1
|
Franceschini N, Feldman DL, Berg JS, Besse W, Chang AR, Dahl NK, Gbadegesin R, Pollak MR, Rasouly HM, Smith RJH, Winkler CA, Gharavi AG. Advancing Genetic Testing in Kidney Diseases: Report From a National Kidney Foundation Working Group. Am J Kidney Dis 2024; 84:751-766. [PMID: 39033956 PMCID: PMC11585423 DOI: 10.1053/j.ajkd.2024.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 07/23/2024]
Abstract
About 37 million people in the United States have chronic kidney disease, a disease that encompasses multiple causes. About 10% or more of kidney diseases in adults and as many as 70% of selected chronic kidney diseases in children are expected to be explained by genetic causes. Despite the advances in genetic testing and an increasing understanding of the genetic bases of certain kidney diseases, genetic testing in nephrology lags behind other medical fields. More understanding of the benefits and logistics of genetic testing is needed to advance the implementation of genetic testing in chronic kidney diseases. Accordingly, the National Kidney Foundation convened a Working Group of experts with diverse expertise in genetics, nephrology, and allied fields to develop recommendations for genetic testing for monogenic disorders and to identify genetic risk factors for oligogenic and polygenic causes of kidney diseases. Algorithms for clinical decision making on genetic testing and a road map for advancing genetic testing in kidney diseases were generated. An important aspect of this initiative was the use of a modified Delphi process to reach group consensus on the recommendations. The recommendations and resources described herein provide support to nephrologists and allied health professionals to advance the use of genetic testing for diagnosis and screening of kidney diseases.
Collapse
|
2
|
Xu X, Khunsriraksakul C, Eales JM, Rubin S, Scannali D, Saluja S, Talavera D, Markus H, Wang L, Drzal M, Maan A, Lay AC, Prestes PR, Regan J, Diwadkar AR, Denniff M, Rempega G, Ryszawy J, Król R, Dormer JP, Szulinska M, Walczak M, Antczak A, Matías-García PR, Waldenberger M, Woolf AS, Keavney B, Zukowska-Szczechowska E, Wystrychowski W, Zywiec J, Bogdanski P, Danser AHJ, Samani NJ, Guzik TJ, Morris AP, Liu DJ, Charchar FJ, Tomaszewski M. Genetic imputation of kidney transcriptome, proteome and multi-omics illuminates new blood pressure and hypertension targets. Nat Commun 2024; 15:2359. [PMID: 38504097 PMCID: PMC10950894 DOI: 10.1038/s41467-024-46132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
Genetic mechanisms of blood pressure (BP) regulation remain poorly defined. Using kidney-specific epigenomic annotations and 3D genome information we generated and validated gene expression prediction models for the purpose of transcriptome-wide association studies in 700 human kidneys. We identified 889 kidney genes associated with BP of which 399 were prioritised as contributors to BP regulation. Imputation of kidney proteome and microRNAome uncovered 97 renal proteins and 11 miRNAs associated with BP. Integration with plasma proteomics and metabolomics illuminated circulating levels of myo-inositol, 4-guanidinobutanoate and angiotensinogen as downstream effectors of several kidney BP genes (SLC5A11, AGMAT, AGT, respectively). We showed that genetically determined reduction in renal expression may mimic the effects of rare loss-of-function variants on kidney mRNA/protein and lead to an increase in BP (e.g., ENPEP). We demonstrated a strong correlation (r = 0.81) in expression of protein-coding genes between cells harvested from urine and the kidney highlighting a diagnostic potential of urinary cell transcriptomics. We uncovered adenylyl cyclase activators as a repurposing opportunity for hypertension and illustrated examples of BP-elevating effects of anticancer drugs (e.g. tubulin polymerisation inhibitors). Collectively, our studies provide new biological insights into genetic regulation of BP with potential to drive clinical translation in hypertension.
