1
|
Gross O, Boeckhaus J, Weber LT, Heerspink HJL, Simon JF, Ahmed R, Gerst C, Duerr U, Walker F, Tostmann R, Helm J, Asendorf T, Friede T. Protocol and rationale for a randomized controlled SGLT2 inhibitor trial in paediatric and young adult populations with chronic kidney disease: DOUBLE PRO-TECT Alport. Nephrol Dial Transplant 2025; 40:679-687. [PMID: 39122650 PMCID: PMC11960741 DOI: 10.1093/ndt/gfae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Clinical trials have demonstrated positive cardiovascular and kidney outcomes of sodium-glucose co-transporter 2 (SGLT2) inhibitors in adult patients with diabetic and other chronic kidney diseases (CKDs). Whether benefits extend to children, teenagers and young adults with early-stage CKD is unknown. For this reason, the DOUBLE PRO-TECT Alport trial (NCT05944016) will study the progression of albuminuria in young patients with Alport syndrome (AS), the most common hereditary CKD, to assess the safety and efficacy of the SGLT2 inhibitor dapagliflozin. Patients living with AS and chronically elevated albuminuria have a high risk of kidney failure before the age of 50 years. METHODS DOUBLE PRO-TECT Alport is a multicentre, randomized, double-blind, placebo-controlled trial. Participants (ages 10-39 years) must have a diagnosis of AS by genetic testing or kidney biopsy, be on a stable (>3 months) maximum tolerated dose of a renin-angiotensin system inhibitor and have a urinary albumin:creatinine ratio (UACR) of >300 mg/g (paediatric) or >500 mg/g (adult).Eligible participants will be randomly assigned at a 2:1 ratio to 48 weeks of treatment with dapaglifozin 10 mg/day or matched placebo. Most participants are expected to be children with a normal estimated glomerular filtration rate (eGFR). In addition to safety, the primary (change in UACR from baseline to week 48) and key secondary (eGFR change from baseline to week 52) efficacy outcomes will be analysed with a mixed model repeated measures approach. Efficacy analyses will be performed primarily in the full analysis set according to the intention-to-treat principle. A sensitivity analysis will be performed using reference-based multiple imputation. CONCLUSION DOUBLE PRO-TECT Alport will assess whether SGLT2 inhibitors can safely reduce the UACR change from baseline as a marker for progression of CKD in young patients living with AS.
Collapse
Affiliation(s)
- Oliver Gross
- Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Jan Boeckhaus
- Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Lutz T Weber
- Pediatric Nephrology, Children's and Adolescents’ Hospital, University Hospital of Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - James F Simon
- Department of Kidney Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Rees Ahmed
- Legal Department, University Medical Center Göttingen, Göttingen, Germany
| | - Christoph Gerst
- Legal Department, University Medical Center Göttingen, Göttingen, Germany
| | - Ulrike Duerr
- Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
- Clinical Trials Unit, University Medical Center Göttingen, Göttingen, Germany
| | - Florian Walker
- Clinical Trials Unit, University Medical Center Göttingen, Göttingen, Germany
| | - Ralf Tostmann
- Clinical Trials Unit, University Medical Center Göttingen, Göttingen, Germany
| | - Jürgen Helm
- Clinical Trials Unit, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Asendorf
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Tim Friede
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Suzuki R, Sakakibara N, Murakami S, Ichikawa Y, Kitakado H, Ueda C, Tanaka Y, Okada E, Kondo A, Aoto Y, Ishiko S, Ishimori S, Nagano C, Yamamura T, Horinouchi T, Okamoto T, Nozu K. Genotype and X-chromosome inactivation are associated with disease severity in females with X-linked Alport syndrome. Nephrol Dial Transplant 2025; 40:688-695. [PMID: 39134512 DOI: 10.1093/ndt/gfae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Male patients with X-linked Alport syndrome (XLAS) generally develop end-stage kidney disease in early or middle adulthood and show distinct genotype-phenotype correlations. However, female patients show various phenotypes ranging from asymptomatic to severe with no genotype-phenotype correlations. The factors affecting the severity of XLAS in female patients are unclear. Since X-chromosome inactivation (XCI) affects the severity of certain female X-linked diseases, we investigated whether genotype and XCI were associated with XLAS severity in female patients in a large Japanese cohort. METHODS Among 139 female patients with genetically diagnosed XLAS at our institution, we conducted XCI analysis on peripheral blood leucocytes using the human androgen receptor assay method and analysed two cohorts. In 74 adult female patients we evaluated the correlation between kidney function [creatinine estimated glomerular filtration rate (Cr-eGFR) optimized for Japanese individuals] and genotype/XCI using multivariable linear regression analysis and in 65 paediatric female patients we evaluated the correlation between kidney function (Cr-eGFR optimized for Japanese individuals) and genotype/XCI using multivariable linear regression analysis. We also investigated the correlation between the development of proteinuria (urine protein:creatinine ratio above normal for the patient's age) and genotype/XCI using multivariable Cox proportional hazards analysis. RESULTS In adult female patients, the XCI pattern was significantly associated with Cr-eGFR (regression coefficient estimate -0.53, P = .004), whereas genotype was not (P = .892). In paediatric female patients, both genotype and XCI pattern were significant independent risk factors for the development of proteinuria {hazard ratio [HR] 3.702 [95% confidence interval (CI) 1.681-8.150], P = .001 and HR 1.043 [95% CI 1.061-1.070], P = .001, respectively}, whereas both genotype and XCI pattern were not associated with Cr-eGFR (P = .20 and P = .67, respectively). CONCLUSION Genotype and XCI are factors associated with severity in females with XLAS.
Collapse
Affiliation(s)
- Ryota Suzuki
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Nana Sakakibara
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Sae Murakami
- Clinical and Translational Research Center, Kobe University Hospital , Kobe, Japan
| | - Yuta Ichikawa
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hideaki Kitakado
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Chika Ueda
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yu Tanaka
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Eri Okada
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Atsushi Kondo
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuya Aoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinya Ishiko
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shingo Ishimori
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayuki Okamoto
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan and
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
3
|
Ng NSL, Yamamura T, Shenoy M, Stuart HM, Lennon R. Detection of Alport gene variants in children and young people with persistent haematuria. Pediatr Nephrol 2025; 40:719-729. [PMID: 39349776 PMCID: PMC11746956 DOI: 10.1007/s00467-024-06538-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/10/2024] [Accepted: 09/04/2024] [Indexed: 01/21/2025]
Abstract
BACKGROUND Genetic kidney disease is an important cause of persistent microscopic haematuria in children and young people. We aimed to determine the frequency of variants in the Alport syndrome genes (COL4A3, COL4A4 or COL4A5) in individuals under 18 years of age presenting with persistent microscopic haematuria to a single specialist centre in the UK over a 10-year period. METHODS We conducted a retrospective longitudinal study of individuals referred to a tertiary paediatric nephrology service with persistent microscopic haematuria between April 2012 to 2022. RESULTS A total of 224 individuals (female 51.8%) were evaluated with persistent microscopic haematuria of greater than 6 months duration. The age at presentation was 7.5 ± 4.3 years (mean ± SD) with a duration of follow-up of 6.8 ± 4.6 years (mean ± SD). Targeted exome sequencing was performed in 134 individuals and 91 (68%) had a pathogenic or likely pathogenic variant in COL4A3, COL4A4 or COL4A5. Only 49.5% of individuals with identified variants had a family history of microscopic haematuria documented and 37.4% (34/91) had additional proteinuria at presentation. COL4A5 was the most common gene affected and missense variants affecting glycine residues were the most common variant type. CONCLUSION Over two-thirds of children and young people who underwent genetic testing had an identifiable genetic basis for their microscopic haematuria and over half did not have a documented family history. Genetic testing should be part of the evaluation of persistent microscopic haematuria despite a negative family history.
Collapse
Affiliation(s)
- Natasha Su Lynn Ng
- Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Oxford Road, Manchester, UK
| | - Tomohiko Yamamura
- Wellcome Centre for Cell-Matrix Research, Michael Smith Building, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Mohan Shenoy
- Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Oxford Road, Manchester, UK
| | - Helen M Stuart
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University Foundation NHS Trust, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Rachel Lennon
- Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Oxford Road, Manchester, UK.
- Wellcome Centre for Cell-Matrix Research, Michael Smith Building, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
4
|
Caparali EB, De Gregorio V, Barua M. Genotype-Based Molecular Mechanisms in Alport Syndrome. J Am Soc Nephrol 2025:00001751-990000000-00551. [PMID: 39899372 DOI: 10.1681/asn.0000000647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/29/2025] [Indexed: 02/05/2025] Open
Abstract
Alport syndrome is an inherited disorder characterized by kidney disease, sensorineural hearing loss, and ocular abnormalities. Alport syndrome is caused by pathogenic variants in COL4A3 , COL4A4 , or COL4A5 , which encode the α 3, α 4, and α 5 chains of type 4 collagen that forms a heterotrimer expressed in the glomerular basement membrane. Knowledge of its genetic basis has informed the development of different models in dogs, mice, and rats that reflect its autosomal and X-linked inheritance patterns as well as different mutation types, including protein-truncating and missense variants. A key difference between these two types is the synthesis of α 3 α 4 α 5(IV), which is not made in autosomal Alport syndrome (two pathogenic variants in trans or biallelic) or male patients with X-linked Alport syndrome due to protein-truncating variants. By contrast, α 3 α 4 α 5(IV) is synthesized in Alport syndrome because of missense variants. For missense variants, in vitro studies suggest that these cause impaired type 4 collagen trafficking and endoplasmic reticulum stress. For protein-truncating variants, knockout models suggest that persistence of an immature α 1 α 1 α 2(IV) network is associated with biomechanical strain, which activates endothelin-A receptors leading to mesangial filopodia formation. Moreover, studies suggest that activation of collagen receptors, integrins and discoidin domain receptor 1, play a role in disease propagation. In this review, we provide an overview of how these genotype-phenotype mechanisms are key for a precision medicine-based approach in the future.
