. JCI Insight 2022; 7:148682. [PMID: 35380994 PMCID: PMC9090260 DOI: 10.1172/jci.insight.148682] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/30/2022] [Indexed: 11/17/2022] Open
Abstract
Atrial natriuretic peptide (ANP), encoded by Nppa, is a vasodilatory hormone that promotes salt excretion. Genome-wide association studies identified Nppa as a causative factor of blood pressure development, and in humans, ANP levels were suggested as an indicator of salt sensitivity. This study aimed to provide insights into the effects of ANP on cardiorenal function in salt-sensitive hypertension. To address this question, hypertension was induced in SSNPPA-/- (knockout of Nppa in the Dahl Salt-Sensitive (SS) rat background) or SSWT (wild type Dahl SS) rats by a high salt diet challenge (HS, 4% NaCl for 21 days). Chronic infusion of ANP in SSWT rats attenuated the increase in blood pressure and cardiorenal damage. Overall, SSNPPA-/- strain demonstrated higher blood pressure and intensified cardiac fibrosis (with no changes in ejection fraction) compared to SSWT rats. Furthermore, SSNPPA-/- rats exhibited kidney hypertrophy and higher glomerular injury scores, reduced diuresis, and lower sodium and chloride excretion than SSWT when fed a HS diet. Additionally, the activity of epithelial Na+ channel (ENaC) was found to be increased in the collecting ducts of the SSNPPA-/- rats. Taken together, these data show promise for the therapeutic benefits of ANP and ANP-increasing drugs for treating salt-sensitive hypertension.
Collapse
Affiliation(s)
- Daria V Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta, United States of America
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States of America
| | - Kristen Winsor
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States of America
| | - Gregory R Blass
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States of America
| | - Denisha R Spires
- Department of Physiology, Medical College of Georgia, Augusta, United States of America
| | - Elizaveta Sarsenova
- Department of Medicine, Medical University of South Carolina, Charleston, United States of America
| | - Iuliia Polina
- Department of Medicine, Medical University of South Carolina, Charleston, United States of America
| | - Adrian Zietara
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States of America
| | - Mark Paterson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States of America
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States of America
| | | |
Collapse
|
18
|
Adam RJ, Williams AC, Kriegel AJ. Comparison of the Surgical Resection and Infarct 5/6 Nephrectomy Rat Models of Chronic Kidney Disease. Am J Physiol Renal Physiol 2022; 322:F639-F654. [PMID: 35379002 DOI: 10.1152/ajprenal.00398.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The 5/6 nephrectomy rat remnant kidney model is commonly employed to study chronic kidney disease (CKD). This model requires removal of one whole kidney and two-thirds of the other. The two most common ways of producing the remnant kidney are surgical resection of poles, known as the polectomy (Pol) model, or ligation of upper and lower renal arterial branches, resulting in pole infarction (Inf). These models have much in common, but also major phenotypic differences, and thus respectively model unique aspects of human CKD. The purpose of this review is to summarize phenotypic similarities and differences between these two models and their relation to human CKD, while emphasizing their vascular phenotype. In this article we review studies that have evaluated arterial blood pressure, the renin-angiotensin-aldosterone-system (RAAS), autoregulation, nitric oxide, single nephron physiology, angiogenic and anti-angiogenic factors, and capillary rarefaction in these two models. Phenotypic similarities: both models spontaneously develop hallmarks of human CKD including uremia, fibrosis, capillary rarefaction, and progressive renal function decline. They both undergo whole-organ hypertrophy, hyperfiltration of functional nephrons, reduced renal expression of angiogenic factor VEGF, increased renal expression of the anti-angiogenic thrombospondin-1, impaired renal autoregulation, and abnormal vascular nitric oxide physiology. Key phenotypic differences: the Inf model develops rapid-onset, moderate-to-severe systemic hypertension, and the Pol model early normotension followed by mild-to-moderate hypertension. The Inf rat has a markedly more active renin-angiotensin-aldosterone-system. Comparison of these two models facilitates understanding of how they can be utilized for studying CKD pathophysiology (e.g., RAAS dependent or independent pathology).