Collapse
Affiliation(s)
- Xiaoguang Xu
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | | | - James M Eales
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Sebastien Rubin
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - David Scannali
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Sushant Saluja
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - David Talavera
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Havell Markus
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Lida Wang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Maciej Drzal
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Akhlaq Maan
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Abigail C Lay
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Priscilla R Prestes
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
| | - Jeniece Regan
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Avantika R Diwadkar
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Matthew Denniff
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Grzegorz Rempega
- Department of Urology, Medical University of Silesia, Katowice, Poland
| | - Jakub Ryszawy
- Department of Urology, Medical University of Silesia, Katowice, Poland
| | - Robert Król
- Department of General, Vascular and Transplant Surgery, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - John P Dormer
- Department of Cellular Pathology, University Hospitals of Leicester, Leicester, UK
| | - Monika Szulinska
- Department of Obesity, Metabolic Disorders Treatment and Clinical Dietetics, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Marta Walczak
- Department of Internal Diseases, Metabolic Disorders and Arterial Hypertension, Poznan University of Medical Sciences, Poznan, Poland
| | - Andrzej Antczak
- Department of Urology and Uro-oncology, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Pamela R Matías-García
- Institute of Epidemiology, Helmholtz Center Munich, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Center Munich, Neuherberg, Germany
- German Research Center for Cardiovascular Disease (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Melanie Waldenberger
- Institute of Epidemiology, Helmholtz Center Munich, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Center Munich, Neuherberg, Germany
- German Research Center for Cardiovascular Disease (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Royal Manchester Children's Hospital and Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Bernard Keavney
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust Manchester, Manchester Royal Infirmary, Manchester, UK
| | | | - Wojciech Wystrychowski
- Department of General, Vascular and Transplant Surgery, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Joanna Zywiec
- Department of Internal Medicine, Diabetology and Nephrology, Zabrze, Medical University of Silesia, Katowice, Poland
| | - Pawel Bogdanski
- Department of Obesity, Metabolic Disorders Treatment and Clinical Dietetics, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - A H Jan Danser
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Tomasz J Guzik
- Department of Internal Medicine, Jagiellonian University Medical College, Kraków, Poland
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Division of Musculoskeletal & Dermatological Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Dajiang J Liu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Fadi J Charchar
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK.
- Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust Manchester, Manchester Royal Infirmary, Manchester, UK.
| |
Collapse
|
3
|
Hughes O, Bentley AR, Breeze CE, Aguet F, Xu X, Nadkarni G, Sun Q, Lin BM, Gilliland T, Meyer MC, Du J, Raffield LM, Kramer H, Morton RW, Gouveia MH, Atkinson EG, Valladares-Salgado A, Wacher-Rodarte N, Dueker ND, Guo X, Hai Y, Adeyemo A, Best LG, Cai J, Chen G, Chong M, Doumatey A, Eales J, Goodarzi MO, Ipp E, Irvin MR, Jiang M, Jones AC, Kooperberg C, Krieger JE, Lange EM, Lanktree MB, Lash JP, Lotufo PA, Loos RJF, Ha My VT, Peralta-Romero J, Qi L, Raffel LJ, Rich SS, Rodriquez EJ, Tarazona-Santos E, Taylor KD, Umans JG, Wen J, Young BA, Yu Z, Zhang Y, Ida Chen YD, Rundek T, Rotter JI, Cruz M, Fornage M, Lima-Costa MF, Pereira AC, Paré G, Natarajan P, Cole SA, Carson AP, Lange LA, Li Y, Perez-Stable EJ, Do R, Charchar FJ, Tomaszewski M, Mychaleckyj JC, Rotimi C, Morris AP, Franceschini N. Genome-wide study investigating effector genes and polygenic prediction for kidney function in persons with ancestry from Africa and the Americas. CELL GENOMICS 2024; 4:100468. [PMID: 38190104 PMCID: PMC10794846 DOI: 10.1016/j.xgen.2023.100468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/31/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024]
Abstract
Chronic kidney disease is a leading cause of death and disability globally and impacts individuals of African ancestry (AFR) or with ancestry in the Americas (AMS) who are under-represented in genome-wide association studies (GWASs) of kidney function. To address this bias, we conducted a large meta-analysis of GWASs of estimated glomerular filtration rate (eGFR) in 145,732 AFR and AMS individuals. We identified 41 loci at genome-wide significance (p < 5 × 10-8), of which two have not been previously reported in any ancestry group. We integrated fine-mapped loci with epigenomic and transcriptomic resources to highlight potential effector genes relevant to kidney physiology and disease, and reveal key regulatory elements and pathways involved in renal function and development. We demonstrate the varying but increased predictive power offered by a multi-ancestry polygenic score for eGFR and highlight the importance of population diversity in GWASs and multi-omics resources to enhance opportunities for clinical translation for all.