Collapse
Affiliation(s)
- Emine Bilge Caparali
- Department of Internal Medicine, University of Texas Southwestern, Dallas, Texas
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada
| | | | - Moumita Barua
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Chen D, Zhang L, Rao J, Zhou Y, Dai L, Huang S, Yang C, Bian Q, Zhang T, Yang X. Effects of a Novel COL4A3 Homozygous/Heterozygous Splicing Mutation on the Mild Phenotype in a Family With Autosomal Recessive Alport Syndrome and a Literature Review. Mol Genet Genomic Med 2025; 13:e70053. [PMID: 39924725 PMCID: PMC11807844 DOI: 10.1002/mgg3.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/08/2024] [Accepted: 12/31/2024] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Alport syndrome involves chronic progressive kidney failure and extrarenal organ damage caused by COL4A3, COL4A4, and COL4A5 mutations. METHODS We initially discerned a COL4A3 splicing mutation via next-generation sequencing. Next, we used bioinformatics, renal biopsy pathology, and an in vitro minigene experiment. Complementary analysis of clinical data was carried out, and we explored the expression and function of the variants to verify their pathogenicity. RESULTS A splicing mutation (c.687 + 1G > T) in COL4A3 was found in a Chinese family. Bioinformatics analysis revealed its impact on splicing, causing a translational frameshift, which was confirmed by an in vitro minigene assay. The proband's glomerular basement membrane displayed reduced type IV collagen α3, α4, and α5 chains, with some absent, suggesting disruption of collagen IV trimers in the glomerular basement membrane, potentially damaging the glomerular filtration barrier. CONCLUSION We present a novel finding of a previously unreported c.687 + 1G > T mutation in COL4A3 that disrupts transcription and translation, impairing α3α4α5 (IV) chain formation, altering the integrity of the glomerular basement membrane, causing hereditary Alport syndrome. This discovery enriches the genetic map of Alport syndrome, aiding in clinical genetic guidance, and enhancing the efficacy of prenatal testing.
Collapse
Affiliation(s)
- Dan Chen
- Department of PediatricsThe Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Children's Medical CenterGuiyangGuizhouChina
| | - Li Zhang
- Department of PediatricsThe Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Children's Medical CenterGuiyangGuizhouChina
| | - Jing Rao
- Department of PediatricsThe Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Children's Medical CenterGuiyangGuizhouChina
| | - Yan Zhou
- Department of PediatricsThe Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Children's Medical CenterGuiyangGuizhouChina
| | - Lujun Dai
- Department of PathologyThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Songsong Huang
- Department of PathologyThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Chunxia Yang
- Department of PediatricsThe Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Children's Medical CenterGuiyangGuizhouChina
| | - Qiuhan Bian
- Department of PediatricsThe Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Children's Medical CenterGuiyangGuizhouChina
| | - Tao Zhang
- Department of PediatricsThe Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Children's Medical CenterGuiyangGuizhouChina
| | - Xiaoyan Yang
- Department of PediatricsThe Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Children's Medical CenterGuiyangGuizhouChina
| |
Collapse
|
6
|
Kitakado H, Horinouchi T, Aoyama S, Kimura Y, Inoki Y, Tanaka Y, Ueda C, Aoto Y, Sakakibara N, Nagano C, Yamamura T, Ishimori S, Rossanti R, Matsuo M, Nozu K. COL4A5 Intronic Variants at Third to Fifth Nucleotides Cause Alport Syndrome. Kidney Int Rep 2025; 10:516-521. [PMID: 39990911 PMCID: PMC11843108 DOI: 10.1016/j.ekir.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/31/2024] [Accepted: 11/12/2024] [Indexed: 02/25/2025] Open
Abstract
Introduction Alport syndrome (AS) is an inherited kidney disease caused by variants in the COL4A3, COL4A4, or COL4A5 genes, resulting in type IV collagen abnormalities. Although autosomal dominant variants in COL4A3 and COL4A4 are increasingly being diagnosed, X-linked AS (XLAS) caused by COL4A5 variants predominates. Single nucleotide substitutions in introns positioned at first and second from the last nucleotide (called a consensus sequence) of exons always cause aberrant splicing. However, whether intronic variants at the third to fifth positions from the last nucleotide of exons can cause aberrant splicing is unclear. Methods We identified 11 intronic variants positioned at the third, fourth, and fifth nucleotides from the exon 3' end in COL4A5 from our AS cohort (January 2006-July 2022). We conducted in vitro splicing assays using minigenes and in silico splicing analysis using commercial splicing prediction software and evaluated mRNA sequences obtained from patients' samples when available. Results All 11 patients showed aberrant splicing patterns in the minigene splicing assays. In vivo analysis of 6 patients corroborated these findings. The commercial splicing prediction software accurately predicted splicing changes in 10 variants. Conclusions This study shows that 11 intronic variants at the third to fifth positions in COL4A5 introns cause aberrant splicing. This finding highlights the importance of evaluating such variants for the diagnosis and prognosis of XLAS. Further investigation is warranted to confirm the pathogenicity of these variants and their effect on the prognosis of the kidney in XLAS.
Collapse
Affiliation(s)
- Hideaki Kitakado
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shuhei Aoyama
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuka Kimura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuta Inoki
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yu Tanaka
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Chika Ueda
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuya Aoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Pediatrics, Hyogo Prefectural Harima-Himeji General Hospital Center, Himeji, Japan
| | - Nana Sakakibara
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shingo Ishimori
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Rini Rossanti
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Child Health, Nephrology Division, Dr. Hasan Sadikin General Hospital/Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Masafumi Matsuo
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
7
|
Huang HX, Tsai IJ, Greenbaum LA. Alport syndrome: Expanding diagnosis and treatment. Pediatr Neonatol 2025; 66 Suppl 1:S13-S17. [PMID: 39521677 DOI: 10.1016/j.pedneo.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Alport syndrome (AS) is the second common monogenic cause of end-stage kidney disease (ESKD) worldwide and is caused by defective type 4 collagen due to pathogenic variants of COL4A3, COL4A4, or COL4A5. Type 4 collagen also exists in the eyes and ears, and thus ocular defects and hearing loss occur in AS. The understanding of AS has expanded over the past two decades due to greater availability of genetic testing and research on genotype-phenotype correlation. Patients previously diagnosed with idiopathic steroid resistant nephrotic syndrome or ESKD of unknown etiology may now be diagnosed as AS if pathogenic COL4A3-5 variants are identified. Some carriers of heterozygous COL4A3-5 variants may now be classified into females with X-linked AS or autosomal dominant AS, if there are typical pathologic changes in the glomerular basement membrane or if there is proteinuria and progression of kidney disease. Lastly, it has been recommended that renin-angiotensin-aldosterone system inhibition be started as soon as possible for selected AS patients for its long-term protective effect against kidney function deterioration. The purpose of this review is to introduce these important concepts to general pediatricians and pediatric nephrologists.
Collapse
Affiliation(s)
- Hou-Xuan Huang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - I-Jung Tsai
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Larry A Greenbaum
- Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia.
| |
Collapse
|
8
|
Yamamura T, Nozu K. Exon Skipping Therapies for Rare Kidney Diseases. J Am Soc Nephrol 2025:00001751-990000000-00525. [PMID: 39774852 DOI: 10.1681/asn.0000000623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Affiliation(s)
- Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | | |
Collapse
|
9
|
Kawanishi K, Baba M, Kobayashi R, Hori R, Hashikami K, Danbayashi K, Iwachido T, Kato M. A Novel Deep Learning Approach for Analyzing Glomerular Basement Membrane Lesions in a Mouse Model of X-Linked Alport Syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:143-154. [PMID: 39427762 DOI: 10.1016/j.ajpath.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/09/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Alport syndrome is a rare kidney disease typically more severe in males due to its X-linked inheritance. However, female patients with heterozygous X-linked Alport syndrome (XLAS) can develop renal failure over time, necessitating accurate pathologic assessment for effective therapy. A key pathologic finding in female patients with XLAS is the mosaic pattern of partial loss of α5 chains of type IV collagen (COL4α5). This study, using a mouse model of XLAS with a nonsense mutation (R471∗) in the Col4a5 gene, analogous to human XLAS, aimed to examine the consistency of this pattern with the glomerular basement membrane (GBM) structure. A modified periodic acid-methenamine silver staining method was developed for clearer GBM visualization. The integrated images from COL4α5-stained fluorescence, periodic acid-methenamine silver, and low-vacuum scanning electron microscopy into a single-slide section and applied supervised deep learning to predict GBM lesions. Results showed significant individual variability in urinary protein levels and histologic lesions. Pathologic parameters, including crescent formation, focal segmental glomerulosclerosis, and the COL4α5/α2 ratio, correlated with clinical parameters like urinary protein and plasma creatinine levels. Integrated low-vacuum scanning electron microscopy analysis revealed dense GBM regions corresponded to areas where COL4α5 was preserved, whereas coarse GBM (basket-weave lesions) occurred in COL4α5-deficient regions. These advanced techniques can enhance biopsy-based diagnosis of Alport syndrome and aid in developing artificial intelligence diagnostic tools for diseases involving basement membrane lesions.
Collapse
Affiliation(s)
- Kunio Kawanishi
- Department of Experimental Pathology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan.
| | - Masaki Baba
- Department of Diagnostic Pathology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | | | - Ryotaro Hori
- Axcelead Drug Discovery Partners Inc., Fujisawa, Japan
| | | | | | | | - Mitsuyasu Kato
- Department of Experimental Pathology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
10
|
Zellers M, Solanki K, Kelly MA, Murphy KM, Retterer K, Kirchner HL, Bucaloiu ID, Moore B, Mirshahi T, Chang AR. Genotype-First Analysis in an Unselected Health System-Based Population and Phenotypic Severity of COL4A5 Variants. J Am Soc Nephrol 2024:00001751-990000000-00501. [PMID: 39625784 DOI: 10.1681/asn.0000000580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/27/2024] [Indexed: 12/11/2024] Open
Abstract
Background:
Our knowledge of X-linked Alport Syndrome comes mostly from selected cohorts with more severe disease.
Methods:
We examined the phenotypic spectrum of X-linked Alport Syndrome in males and females with a genotype-based approach using data from the Geisinger MyCode DiscovEHR study, an unselected health system-based cohort with exome sequencing and electronic health records. Patients with COL4A5 variants reported as pathogenic or likely pathogenic in ClinVar, or protein-truncating variants, were each matched with up to 5 controls without COL4A3/4/5 variants by sociodemographics, diabetes diagnosis, and year of first outpatient encounter. Phenotypes examined included dipstick hematuria, bilateral sensorineural hearing loss, proteinuria, decreased estimated glomerular filtration rate, and kidney failure.