Collapse
Affiliation(s)
- Ryan J Adam
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Adaysha C Williams
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
19
|
Williams AM, Jensen DM, Pan X, Liu P, Liu J, Huls S, Regner KR, Iczkowski KA, Wang F, Li J, Gallan AJ, Wang T, Baker MA, Liu Y, Lalehzari N, Liang M. Histologically resolved small RNA maps in primary focal segmental glomerulosclerosis indicate progressive changes within glomerular and tubulointerstitial regions. Kidney Int 2022; 101:766-778. [PMID: 35114200 PMCID: PMC8940673 DOI: 10.1016/j.kint.2021.12.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 10/06/2021] [Accepted: 12/23/2021] [Indexed: 12/19/2022]
Abstract
Pathological heterogeneity is common in clinical tissue specimens and complicates the interpretation of molecular data obtained from the specimen. As a typical example, a kidney biopsy specimen often contains glomeruli and tubulointerstitial regions with different levels of histological injury, including some that are histologically normal. We reasoned that the molecular profiles of kidney tissue regions with specific histological injury scores could provide new insights into kidney injury progression. Therefore, we developed a strategy to perform small RNA deep sequencing analysis for individually scored glomerular and tubulointerstitial regions in formalin-fixed, paraffin-embedded kidney needle biopsies. This approach was applied to study focal segmental glomerulosclerosis (FSGS), the leading cause of nephrotic syndrome in adults. Large numbers of small RNAs, including microRNAs, 3'-tRFs, 5'-tRFs, and mitochondrial tRFs, were differentially expressed between histologically indistinguishable tissue regions from patients with FSGS and matched healthy controls. A majority of tRFs were upregulated in FSGS. Several small RNAs were differentially expressed between tissue regions with different histological scores in FSGS. Notably, with increasing levels of histological damage, miR-21-5p was upregulated progressively and miR-192-5p was downregulated progressively in glomerular and tubulointerstitial regions, respectively. This study marks the first genome scale molecular profiling conducted in histologically characterized glomerular and tubulointerstitial regions. Thus, substantial molecular changes in histologically normal kidney regions in FSGS might contribute to initiating tissue injury or represent compensatory mechanisms. In addition, several small RNAs might contribute to subsequent progression of glomerular and tubulointerstitial injury, and histologically mapping small RNA profiles may be applied to analyze tissue specimens in any disease.
Collapse
Affiliation(s)
- Anna Marie Williams
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David M Jensen
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Xiaoqing Pan
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Mathematics, Shanghai Normal University, Shanghai, China
| | - Pengyuan Liu
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jing Liu
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Sean Huls
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kevin R Regner
- Division of Nephrology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kenneth A Iczkowski
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Feng Wang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Junhui Li
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Alexander J Gallan
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Tao Wang
- Division of Biostatistics, Institute of Health and Equity, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Maria Angeles Baker
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Yong Liu
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Nava Lalehzari
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Mingyu Liang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
20
|
The role for miRNA146b-5p in the attenuation of dermal fibrosis and angiogenesis by targeting PDGFRα in skin wounds. J Invest Dermatol 2021; 142:1990-2002.e4. [DOI: 10.1016/j.jid.2021.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/03/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022]
|
21
|