Collapse
Affiliation(s)
- Odessica Hughes
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles E Breeze
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA; UCL Cancer Institute, University College London, London, UK
| | - Francois Aguet
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xiaoguang Xu
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| | - Girish Nadkarni
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bridget M Lin
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas Gilliland
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mariah C Meyer
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jiawen Du
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Holly Kramer
- Division of Nephrology and Hypertension, Loyola University Chicago, Maywood, IL, USA
| | - Robert W Morton
- Population Health Research Institute, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Mateus H Gouveia
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth G Atkinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Adan Valladares-Salgado
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Niels Wacher-Rodarte
- Unidad de Investigación Médica en Epidemiologia Clinica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Nicole D Dueker
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA
| | - Yang Hai
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA
| | - Adebowale Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lyle G Best
- Missouri Breaks Industries Research Inc., Eagle Butte, SD, USA
| | - Jianwen Cai
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Guanjie Chen
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael Chong
- Population Health Research Institute, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Ayo Doumatey
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - James Eales
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Eli Ipp
- Division of Endocrinology and Metabolism, Department of Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Marguerite Ryan Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Minzhi Jiang
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alana C Jones
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jose E Krieger
- Laboratório de Genética e Cardiologia Molecular do Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ethan M Lange
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew B Lanktree
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - James P Lash
- Division of Nephrology, Department of Medicine, University of Illinois, Chicago, IL, USA
| | - Paulo A Lotufo
- Center for Clinical and Epidemiological Research, Hospital Universitário, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Ruth J F Loos
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vy Thi Ha My
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jesús Peralta-Romero
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Lihong Qi
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA, USA
| | - Leslie J Raffel
- Department of Pediatrics, Genetic and Genomic Medicine, University of California, Irvine, Irvine, CA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Erik J Rodriquez
- Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eduardo Tarazona-Santos
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA
| | - Jason G Umans
- MedStar Health Research Institute, Hyattsville MD and Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC, USA
| | - Jia Wen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bessie A Young
- University of Washington School of Medicine, Seattle, WA, USA; Office of Healthcare Equity, UW Justice, Equity, Diversity, and Inclusion Center for Transformational Research (UW JEDI-CTR), University of Washington, Seattle, WA, USA; Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA, USA; Kidney Research Institute, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Zhi Yu
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
| | - Ying Zhang
- Center for American Indian Health Research, Department of Biostatistics and Epidemiology, Hudson College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma, OK, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA
| | - Tanja Rundek
- Department of Neurology, Epidemiology and Public Health, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA
| | - Miguel Cruz
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| | | | - Alexandre C Pereira
- Laboratório de Genética e Cardiologia Molecular do Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Aging Division, Brigham Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Guillaume Paré
- Population Health Research Institute, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Pradeep Natarajan
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Shelley A Cole
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - April P Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Leslie A Lange
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eliseo J Perez-Stable
- National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| | - Ron Do
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fadi J Charchar
- School of Science, Psychology and Sport, Federation University, Ballarat, VIC, Australia; Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; Department of Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK; Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Josyf C Mychaleckyj
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA, USA
| | - Charles Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK.