Results:
Out of 170,856 patients, there were 29 hemizygous males (mean age 52 y [SD 20]) and 55 heterozygous females (mean age 59 y [SD 19]) with a pathogenic/likely pathogenic COL4A5 variant, including 48 with the hypomorphic variant p.Gly624Asp. Overall, penetrance (having any Alport Syndrome phenotypic feature) was highest for non-p.Gly624Asp variants (males: 94%, females: 85%), intermediate for p.Gly624Asp (males: 77%, females: 69%), compared to controls (males: 32%; females: 50%). The proportion with kidney failure was highest for males with non-p.Gly624Asp variants (44%), intermediate for males with p.Gly624Asp (15%) and females with non-p.Gly624Asp variants (10%), compared to controls (males: 3%, females 2%). Only 47% of individuals with COL4A5 had completed albuminuria screening, and a minority were taking renin-angiotensin aldosterone system inhibitors. Only 38% of males and 16% of females had a known diagnosis of Alport Syndrome or thin basement membrane disease.
Conclusions:
Using a genotype-first approach, we show that men and women with X-linked Alport Syndrome are at higher risk of related phenotypic features with a wider spectrum of severity than has been described previously and variability by genotype.
Collapse
Affiliation(s)
- McKenzie Zellers
- Geisinger Commonwealth School of Medicine, Scranton, Pennsylvania
| | - Kaushal Solanki
- Department of Population Health Sciences, Geisinger, Danville, Pennsylvania
| | - Melissa A Kelly
- Department of Genomic Health, Geisinger, Danville, Pennsylvania
| | | | | | - H Lester Kirchner
- Department of Population Health Sciences, Geisinger, Danville, Pennsylvania
| | | | - Bryn Moore
- Department of Genomic Health, Geisinger, Danville, Pennsylvania
| | - Tooraj Mirshahi
- Department of Genomic Health, Geisinger, Danville, Pennsylvania
| | - Alexander R Chang
- Department of Population Health Sciences, Geisinger, Danville, Pennsylvania
- Department of Nephrology, Geisinger, Danville, Pennsylvania
| |
Collapse
|
11
|
Boeckhaus J, Gale DP, Simon J, Ding J, Zhang Y, Bergmann C, Turner AN, Hall M, Sayer JA, Srivastava S, Kang HG, Cerkauskaite-Kerpauskiene A, Gillion V, Claes KJ, Krueger B, de Fallois J, Walden U, Choi M, Schueler M, Mueller RU, Todorova P, Hohenstein B, Zeisberg M, Friede T, Knebelmann B, Halbritter J, Gross O. SGLT2-Inhibition in Patients With Alport Syndrome. Kidney Int Rep 2024; 9:3490-3500. [PMID: 39698346 PMCID: PMC11652101 DOI: 10.1016/j.ekir.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/07/2024] [Accepted: 09/16/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction Large-scale trials showed positive outcomes of sodium-glucose cotransporter-2 inhibitors (SGLT2i) in adults with chronic kidney disease (CKD). Whether the use of SGLT2i is safe and effective in patients with the common hereditary CKD Alport syndrome (AS) has not yet been investigated specifically in larger cohorts. Methods This observational, multicenter, international study (NCT02378805) assessed 112 patients with AS after start of SGLT2i. The study's primary end point was change of albuminuria in albumin/g creatinine from the start of therapy. Results Compared to randomized trials investigating the effect of SGLT2i in CKD, the adult patients in this study were younger (aged 38 ± 14 years) and had a better estimated glomerular filtration rate (eGFR, 63 ± 35 ml/min per 1.73 m2; n = 98). Maximum follow-up was 32 months. Compared to baseline, at the first 3 follow-up visits (months 1 to 3, 4 to 8, and 9 to 15) after initiation of SGLT2i therapy, a significant reduction of albuminuria in mg albumin/g creatinine (>30%) was observed. Mean loss of eGFR was 9 ± 12 ml/min per 1.73 m2 almost 1 year after initiation of SGLT2i therapy (n = 35). At a total of 71 patient-years at risk, 0.24 adverse events (AEs) per patient-year on SGLT2i were reported. Conclusion This study indicates that, additive to renin-angiotensin system (RAS)-inhibition (RASi), SGLT2i have the potential to reduce the amount of albuminuria in patients with AS. Future studies are needed to investigate the long-term effects of SGLT2i on CKD progression in patients with AS to assess whether the observed reduction in albuminuria translates to a delay in kidney failure (KF).
Collapse
Affiliation(s)
- Jan Boeckhaus
- Clinic for Nephrology and Rheumatology, University Medical Center Goettingen, Germany
| | - Daniel P. Gale
- Department of Renal Medicine, University College London, London, UK
- National Registry of Rare Kidney Diseases, Bristol, UK
| | - James Simon
- Department of Kidney Medicine, Medical Specialties Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jie Ding
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yanqin Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | | | | | | | - John A. Sayer
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Renal Services, Newcastle upon Tyne National Health Service Foundation Trust, Newcastle upon Tyne, UK
- National Institute for Health Research Newcastle Biomedical Research Centre, Newcastle upon Tyne, UK
| | - Shalabh Srivastava
- South Tyneside and Sunderland NHS Foundation Trust, Sunderland, UK
- Newcastle University, Newcastle Upon Tyne, UK
| | - Hee Gyung Kang
- Departments of Pediatrics, Seoul National University Children’s Hospital, Seoul, Korea
- Departments of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | | | - Valentine Gillion
- Nephrology Department, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Kathleen J. Claes
- Department of Nephrology and Renal Transplantation, UZ Leuven, Leuven, Belgium
- Department of Microbiology, Immunology, and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Bastian Krueger
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Jonathan de Fallois
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Ulrike Walden
- Paediatric and Adolescent Medicine, University Medical Center Augsburg, Augsburg, Germany
| | - Mira Choi
- Department of Nephrology and Medical Intensive Care, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Schueler
- Department of Nephrology and Medical Intensive Care, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Roman-Ulrich Mueller
- Department II of Internal Medicine and Center for Rare Diseases Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Polina Todorova
- Department II of Internal Medicine and Center for Rare Diseases Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Bernd Hohenstein
- Nephrologisches Zentrum Villingen-Schwenningen, Villingen-Schwenningen, Germany
| | - Michael Zeisberg
- Clinic for Nephrology and Rheumatology, University Medical Center Goettingen, Germany
| | - Tim Friede
- Department of Medical Statistics, University Medical Center Goettingen, Goettingen, Germany
| | - Bertrand Knebelmann
- Faculté de médecine, Université Paris Cité, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Service de Néphrologie, Paris, France
| | - Jan Halbritter
- Department of Nephrology and Medical Intensive Care, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Gross
- Clinic for Nephrology and Rheumatology, University Medical Center Goettingen, Germany
| |
Collapse
|
12
|
Wang G, Liao M, Tan DJ, Chen X, Chao R, Zhu Y, Li P, Guan Y, Mao J, Hu L. Advances in Diagnosis and Treatment of Inherited Kidney Diseases in Children. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:558-572. [PMID: 39664340 PMCID: PMC11631113 DOI: 10.1159/000541564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/18/2024] [Indexed: 12/13/2024]
Abstract
Background Inherited kidney diseases (IKDs) in children pose unique diagnostic and therapeutic challenges. IKD significantly impact patient quality of life, morbidity, mortality, and cost to the healthcare system. With over 150 genetic abnormalities, they account for approximately 30% of cases requiring renal replacement therapy. There is an urgent need to advance both diagnosis and treatment strategies. In this review, we present recent advances in diagnosis and treatment for facilitating personalized treatment approaches. Summary The diagnostic landscape for IKDs have evolved significantly, emphasizing precise genetic identification and classification of these disorders. Recent advancements include the refinement of genetic testing techniques, such as whole exome sequencing, which has improved the accuracy of diagnosing specific diseases and facilitated early intervention strategies. Additionally, this review categorizes IKDs based on genetic abnormalities and clinical manifestations, enhancing understanding and management approaches. Finally, it summarizes the corresponding treatment, and lists the application of emerging therapeutic options such as gene therapy and organoids, which show promise in transforming treatment outcomes. Key Messages This review summarizes the common types of IKDs in children, including their diagnosis and treatment advances, and provides an update on the status of gene therapy development for these disorders.
Collapse
Affiliation(s)
- Guozhen Wang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengqiu Liao
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danny Junyi Tan
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ran Chao
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Zhu
- Eye Center of the Second Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pan Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Yuelin Guan
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lidan Hu
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Inoki Y, Horinouchi T, Yamamura T, Ishimori S, Ichikawa Y, Tanaka Y, Ueda C, Kitakado H, Kondo A, Sakakibara N, Nagano C, Nozu K. Clinical, Pathological, and Genetic Characteristics of Patients with Digenic Alport Syndrome. KIDNEY360 2024; 5:1510-1517. [PMID: 39137047 PMCID: PMC11556934 DOI: 10.34067/kid.0000000000000547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Key Points Patients with both COL4A3 and COL4A4 variants exhibited poor renal prognosis compared with those with autosomal dominant Alport syndrome. The proportion of patients with digenic Alport syndrome was 1.7% among all patients with Alport syndrome. Background Digenic Alport syndrome could be associated with poor renal prognosis. However, the characteristics of patients with digenic Alport syndrome remain ambiguous. Methods We retrospectively investigated the clinical symptoms, pathological findings, genetic variants, and proportions of patients with digenic Alport syndrome. The ages at detection of proteinuria and development of ESKD were compared between patients with digenic Alport syndrome with disease-causing variants in COL4A3 and COL4A4 and those with autosomal dominant Alport syndrome (ADAS) previously analyzed by our group. Results Eighteen patients from nine families with digenic variants in COL4A3 and COL4A4 and four male and five female patients with digenic variants in COL4A5 and COL4A3 or COL4A4 were enrolled in this study. Next-generation sequencing revealed that the proportion of patients with digenic Alport syndrome was 1.7% among all patients with Alport syndrome. In patients with digenic variants in COL4A3 and COL4A4 , the median ages at detection of proteinuria and ESKD were 10.0 and 57.0 years, respectively. Compared with the patients with ADAS, the age at detection of proteinuria tended to be earlier (10.0 versus 20.0 years; P = 0.073) and that at development of ESKD was significantly earlier (57.0 versus 72.0 years; P = 0.045) in patients with digenic Alport syndrome. Conclusions Overall, patients with digenic Alport syndrome harboring COL4A3 and COL4A4 variants exhibited poor renal compared with the patients with ADAS. Therefore, timely identification of the two disease-causing variants is critical for the renal prognostic assessment and early treatment of patients with digenic Alport syndrome.