Ischemic preconditioning protects the heart against ischemia-reperfusion injury in chronic kidney disease in both males and females. Biol Sex Differ 2021; 12:49. [PMID: 34488888 PMCID: PMC8420010 DOI: 10.1186/s13293-021-00392-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Uremic cardiomyopathy is a common cardiovascular complication of chronic kidney disease (CKD) characterized by left ventricular hypertrophy (LVH) and fibrosis enhancing the susceptibility of the heart to acute myocardial infarction. In the early stages of CKD, approximately 60% of patients are women. We aimed to investigate the influence of sex on the severity of uremic cardiomyopathy and the infarct size-limiting effect of ischemic preconditioning (IPRE) in experimental CKD. METHODS CKD was induced by 5/6 nephrectomy in 9-week-old male and female Wistar rats. Two months later, serum and urine laboratory parameters were measured to verify the development of CKD. Transthoracic echocardiography was performed to assess cardiac function and morphology. Cardiomyocyte hypertrophy and fibrosis were measured by histology. Left ventricular expression of A- and B-type natriuretic peptides (ANP and BNP) were measured by qRT-PCR and circulating BNP level was measured by ELISA. In a subgroup of animals, hearts were perfused according to Langendorff and were subjected to 35 min global ischemia and 120 min reperfusion with or without IPRE (3 × 5 min I/R cycles applied before index ischemia). Then infarct size or phosphorylated and total forms of proteins related to the cardioprotective RISK (AKT, ERK1,2) and SAFE (STAT3) pathways were measured by Western blot. RESULTS The severity of CKD was similar in males and females. However, CKD males developed more severe LVH compared to females as assessed by echocardiography. Histology revealed cardiac fibrosis only in males in CKD. LV ANP expression was significantly increased due to CKD in both sexes, however, LV BNP and circulating BNP levels failed to significantly increase in CKD. In both sexes, IPRE significantly decreased the infarct size in both the sham-operated and CKD groups. IPRE significantly increased the phospho-STAT3/STAT3 ratio in sham-operated but not in CKD animals in both sexes. There were no significant differences in phospho-AKT/AKT and phospho-ERK1,2/ERK1,2 ratios between the groups. CONCLUSION The infarct size-limiting effect of IPRE was preserved in both sexes in CKD despite the more severe uremic cardiomyopathy in male CKD rats. Further research is needed to identify crucial molecular mechanisms in the cardioprotective effect of IPRE in CKD.
Collapse
|
22
|
Zhang LH, Jiang SZ, Guo X, Xiao B, Li Q, Chen JY, Huang JR, Rao H. MiR-146b-5p targets IFI35 to inhibit inflammatory response and apoptosis via JAK1/STAT1 signalling in lipopolysaccharide-induced glomerular cells. Autoimmunity 2021; 54:430-438. [PMID: 34435525 DOI: 10.1080/08916934.2020.1864730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The dysregulated microRNAs (miRNAs) are implicated in the malignancy of lupus nephritis (LN). This work aims to analyse the effect and mechanism of miR-146b-5p in lipopolysaccharides (LPS)-induced model of LN in vitro. The serum samples of LN patients and normal volunteers were collected. HK-2 cells were challenged via LPS. miR-146b-5p and interferon-induced protein 35 (IFI35) abundances were detected via quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. The inflammatory response was assessed via inflammatory cytokines levels via qRT-PCR and enzyme-linked immunosorbent assay. Cell apoptosis was analysed via flow cytometry and apoptotic protein levels. The protein levels of JAK1/STAT1 signalling were detected via western blot. The relationship of miR-146b-5p and IFI35 was analysed via bioinformatics and dual-luciferase reporter assays. This study revealed that miR-146b-5p level was declined and IFI35 abundance was elevated in serum of LN patients and LPS-challenged HK-2 cells. Functionally, IFI35 overexpression promoted LPS-caused inflammatory response and cell apoptosis, and knockdown of IFI35 caused an opposite trend. Meanwhile, miR-146b-5p targeted IFI35 to suppress inflammatory response and cell inflammatory response and apoptosis via inactivating the JAK1/STAT1 pathway. MiR-146b-5p suppressed inflammatory response and cell apoptosis by IFI35 mediated-JAK1/STAT1 signalling in HK-2 cells, which provided a new mechanism for understanding the pathogenesis of LN.