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Ghasemi S, Wuttke M. Genetic Association Analysis of Chronic Kidney Disease Progression in a Small Korean Cohort Study. J Am Soc Nephrol 2023; 34:729-731. [PMID: 37126668 PMCID: PMC10371272 DOI: 10.1681/asn.0000000000000110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Affiliation(s)
- Sahar Ghasemi
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
| | - Matthias Wuttke
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Dauda B, Molina SJ, Allen DS, Fuentes A, Ghosh N, Mauro M, Neale BM, Panofsky A, Sohail M, Zhang SR, Lewis ACF. Ancestry: How researchers use it and what they mean by it. Front Genet 2023; 14:1044555. [PMID: 36755575 PMCID: PMC9900027 DOI: 10.3389/fgene.2023.1044555] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
Background: Ancestry is often viewed as a more objective and less objectionable population descriptor than race or ethnicity. Perhaps reflecting this, usage of the term "ancestry" is rapidly growing in genetics research, with ancestry groups referenced in many situations. The appropriate usage of population descriptors in genetics research is an ongoing source of debate. Sound normative guidance should rest on an empirical understanding of current usage; in the case of ancestry, questions about how researchers use the concept, and what they mean by it, remain unanswered. Methods: Systematic literature analysis of 205 articles at least tangentially related to human health from diverse disciplines that use the concept of ancestry, and semi-structured interviews with 44 lead authors of some of those articles. Results: Ancestry is relied on to structure research questions and key methodological approaches. Yet researchers struggle to define it, and/or offer diverse definitions. For some ancestry is a genetic concept, but for many-including geneticists-ancestry is only tangentially related to genetics. For some interviewees, ancestry is explicitly equated to ethnicity; for others it is explicitly distanced from it. Ancestry is operationalized using multiple data types (including genetic variation and self-reported identities), though for a large fraction of articles (26%) it is impossible to tell which data types were used. Across the literature and interviews there is no consistent understanding of how ancestry relates to genetic concepts (including genetic ancestry and population structure), nor how these genetic concepts relate to each other. Beyond this conceptual confusion, practices related to summarizing patterns of genetic variation often rest on uninterrogated conventions. Continental labels are by far the most common type of label applied to ancestry groups. We observed many instances of slippage between reference to ancestry groups and racial groups. Conclusion: Ancestry is in practice a highly ambiguous concept, and far from an objective counterpart to race or ethnicity. It is not uniquely a "biological" construct, and it does not represent a "safe haven" for researchers seeking to avoid evoking race or ethnicity in their work. Distinguishing genetic ancestry from ancestry more broadly will be a necessary part of providing conceptual clarity.
Collapse
Affiliation(s)
- Bege Dauda
- Center for Global Genomics and Health Equity, University of Pennsylvania, Philadelphia, PA, United States
| | - Santiago J. Molina
- Department of Sociology, Northwestern University, Evanston, IL, United States
| | - Danielle S. Allen
- Edmond & Lily Safra Center for Ethics, Harvard University, Cambridge, MA, United States
| | - Agustin Fuentes
- Department of Anthropology, Princeton University, Princeton, NJ, United States
| | - Nayanika Ghosh
- Department of the History of Science, Harvard University, Cambridge, MA, United States
| | - Madelyn Mauro
- Edmond & Lily Safra Center for Ethics, Harvard University, Cambridge, MA, United States
| | - Benjamin M. Neale
- Broad Institute of Harvard and MIT, Cambridge, MA, United States
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, United States
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Aaron Panofsky
- Institute for Society & Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Public Policy, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Sociology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mashaal Sohail
- Centro de Ciencias Genomicas (CCG), Universidad Nacional Autonoma de Mexico (UNAM), Cuernavaca, Morelos, Mexico
| | - Sarah R. Zhang
- University of California, Berkeley, Berkeley, CA, United States
| | - Anna C. F. Lewis
- Edmond & Lily Safra Center for Ethics, Harvard University, Cambridge, MA, United States
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
6
|
Genetics in chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 2022; 101:1126-1141. [PMID: 35460632 PMCID: PMC9922534 DOI: 10.1016/j.kint.2022.03.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/16/2022] [Accepted: 03/29/2022] [Indexed: 01/19/2023]
Abstract
Numerous genes for monogenic kidney diseases with classical patterns of inheritance, as well as genes for complex kidney diseases that manifest in combination with environmental factors, have been discovered. Genetic findings are increasingly used to inform clinical management of nephropathies, and have led to improved diagnostics, disease surveillance, choice of therapy, and family counseling. All of these steps rely on accurate interpretation of genetic data, which can be outpaced by current rates of data collection. In March of 2021, Kidney Diseases: Improving Global Outcomes (KDIGO) held a Controversies Conference on "Genetics in Chronic Kidney Disease (CKD)" to review the current state of understanding of monogenic and complex (polygenic) kidney diseases, processes for applying genetic findings in clinical medicine, and use of genomics for defining and stratifying CKD. Given the important contribution of genetic variants to CKD, practitioners with CKD patients are advised to "think genetic," which specifically involves obtaining a family history, collecting detailed information on age of CKD onset, performing clinical examination for extrarenal symptoms, and considering genetic testing. To improve the use of genetics in nephrology, meeting participants advised developing an advanced training or subspecialty track for nephrologists, crafting guidelines for testing and treatment, and educating patients, students, and practitioners. Key areas of future research, including clinical interpretation of genome variation, electronic phenotyping, global representation, kidney-specific molecular data, polygenic scores, translational epidemiology, and open data resources, were also identified.