Collapse
Affiliation(s)
- Yuta Inoki
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kang E, Park BH, Lee H, Kang HG, Kim JH, Kim YN, Jung Y, Rim H, Shin HS. A comprehensive review of Alport syndrome: definition, pathophysiology, clinical manifestations, and diagnostic considerations. Kidney Res Clin Pract 2024:j.krcp.24.065. [PMID: 39384344 DOI: 10.23876/j.krcp.24.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/22/2024] [Indexed: 10/11/2024] Open
Abstract
Alport syndrome, a rare genetic disorder affecting around 1 in 50,000 individuals, primarily presents as microscopic hematuria and chronic kidney disease (CKD) with associated extrarenal complications. The Alport syndrome results from mutations in COL4A3, COL4A4, and COL4A5 genes, disrupting the formation of the α3-α4-α5 chain in the collagen IV network. The etiology involves X chromosome-related, autosomal dominant, autosomal recessive, and digenic inheritance patterns. The disease primarily manifests as kidney involvement, featuring persistent hematuria, proteinuria, and a progressive decline in renal function. Hearing loss, ocular abnormalities, and extrarenal manifestations further contribute to its complexity. Genotype-phenotype correlations are relatively evident, with distinct presentations in X-linked, autosomal recessive, and autosomal dominant cases. Diagnosis relies on urinalysis, histologic examination, and genetic testing with advancements in next-generation sequencing aiding identification. Although no specific treatment exists, early diagnosis improves outcomes, emphasizing the importance of genetic testing for prognosis and familial screening. The purpose of this review is to advance knowledge and enhance understanding of Alport syndrome.
Collapse
Affiliation(s)
- Eunjeong Kang
- Transplantation Center, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Byung Hwa Park
- Renal Division, Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
- Transplantation Research Institute, Kosin University College of Medicine, Busan, Republic of Korea
| | - Hajeong Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Hyun Kim
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ye Na Kim
- Renal Division, Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
- Transplantation Research Institute, Kosin University College of Medicine, Busan, Republic of Korea
| | - Yeonsoon Jung
- Renal Division, Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
- Transplantation Research Institute, Kosin University College of Medicine, Busan, Republic of Korea
| | - Hark Rim
- Renal Division, Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
- Transplantation Research Institute, Kosin University College of Medicine, Busan, Republic of Korea
| | - Ho Sik Shin
- Renal Division, Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
- Transplantation Research Institute, Kosin University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
15
|
Koyama Y, Suico MA, Owaki A, Sato R, Kuwazuru J, Kaseda S, Sannomiya Y, Horizono J, Omachi K, Horinouchi T, Yamamura T, Tsuhako H, Nozu K, Shuto T, Kai H. Trimerization profile of type IV collagen COL4A5 exon deletion in X-linked Alport syndrome. Clin Exp Nephrol 2024; 28:874-881. [PMID: 38658441 DOI: 10.1007/s10157-024-02503-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Alport syndrome (AS) is a genetic kidney disease caused by a mutation in type IV collagen α3, α4, and α5, which are normally secreted as heterotrimer α345(IV). Nonsense mutation in these genes causes severe AS phenotype. We previously revealed that the exon-skipping approach to remove a nonsense mutation in α5(IV) ameliorated the AS pathology. However, the effect of removing an exon on trimerization is unknown. Here, we assessed the impact of exon deletion on trimerization to evaluate their possible therapeutic applicability and to predict the severity of mutations associated with exon-skipping. METHODS We produced exon deletion constructs (ΔExon), nonsense, and missense mutants by mutagenesis and evaluated their trimer formation and secretion activities using a nanoluciferase-based assay that we previously developed. RESULTS Exon-skipping had differential effects on the trimer secretion of α345(IV). Some ΔExons could form and secrete α345(IV) trimers and had higher activity compared with nonsense mutants. Other ΔExons had low secretion activity, especially for those with exon deletion near the C-terminal end although the intracellular trimerization was normal. No difference was noted in the secretion of missense mutants and their ΔExon counterpart. CONCLUSION Exon skipping is advantageous for nonsense mutants in AS with severe phenotypes and early onset of renal failure but applications may be limited to ΔExons capable of normal trimerization and secretion. This study provides information on α5(IV) exon-skipping for possible therapeutic application and the prediction of the trimer behavior associated with exon-skipping in Alport syndrome.
Collapse
Affiliation(s)
- Yuimi Koyama
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City, 862-0973, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City, 862-0973, Japan
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Aimi Owaki
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City, 862-0973, Japan
| | - Ryoichi Sato
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City, 862-0973, Japan
| | - Jun Kuwazuru
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City, 862-0973, Japan
| | - Shota Kaseda
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City, 862-0973, Japan
| | - Yuya Sannomiya
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City, 862-0973, Japan
| | - Jun Horizono
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City, 862-0973, Japan
| | - Kohei Omachi
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City, 862-0973, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Haruki Tsuhako
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City, 862-0973, Japan
| | - Kandai Nozu
- Department of Pediatrics, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City, 862-0973, Japan.
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City, 862-0973, Japan.
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
16
|
Zhang JH, Liu J, Ruan DD, Chen Q, Yang J, Wu M, Yu HP, Liao LS, Zheng XL, Luo JW, Zhang L. Analyzing three pedigrees in X-linked Alport syndrome with the presentation of nephrotic syndrome. Front Genet 2024; 15:1419154. [PMID: 39184349 PMCID: PMC11341381 DOI: 10.3389/fgene.2024.1419154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
Background Alport syndrome (AS) is a common cause of end-stage renal disease (ESRD) with various clinical symptoms and incomplete manifestation. Patients with AS and other renal disorders are often misdiagnosed. This study reported three X-linked dominant Alport syndrome (XLAS) pedigrees with nephrotic syndrome (NS) as the predominant phenotype and analyzed COL4A5 gene alterations. Methods Three Han Chinese XLAS pedigrees were recruited, and clinical phenotypes were obtained. The pre-certified individuals' peripheral blood DNA was taken, and whole-genome next-generation sequencing (NGS) was performed for candidate genes and mutation screening, followed by NGS or Sanger sequencing of suspected mutant types in participating family members. Results Both probands A and B were diagnosed with NS through biochemical tests, and X-linked Alport syndrome-associated renal injury was diagnosed by renal biopsy. The biopsy revealed focal foamy cells in the renal interstitium, tearing and delamination changes in the glomerular basement membrane, and negative α3 and α5 chains of type IV collagen. Proband C, who was earlier diagnosed with NS, has now advanced to ESRD, along with his mother and proband A's mother. Genetic sequencing of all three pedigrees identified three mutations, namely, c.5020C>T, c.4435_4445del, and c.1584_1587+6del in the X-linked dominant gene COL4A5 (NM_000495.5). These mutations lead to the production of shortened proteins, potentially impacting the function of COL4A5 and causing pathogenic effects. Conclusion The novel c.4435_4445del and c.1584_1587+6del mutations not only enrich the spectrum of mutations in the COL4A5 gene but also indicate that carriers of both mutation sites and those with mutation c.5020C>T may present NS as their primary clinical manifestation.
Collapse
Affiliation(s)
- Jian-Hui Zhang
- Department of Nephrology and Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Department of Digestive Endoscopy, Fujian Provincial Hospital, Fuzhou, China
| | - Jie Liu
- Department of Nephrology and Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Department of Digestive Endoscopy, Fujian Provincial Hospital, Fuzhou, China
| | - Dan-Dan Ruan
- Department of Nephrology and Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Department of Nephrology, Fujian Provincial Hospital, Fuzhou, China
| | - Qian Chen
- Department of Nephrology and Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Department of Nephrology, Fujian Provincial Hospital, Fuzhou, China
| | - Jie Yang
- Department of Nephrology and Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Department of Digestive Endoscopy, Fujian Provincial Hospital, Fuzhou, China
| | - Min Wu
- Department of Nephrology and Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Department of Nephrology, Fujian Provincial Hospital, Fuzhou, China
| | - Hong-Ping Yu
- Department of Nephrology and Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Department of Nephrology, Fujian Provincial Hospital, Fuzhou, China
| | - Li-Sheng Liao
- Department of Nephrology and Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Department of Hematology, Fujian Provincial Hospital, Fuzhou, China
| | - Xiao-Ling Zheng
- Department of Nephrology and Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Department of Digestive Endoscopy, Fujian Provincial Hospital, Fuzhou, China
| | - Jie-Wei Luo
- Department of Nephrology and Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Li Zhang
- Department of Nephrology and Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Department of Nephrology, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
17
|
Li Y, Yan X, Luo Z, Fu X, Li Z, Xu Q, Chen J, Yang J, Lu D. Aberrant Splicing of COL4A5 Intronic Variant Contribute to the Pathogenesis of X-Linked Alport Syndrome: A Case Series. Int J Nephrol Renovasc Dis 2024; 17:167-174. [PMID: 38855711 PMCID: PMC11162193 DOI: 10.2147/ijnrd.s459363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024] Open
Abstract
Introduction X-linked Alport syndrome (XLAS) is caused by pathogenic variants in COL4A5 which lead to abnormalities of the glomerular basement membrane (GBM) structural and is characterized by progressive kidney disease, hearing loss, and ocular abnormalities. The aim of this study was to identify gene mutations in a Chinese family with XLAS by whole-exome sequencing (WES) and verified the pathogenicity of the mutation in vitro experiments. Case Presentation A five-generation pedigree with a total of 49 family members originating from Hainan province of China was investigated in this study. The proband was a 23-year-old male who developed microscopic hematuria, proteinuria and end-stage kidney disease (ESKD) at age 17. WES identified a novel splicing mutation c.321+5G>A of COL4A5, which cause exon skip. Further co-segregation analysis confirmed that this mutation exists in relatives who had renal abnormalities using Sanger sequencing. According to American College of Medical Genetics and Genomics guidelines (ACMG), the mutation was determined to be of uncertain significance (VUS). In vitro splicing experiments have shown that the COL4A5 variant induces aberrant mRNA splicing and transcript deletion. Conclusion We identified a novel intronic COL4A5 pathogenic mutation (c.321+5G>A) in a Chinese XLAS family and described the phenotypes of affected relatives. This study expands the mutation spectrum of COL4A5 gene in XLAS and demonstrates the importance of gene screening for AS.