Collapse
Affiliation(s)
- Li-Hua Zhang
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, P. R. China
| | - Sheng-Zhi Jiang
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, P. R. China
| | - Xia Guo
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, P. R. China
| | - Bin Xiao
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, P. R. China
| | - Qiao Li
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, P. R. China
| | - Jian-Ying Chen
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, P. R. China
| | - Jie-Rou Huang
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, P. R. China
| | - Hui Rao
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, P. R. China
| |
Collapse
|
23
|
Spires DR, Palygin O, Levchenko V, Isaeva E, Klemens CA, Khedr S, Nikolaienko O, Kriegel A, Cheng X, Yeo JY, Joe B, Staruschenko A. Sexual dimorphism in the progression of type 2 diabetic kidney disease in T2DN rats. Physiol Genomics 2021; 53:223-234. [PMID: 33870721 PMCID: PMC8285576 DOI: 10.1152/physiolgenomics.00009.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/05/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetic kidney disease (DKD) is a common complication of diabetes, which frequently leads to end-stage renal failure and increases cardiovascular disease risk. Hyperglycemia promotes renal pathologies such as glomerulosclerosis, tubular hypertrophy, microalbuminuria, and a decline in glomerular filtration rate. Importantly, recent clinical data have demonstrated distinct sexual dimorphism in the pathogenesis of DKD in people with diabetes, which impacts both severity- and age-related risk factors. This study aimed to define sexual dimorphism and renal function in a nonobese type 2 diabetes model with the spontaneous development of advanced diabetic nephropathy (T2DN rats). T2DN rats at 12- and over 48-wk old were used to define disease progression and kidney injury development. We found impaired glucose tolerance and glomerular hyperfiltration in T2DN rats to compare with nondiabetic Wistar control. The T2DN rat displays a significant sexual dimorphism in insulin resistance, plasma cholesterol, renal and glomerular injury, urinary nephrin shedding, and albumin handling. Our results indicate that both male and female T2DN rats developed nonobese type 2 DKD phenotype, where the females had significant protection from the development of severe forms of DKD. Our findings provide further evidence for the T2DN rat strain's effectiveness for studying the multiple facets of DKD.
Collapse
Affiliation(s)
- Denisha R Spires
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Elena Isaeva
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Christine A Klemens
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sherif Khedr
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Oksana Nikolaienko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alison Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Xi Cheng
- Department of Physiology and Pharmacology, University of Toledo, Ohio
| | - Ji-Youn Yeo
- Department of Physiology and Pharmacology, University of Toledo, Ohio
| | - Bina Joe
- Department of Physiology and Pharmacology, University of Toledo, Ohio
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| |
Collapse
|
24
|
Wang WJ, Chen XM, Cai GY. Cellular senescence and the senescence-associated secretory phenotype: Potential therapeutic targets for renal fibrosis. Exp Gerontol 2021; 151:111403. [PMID: 33984448 DOI: 10.1016/j.exger.2021.111403] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/25/2022]
Abstract
Renal fibrosis plays a crucial role in the progression of chronic kidney disease and end-stage renal disease. However, because the aetiology of this pathological process is complex and remains unclear, there is still no effective treatment. Cellular senescence and the senescence-associated secretory phenotype (SASP) have been reported to lead to renal fibrosis. This review first discusses the relationships among cellular senescence, the SASP and renal fibrosis. Then, the key role of the SASP in irreversible renal fibrosis, including fibroblast activation and abnormal extracellular matrix accumulation, is discussed, with the results of studies having indicated that inhibiting cellular senescence and the SASP might be a potential preventive and therapeutic strategy for renal fibrosis. Finally, we summarize promising therapeutic strategies revealed by existing research on senescent cells and the SASP, including emerging interventions targeting the SASP, caloric restriction and mimetics, and novel regeneration therapies with stem cells.
Collapse
Affiliation(s)
- Wen-Juan Wang
- School of Medicine, Nankai University, Tianjin 300071, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Xiang-Mei Chen
- School of Medicine, Nankai University, Tianjin 300071, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China.
| | - Guang-Yan Cai
- School of Medicine, Nankai University, Tianjin 300071, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China.