Collapse
|
7
|
Fatumo S, Chikowore T, Kalyesubula R, Nsubuga RN, Asiki G, Nashiru O, Seeley J, Crampin AC, Nitsch D, Smeeth L, Kaleebu P, Burgess S, Nyirenda M, Franceschini N, Morris AP, Tomlinson L, Newton R. Discovery and fine-mapping of kidney function loci in first genome-wide association study in Africans. Hum Mol Genet 2021; 30:1559-1568. [PMID: 33783510 PMCID: PMC8330895 DOI: 10.1093/hmg/ddab088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/03/2021] [Accepted: 03/19/2021] [Indexed: 01/30/2023] Open
Abstract
Genome-wide association studies (GWAS) of kidney function have uncovered hundreds of loci, primarily in populations of European ancestry. We have undertaken the first continental African GWAS of estimated glomerular filtration rate (eGFR), a measure of kidney function used to define chronic kidney disease (CKD). We conducted GWAS of eGFR in 3288 East Africans from the Uganda General Population Cohort (GPC) and replicated in 8224 African Americans from the Women's Health Initiative. Loci attaining genome-wide significant evidence for association (P < 5 × 10-8) were followed up with Bayesian fine-mapping to localize potential causal variants. The predictive power of a genetic risk score (GRS) constructed from previously reported trans-ancestry eGFR lead single nucleotide polymorphism (SNPs) was evaluated in the Uganda GPC. We identified and validated two eGFR loci. At the glycine amidinotransferase (GATM) locus, the association signal (lead SNP rs2433603, P = 1.0 × 10-8) in the Uganda GPC GWAS was distinct from previously reported signals at this locus. At the haemoglobin beta (HBB) locus, the association signal (lead SNP rs141845179, P = 3.0 × 10-8) has been previously reported. The lead SNP at the HBB locus accounted for 88% of the posterior probability of causality after fine-mapping, but did not colocalise with kidney expression quantitative trait loci. The trans-ancestry GRS of eGFR was not significantly predictive into the Ugandan population. In the first GWAS of eGFR in continental Africa, we validated two previously reported loci at GATM and HBB. At the GATM locus, the association signal was distinct from that previously reported. These results demonstrate the value of performing GWAS in continental Africans, providing a rich genomic resource to larger consortia for further discovery and fine-mapping. The study emphasizes that additional large-scale efforts in Africa are warranted to gain further insight into the genetic architecture of CKD.
Collapse
Affiliation(s)
- Segun Fatumo
- Non-Communicable Disease Theme, MRC/UVRI and LSHTM, Entebbe, Uganda
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine London, London, UK
- H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria
| | - Tinashe Chikowore
- MRC/Wits Developmental Pathways for Health Research Unit, Department of Pediatrics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Robert Kalyesubula
- Non-Communicable Disease Theme, MRC/UVRI and LSHTM, Entebbe, Uganda
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine London, London, UK
- Departments of Physiology and Internal Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | | | - Gershim Asiki
- Health and Systems for Health Research Unit, African Population and Health Research Center, Nairobi, Kenya
| | - Oyekanmi Nashiru
- H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria
| | - Janet Seeley
- Non-Communicable Disease Theme, MRC/UVRI and LSHTM, Entebbe, Uganda
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine London, London, UK
| | - Amelia C Crampin
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine London, London, UK
| | - Dorothea Nitsch
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine London, London, UK
| | - Liam Smeeth
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine London, London, UK
| | - Pontiano Kaleebu
- Non-Communicable Disease Theme, MRC/UVRI and LSHTM, Entebbe, Uganda
| | - Stephen Burgess
- Department of Public Health and Primary Care & MRC Biostatistics Unit, University of Cambridge, UK
| | - Moffat Nyirenda
- Non-Communicable Disease Theme, MRC/UVRI and LSHTM, Entebbe, Uganda
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine London, London, UK
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester, UK
| | - Laurie Tomlinson
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine London, London, UK
| | - Robert Newton
- Non-Communicable Disease Theme, MRC/UVRI and LSHTM, Entebbe, Uganda
| |
Collapse
|