Collapse
Affiliation(s)
- Yang Li
- Department of Nephropathy, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Hainan, People’s Republic of China
| | - Xue Yan
- Department of Medicine, Shanghai WeHealth Biomedical Technology Co., Ltd., Shanghai, People’s Republic of China
| | - Zhen Luo
- Department of Nephropathy, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Hainan, People’s Republic of China
| | - Xianxian Fu
- Department of Nephropathy, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Hainan, People’s Republic of China
| | - Zhongju Li
- Department of Nephropathy, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Hainan, People’s Republic of China
| | - Qiuzhu Xu
- Department of Central Supply Service Department, Haikou Orthopedic and Diabetes Hospital, Hainan, People’s Republic of China
| | - Juanjuan Chen
- Department of Nephropathy, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Hainan, People’s Republic of China
| | - Jingmin Yang
- Department of Medicine, Shanghai WeHealth Biomedical Technology Co., Ltd., Shanghai, People’s Republic of China
- NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning, Science and Technology Research Institute), Chongqing, People’s Republic of China
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Daru Lu
- NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning, Science and Technology Research Institute), Chongqing, People’s Republic of China
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
18
|
Lujinschi ȘN, Sorohan BM, Obrișcă B, Vrabie A, Lupușoru G, Achim C, Andronesi AG, Covic A, Ismail G. Genotype-Phenotype Correlations in Alport Syndrome-A Single-Center Experience. Genes (Basel) 2024; 15:593. [PMID: 38790222 PMCID: PMC11121304 DOI: 10.3390/genes15050593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Alport syndrome (AS) is a common and heterogeneous genetic kidney disease, that often leads to end-stage kidney disease (ESKD). METHODS This is a single-center, retrospective study that included 36 adults with type IV collagen (COL4) mutations. Our main scope was to describe how genetic features influence renal survival. RESULTS A total of 24 different mutations were identified, of which eight had not been previously described. Mutations affecting each of the type IV collagen α chains were equally prevalent (33.3%). Most of the patients had pathogenic variants (61.1%). Most patients had a family history of kidney disease (71%). The most prevalent clinical picture was nephritic syndrome (64%). One-third of the subjects had extrarenal manifestations, 41.6% of patients had ESKD at referral, and another 8.3% developed ESKD during follow-up. The median renal survival was 42 years (95% CI, 29.98-54.01). The COL4A4 group displayed better renal survival than the COL4A3 group (p = 0.027). Patients with missense variants had higher renal survival (p = 0.023). Hearing loss was associated with lower renal survival (p < 0.001). CONCLUSIONS Patients with COL4A4 variants and those with missense mutations had significantly better renal survival, whereas those with COL4A3 variants and those with hearing loss had worse prognoses.
Collapse
Affiliation(s)
- Ștefan Nicolaie Lujinschi
- Department of Nephrology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (B.M.S.); (B.O.); (A.V.); (G.L.); (C.A.); (A.G.A.); (G.I.)
- Department of Nephrology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Bogdan Marian Sorohan
- Department of Nephrology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (B.M.S.); (B.O.); (A.V.); (G.L.); (C.A.); (A.G.A.); (G.I.)
- Department of Nephrology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Bogdan Obrișcă
- Department of Nephrology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (B.M.S.); (B.O.); (A.V.); (G.L.); (C.A.); (A.G.A.); (G.I.)
- Department of Nephrology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Alexandra Vrabie
- Department of Nephrology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (B.M.S.); (B.O.); (A.V.); (G.L.); (C.A.); (A.G.A.); (G.I.)
- Department of Nephrology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Gabriela Lupușoru
- Department of Nephrology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (B.M.S.); (B.O.); (A.V.); (G.L.); (C.A.); (A.G.A.); (G.I.)
- Department of Nephrology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Camelia Achim
- Department of Nephrology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (B.M.S.); (B.O.); (A.V.); (G.L.); (C.A.); (A.G.A.); (G.I.)
- Department of Nephrology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Andreea Gabriella Andronesi
- Department of Nephrology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (B.M.S.); (B.O.); (A.V.); (G.L.); (C.A.); (A.G.A.); (G.I.)
- Department of Nephrology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Andreea Covic
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Nephrology Depatment, Dialysis and Renal Transplant Center, “Dr. C. I. Parhon” Clinical Hospital, 700503 Iasi, Romania
| | - Gener Ismail
- Department of Nephrology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (B.M.S.); (B.O.); (A.V.); (G.L.); (C.A.); (A.G.A.); (G.I.)
- Department of Nephrology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| |
Collapse
|
19
|
Chavez E, Goncalves S, Rheault MN, Fornoni A. Alport Syndrome. ADVANCES IN KIDNEY DISEASE AND HEALTH 2024; 31:170-179. [PMID: 39004457 DOI: 10.1053/j.akdh.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 07/16/2024]
Abstract
Alport syndrome (AS) is characterized by progressive kidney failure, hematuria, sensorineural hearing loss, and ocular abnormalities. Pathogenic variants in the COL4A3-5 genes result in a defective deposition of the collagen IV α3α4α5 protomers in the basement membranes of the glomerulus in the kidney, the cochlea in the ear and the cornea, lens capsule and retina in the eye. The presence of a large variety of COL4A3-5 gene(s) pathogenetic variants irrespective of the mode of inheritance (X-linked, autosomal recessive, autosomal dominant, or digenic) with and without syndromic features is better defined as the "Alport spectrum disorder", and represents the most common cause of genetic kidney disease and the second most common cause of genetic kidney failure. The clinical course and prognosis of individuals with AS is highly variable. It is influenced by gender, mode of inheritance, affected gene(s), type of genetic mutation, and genetic modifiers. This review article will discuss the epidemiology, classification, pathogenesis, diagnosis, clinical course with genotype-phenotype correlations, and current and upcoming treatment of patients with AS. It will also review current recommendations with respect to when to evaluate for hearing loss or ophthalmologic abnormalities.
Collapse
Affiliation(s)
- Efren Chavez
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL.
| | - Stefania Goncalves
- Department of Otolaryngology-Head and Neck Surgery, University of Miami Miller School of Medicine, University of Miami Ear Institute, Miami, FL
| | - Michelle N Rheault
- Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, MN
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL; Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL.
| |
Collapse
|
20
|
Chen S, Xu G, Zhao Z, Du J, Shen B, Li C. A novel COL4A5 splicing mutation causes alport syndrome in a Chinese family. BMC Med Genomics 2024; 17:108. [PMID: 38671472 PMCID: PMC11046743 DOI: 10.1186/s12920-024-01878-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Alport syndrome (AS) is characterised by haematuria, proteinuria, a gradual decline in kidney function, hearing loss, and eye abnormalities. The disease is caused by mutations in COL4An (n = 3, 4, 5) that encodes 3-5 chains of type IV collagen in the glomerular basement membrane. AS has three genetic models: X-linked, autosomal recessive, and autosomal dominant. The most common type of AS is X-linked AS, which is caused by COL4A5. METHODS We enrolled children with renal insufficiency and a family history of kidney disorders. The proband was identified using whole-exome sequencing. Sanger sequencing was performed to verify the mutation site. Minigene technology was used to analyse the influence of mutant genes on pre-mRNA shearing, and the Iterative Threading ASSEmbly Refinement (I-TASSER) server was used to analyse the protein structure changes. RESULTS The proband, together with her mother and younger brother, displayed microscopic haematuria and proteinuria, Pathological examination revealed mesangial hyperplasia and sclerosis. A novel mutation (NM_000495.5 c.4298-8G > A) in the intron of the COL4A5 gene in the proband was discovered, which was also present in the proband's mother, brother, and grandmother. In vitro minigene expression experiments verified that the c.4298-8G > A mutation caused abnormal splicing, leading to the retention of six base pairs at the end of intron 46. The I-TASSER software predicted that the mutation affected the hydrogen-bonding structure of COL4A5 and the electrostatic potential on the surface of the protein molecules. CONCLUSIONS Based on the patient's clinical history and genetic traits, we conclude that the mutation at the splicing site c.4298-8G > A of the COL4A5 gene is highly probable to be the underlying cause within this particular family. This discovery expands the genetic spectrum and deepens our understanding of the molecular mechanisms underlying AS.
Collapse
Affiliation(s)
- Suyun Chen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of System Medicine and Precision Diagnosis and Treatment of Taizhou, Linhai, China
| | - Guangbiao Xu
- Department of Nephrology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhixin Zhao
- Department of Neurosurgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Juping Du
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of System Medicine and Precision Diagnosis and Treatment of Taizhou, Linhai, China
| | - Bo Shen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.
- Key Laboratory of System Medicine and Precision Diagnosis and Treatment of Taizhou, Linhai, China.
| | - Chunping Li
- Department of Nephrology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.