| |
Collapse
|
25
|
Sánchez JM, Gómez-Redondo I, Browne JA, Planells B, Gutiérrez-Adán A, Lonergan P. MicroRNAs in amniotic fluid and maternal blood plasma associated with sex determination and early gonad differentiation in cattle†. Biol Reprod 2021; 105:345-358. [PMID: 33889937 PMCID: PMC8335352 DOI: 10.1093/biolre/ioab079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/22/2021] [Accepted: 04/12/2021] [Indexed: 12/19/2022] Open
Abstract
We hypothesized that sexually dimorphic differences exist in the expression of miRNAs in amniotic fluid (AF) and maternal blood plasma (MP) in association with the process of sex determination and gonad differentiation in cattle. Amniotic fluid and MP were collected from six pregnant heifers (three carrying a single male and three a single female embryo) following slaughter on Day 39 postinsemination, coinciding with the peak of SRY expression. Samples (six AF and six MP) were profiled using an miRNA Serum/Plasma Focus PCR Panel. Differentially expressed (DE) miRNAs were identified in AF (n = 5) and associated MP (n = 56) of male vs. female embryos (P < 0.05). Functional analysis showed that inflammatory and immune response were among the 13 biological processes enriched by miRNAs DE in MP in the male group (FDR < 0.05), suggesting that these sex-dependent DE miRNAs may be implicated in modulating the receptivity of the dam to a male embryo. Further, we compared the downstream targets of the sex-dependent DE miRNAs detected in MP with genes previously identified as DE in male vs. female genital ridges. The analyses revealed potential targets that might be important during this developmental stage such as SHROOM2, DDX3Y, SOX9, SRY, PPP1CB, JARID2, USP9X, KDM6A, and EIF2S3. Results from this study highlight novel aspects of sex determination and embryo–maternal communication in cattle such as the potential role of miRNAs in gonad development as well as in the modulation of the receptivity of the dam to a male embryo.
Collapse
Affiliation(s)
- José María Sánchez
- Animal and Crops Sciences, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.,Departamento de Reproducción Animal, INIA, Madrid, Spain
| | | | - John A Browne
- Animal and Crops Sciences, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | - Pat Lonergan
- Animal and Crops Sciences, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
26
|
Adam RJ, Paterson MR, Wardecke L, Hoffmann BR, Kriegel AJ. Functionally Essential Tubular Proteins Are Lost to Urine-Excreted, Large Extracellular Vesicles during Chronic Renal Insufficiency. ACTA ACUST UNITED AC 2020; 1:1105-1115. [PMID: 34263177 DOI: 10.34067/kid.0001212020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background The 5/6 nephrectomy (5/6Nx) rat model recapitulates many elements of human CKD. Within weeks of surgery, 5/6Nx rats spontaneously exhibit proximal tubular damage, including the production of very large extracellular vesicles and brush border shedding. We hypothesized that production and elimination of these structures, termed large renal tubular extracellular vesicles (LRT-EVs), into the urine represents a pathologic mechanism by which essential tubule proteins are lost. Methods LRT-EVs were isolated from 5/6Nx rat urine 10 weeks after surgery. LRT-EV diameters were measured. LRT-EV proteomic analysis was performed by tandem mass spectrometry. Data are available via the ProteomeXchange Consortium with identifier PXD019207. Kidney tissue pathology was evaluated by trichrome staining, TUNEL staining, and immunohistochemistry. Results LRT-EV size and a lack of TUNEL staining in 5/6Nx rats suggest LRT-EVs to be distinct from exosomes, microvesicles, and apoptotic bodies. LRT-EVs contained many proximal tubule proteins that, upon disruption, are known to contribute to CKD pathologic hallmarks. Select proteins included aquaporin 1, 16 members of the solute carrier family, basolateral Na+/K+-ATPase subunit ATP1A1, megalin, cubilin, and sodium-glucose cotransporters (SLC5A1 and SLC5A2). Histologic analysis confirmed the presence of apical membrane proteins in LRT-EVs and brush border loss in 5/6Nx rats. Conclusions This study provides comprehensive proteomic analysis of a previously unreported category of extracellular vesicles associated with chronic renal stress. Because LRT-EVs contain proteins responsible for essential renal functions known to be compromised in CKD, their formation and excretion may represent an underappreciated pathogenic mechanism.