| |
Collapse
|
21
|
Zhang R, Lang Y, Shi X, Zhang Y, Liu X, Pan F, Qiao D, Teng X, Shao L. Three exonic variants in the COL4A5 gene alter RNA splicing in a minigene assay. Mol Genet Genomic Med 2024; 12:e2395. [PMID: 38400605 PMCID: PMC10891438 DOI: 10.1002/mgg3.2395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND X-linked Alport syndrome (XLAS) is an inherited renal disease caused by rare variants of COL4A5 on chromosome Xq22. Many studies have indicated that single nucleotide variants (SNVs) in exons can disrupt normal splicing process of the pre-mRNA by altering various splicing regulatory signals. The male patients with XLAS have a strong genotype-phenotype correlation. Confirming the effect of variants on splicing can help to predict kidney prognosis. This study aimed to investigate whether single nucleotide substitutions, located within three bases at the 5' end of the exons or internal position of the exons in COL4A5 gene, cause aberrant splicing process. METHODS We analyzed 401 SNVs previously presumed missense and nonsense variants in COL4A5 gene by bioinformatics programs and identified candidate variants that may affect the splicing of pre-mRNA via minigene assays. RESULTS Our study indicated three of eight candidate variants induced complete or partial exon skipping. Variants c.2678G>C and c.2918G>A probably disturb classic splice sites leading to corresponding exon skipping. Variant c.3700C>T may disrupt splicing enhancer motifs accompanying with generation of splicing silencer sequences resulting in the skipping of exon 41. CONCLUSION Our study revealed that two missense variants positioned the first nucleotides of the 5' end of COL4A5 exons and one internal exonic nonsense variant caused aberrant splicing. Importantly, this study emphasized the necessity of assessing the effects of SNVs at the mRNA level.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Nephrologythe Affiliated Qingdao Municipal Hospital of Qingdao UniversityQingdaoChina
| | - Yanhua Lang
- Department of Materialsthe Affiliated Qingdao Municipal Hospital of Qingdao UniversityQingdaoChina
| | - Xiaomeng Shi
- Department of Nephrologythe Affiliated Qingdao Municipal Hospital of Qingdao UniversityQingdaoChina
| | - Yiyin Zhang
- Department of Nephrologythe Affiliated Qingdao Municipal Hospital of Qingdao UniversityQingdaoChina
| | - Xuyan Liu
- Department of Nephrologythe Affiliated Qingdao Municipal Hospital of Qingdao UniversityQingdaoChina
| | - Fengjiao Pan
- Department of Nephrologythe Affiliated Qingdao Municipal Hospital of Qingdao UniversityQingdaoChina
| | - Dan Qiao
- Department of Nephrologythe Affiliated Qingdao Municipal Hospital of Qingdao UniversityQingdaoChina
| | - Xin Teng
- Department of Ultrasoundthe Affiliated Qingdao Municipal Hospital of Qingdao UniversityQingdaoChina
| | - Leping Shao
- Department of Nephrologythe Affiliated Qingdao Municipal Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
22
|
Wu J, Cui Y, Liu T, Gu C, Ma X, Yu C, Cai Y, Shu J, Wang W, Cai C. Whole exome sequencing approach for identification of the molecular etiology in pediatric patients with hematuria. Clin Chim Acta 2024; 554:117795. [PMID: 38262496 DOI: 10.1016/j.cca.2024.117795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/25/2023] [Accepted: 01/20/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Hematuria is a common condition in clinical practice of pediatric patients. It is related to a wide spectrum of disorders and has high heterogeneity both clinically and genetically, which contributes to challenges of diagnosis and lead many pediatric patients with hematuria not to receive accurate diagnosis and early management. METHODS In this single center study, 42 children with hematuria were included in Tianjin Children's Hospital between 2019 and 2020. We analyzed the clinical information and performed WES (Whole exome sequencing) for all cases. Then the classification of identified variants was performed according to the American College of Medical Genetics and Genomics (ACMG) guidelines for interpreting sequence variants. For the fragment deletion, qPCR was performed to validate and confirm the inherited pattern. RESULTS For the 42 patients, 16 cases had gross hematuria and 26 had microscopic hematuria. Molecular genetic causes were uncovered in 9 (21.4%) children, including 7 with Alport syndrome (AS), one with polycystic nephropathy and one with lipoprotein glomerulopathy. The genetic causes for other patients were not related with hematuria. CONCLUSIONS WES is a rapid and effective way to evaluate patients with hematuria. The analysis of genotype-phenotype correlations of patients with AS indicated that severe variants were associated with early kidney failure. Secondary findings were not rare in Chinese children, thus the clinician should pay more attention to the clinical interpretation of sequencing results and properly interaction with patients and their family.
Collapse
Affiliation(s)
- Jinying Wu
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin 300134, China
| | - Yaqiong Cui
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin 300134, China
| | - Tao Liu
- The department of nephrology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China
| | - Chunyu Gu
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin 300134, China
| | - Ximeng Ma
- Basic Medical College, Tianjin Medical University, Tianjin 30070, China
| | - Changshun Yu
- Tianjin KingMed Center for Clinical Laboratory Co. Ltd., Tianjin 300392, China
| | - Yingzi Cai
- Department of Medicine,Tianjin University, Tianjin 300110, China
| | - Jianbo Shu
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin 300134, China.
| | - Wenhong Wang
- The department of nephrology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China.
| | - Chunquan Cai
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin 300134, China.
| |
Collapse
|
23
|
Di H, Wang Q, Liang D, Zhang J, Gao E, Zheng C, Yu X, Liu Z. Genetic features and kidney morphological changes in women with X-linked Alport syndrome. J Med Genet 2023; 60:1169-1176. [PMID: 37225412 DOI: 10.1136/jmg-2023-109221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND X-linked Alport syndrome (XLAS) caused by COL4A5 pathogenic variants usually has heterogeneous phenotypes in female patients. The genetic characteristics and glomerular basement membrane (GBM) morphological changes in women with XLAS need to been further investigated. METHODS A total of 83 women and 187 men with causative COL4A5 variants were enrolled for comparative analysis. RESULTS Women were more frequently carrying de novo COL4A5 variants compared with men (47% vs 8%, p=0.001). The clinical manifestations in women were variable, and no genotype-phenotype correlation was observed. Coinherited podocyte-related genes, including TRPC6, TBC1D8B, INF2 and MYH9, were identified in two women and five men, and the modifying effects of coinherited genes contributed to the heterogeneous phenotypes in these patients. X-chromosome inactivation (XCI) analysis of 16 women showed that 25% were skewed XCI. One patient preferentially expressing the mutant COL4A5 gene developed moderate proteinuria, and two patients preferentially expressing the wild-type COL4A5 gene presented with haematuria only. GBM ultrastructural evaluation demonstrated that the degree of GBM lesions was associated with the decline in kidney function for both genders, but more severe GBM changes were found in men compared with women. CONCLUSIONS The high frequency of de novo variants carried by women indicates that the lack of family history tends to make them susceptible to be underdiagnosed. Coinherited podocyte-related genes are potential contributors to the heterogeneous phenotype of some women. Furthermore, the association between the degree of GBM lesions and decline in kidney function is valuable in evaluating the prognosis for patients with XLAS.
Collapse
Affiliation(s)
- Hongling Di
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Qing Wang
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
- Department of Nephrology, General Hospital of Eastern Theater Command, Naval Medical University, Shanghai, Shanghai, China
| | - Dandan Liang
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jiahui Zhang
- The Key Laboratory of Biosystems Homeostasis & Protection of Ministry of Education, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Erzhi Gao
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Chunxia Zheng
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xiaomin Yu
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
24
|
Rheault MN, McLaughlin HM, Mitchell A, Blake LE, Devarajan P, Warady BA, Gibson KL, Lieberman KV. COL4A gene variants are common in children with hematuria and a family history of kidney disease. Pediatr Nephrol 2023; 38:3625-3633. [PMID: 37204491 DOI: 10.1007/s00467-023-05993-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/24/2023] [Accepted: 04/15/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Inherited kidney diseases are a common cause of chronic kidney disease (CKD) in children. Identification of a monogenic cause of CKD is more common in children than in adults. This study evaluated the diagnostic yield and phenotypic spectrum of children who received genetic testing through the KIDNEYCODE sponsored genetic testing program. METHODS Unrelated children < 18 years of age who received panel testing through the KIDNEYCODE sponsored genetic testing program from September 2019 through August 2021 were included (N = 832). Eligible children met at least one of the following clinician-reported criteria: estimated GFR ≤ 90 ml/min/1.73 m2, hematuria, a family history of kidney disease, or suspected or biopsy confirmed Alport syndrome or focal segmental glomerulosclerosis (FSGS) in the tested individual or family member. RESULTS A positive genetic diagnosis was observed in 234 children (28.1%, 95% CI [25.2-31.4%]) in genes associated with Alport syndrome (N = 213), FSGS (N = 9), or other disorders (N = 12). Among children with a family history of kidney disease, 30.8% had a positive genetic diagnosis. Among those with hematuria and a family history of CKD, the genetic diagnostic rate increased to 40.4%. CONCLUSIONS Children with hematuria and a family history of CKD have a high likelihood of being diagnosed with a monogenic cause of kidney disease, identified through KIDNEYCODE panel testing, particularly COL4A variants. Early genetic diagnosis can be valuable in targeting appropriate therapy and identification of other at-risk family members. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Michelle N Rheault
- Masonic Children's Hospital, University of Minnesota, Minneapolis, MN, USA.
| | | | | | | | - Prasad Devarajan
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Bradley A Warady
- Children's Mercy Kansas City, University of Missouri-Kansas City, Kansas City, MO, USA
| | | | - Kenneth V Lieberman
- Joseph M. Sanzari Children's Hospital, Hackensack Meridian School of Medicine, Hackensack, NJ, USA
| |
Collapse
|
25
|
Zeng M, Di H, Liang J, Liu Z. Effectiveness of renin-angiotensin-aldosterone system blockers in patients with Alport syndrome: a systematic review and meta-analysis. Nephrol Dial Transplant 2023; 38:2485-2493. [PMID: 37218713 DOI: 10.1093/ndt/gfad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Although renin-angiotensin-aldosterone system (RAAS) blockers have been considered the primary treatment for patients with Alport syndrome (AS) for a decade, there is no comprehensive review with evidence-based analysis evaluating the effectiveness of RAAS blockers in AS. METHODS A systematic review and meta-analysis was performed of published studies that compared outcomes related to disease progression between patients with AS receiving RAAS blockers with those taking non-RAAS treatment. Outcomes were meta-analyzed using the random effects models. Cochrane risk-of-bias, Newcastle-Ottawa Scale and Grading of Recommendations Assessment, Development and Evaluation methodology (GRADE) assessment determined the certainty of evidence. RESULTS A total of eight studies (1182 patients) were included in the analysis. Overall, the risk of bias was low to moderate. Compared with non-RAAS treatment, RAAS blockers could reduce the rate of progression to end-stage kidney disease (ESKD) [four studies; hazard ratio (HR) 0.33, 95% confidence interval (CI) 0.24-0.45; moderate certainty evidence]. After stratified by genetic types, a similar benefit was detected: male X-linked AS (XLAS) (HR 0.32, 95% CI 0.22-0.48), autosomal recessive AS (HR 0.25, 95% CI 0.10-0.62), female XLAS and autosomal dominant AS (HR 0.40, 95% CI 0.21-0.75). In addition, RAAS blockers showed a clear gradient of benefit depending on the stage of disease at the initiation of treatment. CONCLUSION This meta-analysis suggested that RAAS blockers could be considered as a specific therapy to delay of ESKD for AS with any genetic type, especially at the early stage of the disease, and every further more-effective therapy would be advised to be applied on top of this standard of care.
Collapse
Affiliation(s)
- Mengyao Zeng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Hongling Di
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Ju Liang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
26
|
Hirayama R, Toyohara K, Watanabe K, Otsuki T, Araoka T, Mae SI, Horinouchi T, Yamamura T, Okita K, Hotta A, Iijima K, Nozu K, Osafune K. iPSC-derived type IV collagen α5-expressing kidney organoids model Alport syndrome. Commun Biol 2023; 6:854. [PMID: 37770589 PMCID: PMC10539496 DOI: 10.1038/s42003-023-05203-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 08/02/2023] [Indexed: 09/30/2023] Open
Abstract
Alport syndrome (AS) is a hereditary glomerulonephritis caused by COL4A3, COL4A4 or COL4A5 gene mutations and characterized by abnormalities of glomerular basement membranes (GBMs). Due to a lack of curative treatments, the condition proceeds to end-stage renal disease even in adolescents. Hampering drug discovery is the absence of effective in vitro methods for testing the restoration of normal GBMs. Here, we aimed to develop kidney organoid models from AS patient iPSCs for this purpose. We established iPSC-derived collagen α5(IV)-expressing kidney organoids and confirmed that kidney organoids from COL4A5 mutation-corrected iPSCs restore collagen α5(IV) protein expression. Importantly, our model recapitulates the differences in collagen composition between iPSC-derived kidney organoids from mild and severe AS cases. Furthermore, we demonstrate that a chemical chaperone, 4-phenyl butyric acid, has the potential to correct GBM abnormalities in kidney organoids showing mild AS phenotypes. This iPSC-derived kidney organoid model will contribute to drug discovery for AS.
Collapse
Affiliation(s)
- Ryuichiro Hirayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
- Taisho Pharmaceutical Co., Ltd., Saitama, 331-9530, Japan
| | - Kosuke Toyohara
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Kei Watanabe
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Takeya Otsuki
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Toshikazu Araoka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Shin-Ichi Mae
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Keisuke Okita
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Akitsu Hotta
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
- Hyogo Prefectural Kobe Children's Hospital, Hyogo, 650-0047, Japan
- Department of Advanced Pediatric Medicine, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
27
|
Nozu K, Resontoc LPR, Hooman N, Vasudevan A, Ding J, Kang HG. Investigation of the current situation regarding diagnosis and treatment of Alport syndrome in Asian countries: results of survey of the Asian Paediatric Nephrology association (AsPNA) tubular and inherited working group. Clin Exp Nephrol 2023; 27:776-780. [PMID: 37289334 PMCID: PMC10432360 DOI: 10.1007/s10157-023-02358-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Alport syndrome is one of the most common inherited kidney diseases worldwide. A genetic test or kidney biopsy is necessary for a definite diagnosis of this disease, and an accurate diagnosis system for this disease is highly desired in each country. However, the current situation in Asian countries is not clear. Therefore, the tubular and inherited disease working group of the Asian Pediatric Nephrology Association (AsPNA) aimed to assess the current situation of diagnosis and treatment for Alport syndrome in Asia. METHODS The group conducted an online survey among the members of AsPNA in 2021-2022. Collected data included the number of patients for each inheritance mode, availability of gene tests or kidney biopsy, and treatment strategies for Alport syndrome. RESULTS A total of 165 pediatric nephrologists from 22 countries in Asia participated. Gene test was available in 129 institutes (78%), but the cost was still expensive in most countries. Kidney biopsy was available in 87 institutes (53%); however, only 70 can access electron microscopy, and 42 can conduct type IV collagen α5 chain staining. Regarding treatment, 140 centers use renin-angiotensin system (RAS) inhibitors (85%) for Alport syndrome patients. CONCLUSIONS This study result might suggest that the system is underdeveloped enough to diagnose all Alport syndrome patients in most Asian countries. However, once diagnosed with Alport syndrome, most of them were treated with RAS inhibitors. These survey results can be used to address knowledge, diagnostic system, and treatment strategy gaps and improve the Alport patients' outcomes in Asian countries.
Collapse
Affiliation(s)
- Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo, Kobe, Hyogo, 650-0017, Japan.
| | - Lourdes Paula Real Resontoc
- Division of Pediatric Nephrology, College of Medicine, University of the Philippines-Philippine General Hospital, Manila, Philippines
| | - Nakysa Hooman
- Ali Asghar Clinical Research Development Center, Department of Pediatrics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Anil Vasudevan
- Department of Pediatric Nephrology, St John's Medical College Hospital, Bengaluru, India
| | - Jie Ding
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, South Korea
| |
Collapse
|
28
|
Deltas C, Papagregoriou G, Louka SF, Malatras A, Flinter F, Gale DP, Gear S, Gross O, Hoefele J, Lennon R, Miner JH, Renieri A, Savige J, Turner AN. Genetic Modifiers of Mendelian Monogenic Collagen IV Nephropathies in Humans and Mice. Genes (Basel) 2023; 14:1686. [PMID: 37761826 PMCID: PMC10530214 DOI: 10.3390/genes14091686] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
Familial hematuria is a clinical sign of a genetically heterogeneous group of conditions, accompanied by broad inter- and intrafamilial variable expressivity. The most frequent condition is caused by pathogenic (or likely pathogenic) variants in the collagen-IV genes, COL4A3/A4/A5. Pathogenic variants in COL4A5 are responsible for the severe X-linked glomerulopathy, Alport syndrome (AS), while homozygous or compound heterozygous variants in the COL4A3 or the COL4A4 gene cause autosomal recessive AS. AS usually leads to progressive kidney failure before the age of 40-years when left untreated. People who inherit heterozygous COL4A3/A4 variants are at-risk of a slowly progressive form of the disease, starting with microscopic hematuria in early childhood, developing Alport spectrum nephropathy. Sometimes, they are diagnosed with benign familial hematuria, and sometimes with autosomal dominant AS. At diagnosis, they often show thin basement membrane nephropathy, reflecting the uniform thin glomerular basement membrane lesion, inherited as an autosomal dominant condition. On a long follow-up, most patients will retain normal or mildly affected kidney function, while a substantial proportion will develop chronic kidney disease (CKD), even kidney failure at an average age of 55-years. A question that remains unanswered is how to distinguish those patients with AS or with heterozygous COL4A3/A4 variants who will manifest a more aggressive kidney function decline, requiring prompt medical intervention. The hypothesis that a subgroup of patients coinherit additional genetic modifiers that exacerbate their clinical course has been investigated by several researchers. Here, we review all publications that describe the potential role of candidate genetic modifiers in patients and include a summary of studies in AS mouse models.
Collapse
Affiliation(s)
- Constantinos Deltas
- School of Medicine, University of Cyprus, Nicosia 2109, Cyprus
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Gregory Papagregoriou
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Stavroula F. Louka
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Apostolos Malatras
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Frances Flinter
- Clinical Genetics Department, Guy’s & St Thomas’ NHS Foundation Trust, London SE1 9RT, UK
| | - Daniel P. Gale
- Department of Renal Medicine, University College London, London NW3 2PF, UK
| | | | - Oliver Gross
- Clinic for Nephrology and Rheumatology, University Medicine Goettingen, 37075 Goettingen, Germany
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum Rechts der Isar, School of Medicine & Health, Technical University Munich, 81675 Munich, Germany
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9WU, UK
| | - Jeffrey H. Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alessandra Renieri
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Judy Savige
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Parkville, VIC 3052, Australia
| | - A. Neil Turner
- Renal Medicine, Royal Infirmary, University of Edinburgh, Edinburgh EH16 4UX, UK
| |
Collapse
|
29
|
Liu N, Wen X, Ou Z, Fang X, Du J, Lin X. Case report: Preimplantation genetic testing for X-linked alport syndrome caused by variation in the COL4A5 gene. Front Pediatr 2023; 11:1177019. [PMID: 37635800 PMCID: PMC10448762 DOI: 10.3389/fped.2023.1177019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
X-Linked Alport Syndrome (XLAS) is an X-linked, dominant, hereditary nephropathy mainly caused by mutations in the COL4A5 gene, found on chromosome Xq22. In this study, we reported a pedigree with XLAS caused by a COL4A5 mutation. This family gave birth to a boy with XLAS who developed hematuria and proteinuria at the age of 1 year. We used next-generation sequencing (NGS) to identify mutations in the proband and his parents and confirmed the results using Sanger sequencing. This testing showed there was a single nucleotide missense variation, c.3659G>A (p.Gly1220Asp) (NM_033380.3), in the COL4A5 gene. To prevent the inheritance of the syndrome, we used eight embryos for trophoblast biopsy after assisted reproductive technology treatment, and whole genome amplification (WGA) was performed using multiple annealing and looping-based amplification cycles (MALBAC). Embryos were subjected to Preimplantation Genetic Testing (PGT) procedures, including Sanger sequencing, NGS-based single nucleotide polymorphism (SNP) haplotype linkage analysis, and chromosomal copy number variation (CNV) analysis. The results showed that three embryos (E1, E2, and E4) were free of CNV and genetic variation in the COL4A5 gene. Embryo E1 (4AA) was transferred after consideration of the embryo growth rate, morphology, and PGT results. Prenatal diagnosis in the second trimester showed that the fetus had a normal karyotype and did not carry the COL4A5 mutation (c.3659G>A). Ultimately, a healthy boy was born and did not carry the pathogenic COL4A5 mutation, which indicated that PGT prevented the intergenerational transmission of the causative mutation of XLAS.
Collapse
Affiliation(s)
- Nengqing Liu
- Reproductive Center, Zhongshan Boai Hospital, Zhongshan, China
| | - Xiaojun Wen
- Reproductive Center, Zhongshan Boai Hospital, Zhongshan, China
| | - Zhanhui Ou
- Reproductive Center, Zhongshan Boai Hospital, Zhongshan, China
| | - Xiaowu Fang
- Reproductive Center, Zhongshan Boai Hospital, Zhongshan, China
| | - Jing Du
- Reproductive Center, Zhongshan Boai Hospital, Zhongshan, China
| | - Xiufeng Lin
- Reproductive Center, Zhongshan Boai Hospital, Zhongshan, China
- The Second Clinical College, Southern Medical University, Guangzhou, China
| |
Collapse
|
30
|
Shanks J, Butler G, Cheng D, Jayasinghe K, Quinlan C. Clinical and diagnostic utility of genomic sequencing for children referred to a Kidney Genomics Clinic with microscopic haematuria. Pediatr Nephrol 2023; 38:2623-2630. [PMID: 36715773 DOI: 10.1007/s00467-022-05846-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Microscopic haematuria in children is associated with the risk of progression to chronic kidney disease. Genetic disease is an important potential aetiology. Genomic sequencing presents the most effective diagnostic route for these conditions, but access remains inequitable internationally. METHODS We conducted a retrospective review of the electronic medical records of a Kidney Genomics Clinic (KGC) from January 2016 to December 2021. RESULTS Sixty patients were referred to the KGC with haematuria over this period. Forty-three percent of patients had analysis of a limited haematuria panel (COL4A1, COL4A3, COL4A4, COL4A5, MYH9) with 58% receiving a genetic diagnosis. Forty-two percent of referred patients had further analysis of genes implicated in the development of kidney disease, and 36% received a diagnosis. Eight percent of patients underwent cascade testing for a known familial variant, and all received a diagnosis. Children with the highest levels of haematuria (> 500 × 106/L red blood cells) had the highest diagnostic yield (67%). Proteinuria, defined as a urinary protein to creatinine ratio > 20, increased the diagnostic yield from 31 to 65%. Importantly, negative genetic analysis can still have significant clinical utility for patients by altering surveillance and further management; the genetic result had clinical utility in 60% of patients. CONCLUSIONS Our KGC review highlights the substantial clinical utility and diagnostic yield of genomic analysis for microscopic haematuria in paediatric patients. Whilst the management of variants of uncertain significance can be challenging, a multidisciplinary team including genetic counselling can help ensure these patients are followed up meaningfully. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Josiah Shanks
- Department of Nephrology, Royal Children's Hospital, Melbourne, Australia.