Collapse
Affiliation(s)
- Ryan J Adam
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mark R Paterson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Lukus Wardecke
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brian R Hoffmann
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Max McGee National Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
27
|
Peters LJF, Floege J, Biessen EAL, Jankowski J, van der Vorst EPC. MicroRNAs in Chronic Kidney Disease: Four Candidates for Clinical Application. Int J Mol Sci 2020; 21:6547. [PMID: 32906849 PMCID: PMC7555601 DOI: 10.3390/ijms21186547] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
There are still major challenges regarding the early diagnosis and treatment of chronic kidney disease (CKD), which is in part due to the fact that its pathophysiology is very complex and not clarified in detail. The diagnosis of CKD commonly is made after kidney damage has occurred. This highlights the need for better mechanistic insight into CKD as well as improved clinical tools for both diagnosis and treatment. In the last decade, many studies have focused on microRNAs (miRs) as novel diagnostic tools or clinical targets. MiRs are small non-coding RNA molecules that are involved in post-transcriptional gene regulation and many have been studied in CKD. A wide array of pre-clinical and clinical studies have highlighted the potential role for miRs in the pathogenesis of hypertensive nephropathy, diabetic nephropathy, glomerulonephritis, kidney tubulointerstitial fibrosis, and some of the associated cardiovascular complications. In this review, we will provide an overview of the miRs studied in CKD, especially highlighting miR-103a-3p, miR-192-5p, the miR-29 family and miR-21-5p as these have the greatest potential to result in novel therapeutic and diagnostic strategies.
Collapse
Affiliation(s)
- Linsey J. F. Peters
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.J.F.P.); (E.A.L.B.); (J.J.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University Hospital, 52074 Aachen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Jürgen Floege
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| | - Erik A. L. Biessen
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.J.F.P.); (E.A.L.B.); (J.J.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.J.F.P.); (E.A.L.B.); (J.J.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.J.F.P.); (E.A.L.B.); (J.J.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University Hospital, 52074 Aachen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| |
Collapse
|
28
|
Bi X, Yang K, Zhang B, Zhao J. The Protective Role of Klotho in CKD-Associated Cardiovascular Disease. KIDNEY DISEASES 2020; 6:395-406. [PMID: 33313060 DOI: 10.1159/000509369] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
Background Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality in advanced CKD. The major pathological changes of CKD-associated CVD are severe vascular media calcification, aberrant cardiac remodeling such as hypertrophy and fibrosis, as well as accelerated atherosclerosis. α-Klotho is proposed as an anti-aging gene, which is primarily expressed in the kidney. Recent studies reveal that α-Klotho deficiency is associated with profound cardiovascular dysfunction. Of note, CKD represents extremely declined α-Klotho levels, hinting that α-Klotho deficiency may be implicated in the pathogenesis of CKD-associated CVD. Summary Based on the pathogenic mechanism of α-Klotho deficiency and decreased Klotho levels in the circulation even early in stage 1 of CKD, α-Klotho serves as a sensitive biomarker for renal insufficiency and also a novel predictor of risk of overall mortality of CVD events in CKD. Meanwhile, loss of Klotho resulted from kidney dysfunction markedly contributes to the progressive development of CKD and CVD. By contrast, prevention of Klotho decline using exogenous supplementation or genetically activated ways by several mechanisms can dramatically mitigate cardiac dysfunction, prevent vascular calcification, and retard the progression of CKD-accelerated atherosclerosis. Key Messages Klotho deficiency is proposed as a novel predictive biomarker as well as a pathogenic contributor to CVD events in CKD. In the future, Klotho may be a crucial potential therapeutic strategy to decrease the burden of CVD comorbidity with CKD in clinics.
Collapse
Affiliation(s)
- Xianjin Bi
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ke Yang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bo Zhang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jinghong Zhao
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
29
|
Szpirer C. Rat models of human diseases and related phenotypes: a systematic inventory of the causative genes. J Biomed Sci 2020; 27:84. [PMID: 32741357 PMCID: PMC7395987 DOI: 10.1186/s12929-020-00673-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
The laboratory rat has been used for a long time as the model of choice in several biomedical disciplines. Numerous inbred strains have been isolated, displaying a wide range of phenotypes and providing many models of human traits and diseases. Rat genome mapping and genomics was considerably developed in the last decades. The availability of these resources has stimulated numerous studies aimed at discovering causal disease genes by positional identification. Numerous rat genes have now been identified that underlie monogenic or complex diseases and remarkably, these results have been translated to the human in a significant proportion of cases, leading to the identification of novel human disease susceptibility genes, helping in studying the mechanisms underlying the pathological abnormalities and also suggesting new therapeutic approaches. In addition, reverse genetic tools have been developed. Several genome-editing methods were introduced to generate targeted mutations in genes the function of which could be clarified in this manner [generally these are knockout mutations]. Furthermore, even when the human gene causing a disease had been identified without resorting to a rat model, mutated rat strains (in particular KO strains) were created to analyze the gene function and the disease pathogenesis. Today, over 350 rat genes have been identified as underlying diseases or playing a key role in critical biological processes that are altered in diseases, thereby providing a rich resource of disease models. This article is an update of the progress made in this research and provides the reader with an inventory of these disease genes, a significant number of which have similar effects in rat and humans.
Collapse
Affiliation(s)
- Claude Szpirer
- Université Libre de Bruxelles, B-6041, Gosselies, Belgium.
- , Waterloo, Belgium.
| |
Collapse
|
30
|
Mimura I. Are women more susceptible to renal dysfunction than men? Kidney Int 2020; 96:1275-1277. [PMID: 31759485 DOI: 10.1016/j.kint.2019.08.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 10/25/2022]
Abstract
Is there any difference in sensitivity to kidney function between men and women? Paterson et al. have focused on sex differences in chronic kidney disease. Surprisingly, their experimental results show that only one microRNA, miR-146b-5p, affected the susceptibility of renocardiac pathology. They generated miR-146b knockout rats and found that miR-146b-/- females developed exacerbated renal hypertrophy and fibrosis and had less cardiac remodeling. Although miR-146b-5p has been reported to be upregulated in various types of cancers, this article reveals the novel role of miR-146b in the kidney.
Collapse
Affiliation(s)
- Imari Mimura
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
31
|
Hemker SL, Cerqueira DM, Bodnar AJ, Cargill KR, Clugston A, Anslow MJ, Sims-Lucas S, Kostka D, Ho J. Deletion of hypoxia-responsive microRNA-210 results in a sex-specific decrease in nephron number. FASEB J 2020; 34:5782-5799. [PMID: 32141129 DOI: 10.1096/fj.201902767r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/06/2020] [Accepted: 02/19/2020] [Indexed: 12/25/2022]
Abstract
Low nephron number results in an increased risk of developing hypertension and chronic kidney disease. Intrauterine growth restriction is associated with a nephron deficit in humans, and is commonly caused by placental insufficiency, which results in fetal hypoxia. The underlying mechanisms by which hypoxia impacts kidney development are poorly understood. microRNA-210 is the most consistently induced microRNA in hypoxia and is known to promote cell survival in a hypoxic environment. In this study, the role of microRNA-210 in kidney development was evaluated using a global microRNA-210 knockout mouse. A male-specific 35% nephron deficit in microRNA-210 knockout mice was observed. Wnt/β-catenin signaling, a pathway crucial for nephron differentiation, was misregulated in male kidneys with increased expression of the canonical Wnt target lymphoid enhancer binding factor 1. This coincided with increased expression of caspase-8-associated protein 2, a known microRNA-210 target and apoptosis signal transducer. Together, these data are consistent with a sex-specific requirement for microRNA-210 in kidney development.
Collapse
Affiliation(s)
- Shelby L Hemker
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Débora M Cerqueira
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew J Bodnar
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Kasey R Cargill
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew Clugston
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.,Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Melissa J Anslow
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Sunder Sims-Lucas
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Dennis Kostka
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.,Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jacqueline Ho
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|