- Digital Health, Melbourne Children's Centre for Health Analytics, Melbourne, Australia.
- Kidney Flagship, Murdoch Children's Research Institute, Melbourne, Australia.
| | - Grainne Butler
- Department of Nephrology, Royal Children's Hospital, Melbourne, Australia
- Digital Health, Melbourne Children's Centre for Health Analytics, Melbourne, Australia
- Kidney Flagship, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Daryl Cheng
- Digital Health, Melbourne Children's Centre for Health Analytics, Melbourne, Australia
| | - Kushani Jayasinghe
- Kidney Flagship, Murdoch Children's Research Institute, Melbourne, Australia
| | - Catherine Quinlan
- Department of Nephrology, Royal Children's Hospital, Melbourne, Australia
- Digital Health, Melbourne Children's Centre for Health Analytics, Melbourne, Australia
- Kidney Flagship, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
31
|
Pan S, Yu R, Liang S. Case report: A case report of Alport syndrome caused by a novel mutation of COL4A5. Front Genet 2023; 14:1216809. [PMID: 37529776 PMCID: PMC10389043 DOI: 10.3389/fgene.2023.1216809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
Alport syndrome (#308940) is an X-linked genetic disease with clinical manifestations, such as hematuria, proteinuria, renal insufficiency, and end-stage renal disease. The disease is characterized by the thinning of the glomerular basement membrane in the early stages and the thickening of the glomerular basement membrane in the late stages and may be associated with ocular lesions and varying degrees of sensorineural deafness. Herein, we report a case of Alport syndrome caused by a de novo mutation in COL4A5. The patient was a young male with clinical manifestations of hematuria and massive proteinuria who was diagnosed with Alport syndrome based on renal pathology and genetic testing.
Collapse
Affiliation(s)
- Shujun Pan
- Clinical School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Rizhen Yu
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shikai Liang
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
32
|
Zhang Y, Wang X, Zhou J, Ding J, Wang F. Abnormal mRNA Splicing Effect of COL4A3 to COL4A5 Unclassified Variants. Kidney Int Rep 2023; 8:1399-1406. [PMID: 37441478 PMCID: PMC10334324 DOI: 10.1016/j.ekir.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction Genetic diagnosis of Alport syndrome (AS), which results from pathogenic variants in COL4A3, COL4A4, or COL4A5 genes, is hindered by large numbers of unclassified variants detected using next-generation sequencing (NGS). We examined the impact on splicing of variants of uncertain significance in COL4A3 to COL4A5. Methods Nine unrelated patients with clinical diagnosis or suspicion of AS were enrolled according to the criteria. Their clinical and genetic data were collected. Blood and urine samples were obtained from the patients and their family members. Sanger sequencing was used to confirm the 9 COL4A3 to COL4A5 unclassified variants identified by NGS. COL4A3 to COL4A5 mRNAs from urine were analyzed using targeted reverse transcription polymerase chain reaction and direct sequencing. Results Nine COL4A3 to COL4A5 unclassified variants were found to alter mRNAs splicing. Skipping of an exon or an exon fragment was induced by variants COL4A3 c.828+5G>A; COL4A4 c.3506-13_3528del; and COL4A5 c.451A>G (p. [Ile151Val]), c.2042-9 T>G, c.2689 G>C (p. [Glu897Gln]) and c.1033-10_1033-2delGGTAATAAA. Retention of an intron fragment was caused by variants COL4A3 c.3211-30G>T, and COL4A5 c.4316-20T>A and c.1033-10 G>A, respectively. The 9 families in this study obtained genetic diagnosis of AS, including 3 with autosomal recessive AS and 6 with X-linked AS. Conclusions Our findings demonstrate that urine mRNA analysis facilitates the identification of abnormal splicing of unclassified variants in Alport genes, which provides evidence of routine use of RNA analysis to improve genetic diagnosis of AS.
Collapse
Affiliation(s)
- Yanqin Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiaoyuan Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jianmei Zhou
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jie Ding
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Fang Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
33
|
Kim JH, Lim SH, Song JY, Cho MH, Hyun H, Yang EM, Lee JW, Cho MH, Park MJ, Lee JH, Jung J, Yoo KH, Jang KM, Pai KS, Suh JS, Namgoong MK, Chung WY, Kim SJ, Cho EY, Kim KM, Kim NH, Kim M, Paik JH, Kang HG, Ahn YH, Cheong HI. Genotype-phenotype correlation of X-linked Alport syndrome observed in both genders: a multicenter study in South Korea. Sci Rep 2023; 13:6827. [PMID: 37100867 PMCID: PMC10133262 DOI: 10.1038/s41598-023-34053-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/24/2023] [Indexed: 04/28/2023] Open
Abstract
The genotype-phenotype correlation of the X-linked Alport syndrome (XLAS) has been well elucidated in males, whereas it remains unclear in females. In this multicenter retrospective study, we analyzed the genotype-phenotype correlation in 216 Korean patients (male:female = 130:86) with XLAS between 2000 and 2021. The patients were divided into three groups according to their genotypes: the non-truncating group, the abnormal splicing group, and the truncating group. In male patients, approximately 60% developed kidney failure at the median age of 25.0 years, and kidney survival showed significant differences between the non-truncating and truncating groups (P < 0.001, hazard ratio (HR) 2.8) and splicing and truncating groups (P = 0.002, HR 3.1). Sensorineural hearing loss was detected in 65.1% of male patients, while hearing survival periods showed a highly significant difference between the non-truncating and truncating groups (P < 0.001, HR 5.1). In female patients, approximately 20% developed kidney failure at the median age of 50.2 years. The kidney survival was significantly different between the non-truncating and truncating groups (P = 0.006, HR 5.7). Our findings support the presence of genotype-phenotype correlation not only in male patients but also in female patients with XLAS.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Seon Hee Lim
- Department of Pediatrics, Pusan National University Yangsan Children's Hospital and School of Medicine, Yangsan, South Korea
| | - Ji Yeon Song
- Department of Pediatrics, Pusan National University Yangsan Children's Hospital and School of Medicine, Yangsan, South Korea
| | - Myung Hyun Cho
- Department of Pediatrics, Hallym University Sacred Heart Hospital, Anyang, South Korea
| | - HyeSun Hyun
- Department of Pediatrics, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Eun Mi Yang
- Department of Pediatrics, Chonnam National University and School of Medicine, Gwangju, South Korea
| | - Jung Won Lee
- Department of Pediatrics, Ewha Womans University School of Medicine, Seoul, South Korea
| | - Min Hyun Cho
- Department of Pediatrics, Kyungpook National University, School of Medicine, Daegu, South Korea
| | - Min Ji Park
- Department of Pediatrics, Kyungpook National University, School of Medicine, Daegu, South Korea
| | - Joo Hoon Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jiwon Jung
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kee Hwan Yoo
- Department of Nephrology, Woori Children's Hospital, Seoul, South Korea
| | - Kyung Mi Jang
- Department of Pediatrics, Yeungnam University College of Medicine, Gyeongsan, South Korea
| | - Ki Soo Pai
- Department of Pediatrics, Ajou University School of Medicine, Suwon, South Korea
| | - Jin-Soon Suh
- Department of Pediatrics, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mee Kyung Namgoong
- Department of Pediatrics, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | | | - Su Jin Kim
- Department of Pediatrics, Inha University College of Medicine, Inha University Hospital, Incheon, South Korea
| | - Eun Young Cho
- Department of Pediatrics, Chungnam National University Hospital, Daejeon, South Korea
| | - Kyung Min Kim
- Department of Pediatrics, Chungnam National University Hospital, Daejeon, South Korea
| | - Nam Hee Kim
- Department of Pediatrics, Inje University Ilsan Paik Hospital, Goyang, South Korea
| | - Minsun Kim
- Department of Pediatrics, Jeonbuk National University Medical School, Jeonju, South Korea
| | - Jin Ho Paik
- Department of Pathology, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Seongnam, South Korea
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, South Korea
- Kidney Research Institute, Medical Research Center, Seoul National University, Seoul, South Korea
| | - Yo Han Ahn
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea.
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, South Korea.
- Kidney Research Institute, Medical Research Center, Seoul National University, Seoul, South Korea.
| | - Hae Il Cheong
- Department of Pediatrics, Seoul Red Cross Hospital, Seoul, South Korea.
| |
Collapse
|
34
|
Zhang H, Wang F, Xiao H. Combined Alport syndrome, Klinefelter syndrome and Fanconi syndrome in a Chinese boy. Nephrology (Carlton) 2023; 28:272-275. [PMID: 36878861 DOI: 10.1111/nep.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023]
Abstract
Alport syndrome (AS) is a progressive renal disease characterized by hematuria and progressive renal failure. X-linked dominant (XLAS) is the major inheritance form, accounting for almost 80% of the cases, caused by mutations in COL4A5 genes. Klinefelter syndrome (KS) is the most common genetic cause of human male gonadal dysgenesis. AS and KS are both rare disease, there are only three cases of combined AS and KS in the literatures. Fanconi syndrome (FS) caused by AS is also very rare. We report here the first case combined AS, KS and FS in a Chinese boy. We suggest that the severe renal phenotype and FS might be due to the two homozygous COL4A5 variants in our boy, and cases of AS combined KS will be good research objects for X chromosome inactivation.
Collapse
Affiliation(s)
- Hongwen Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China
| | - Fang Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China
| | - Huijie Xiao
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China
| |
Collapse
|
35
|
Alge JL, Bekheirnia N, Willcockson AR, Qin X, Scherer SE, Braun MC, Bekheirnia MR. Variants in genes coding for collagen type IV α-chains are frequent causes of persistent, isolated hematuria during childhood. Pediatr Nephrol 2023; 38:687-695. [PMID: 35759000 DOI: 10.1007/s00467-022-05627-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Children with persistent, isolated microscopic hematuria typically undergo a limited diagnostic workup and are monitored for signs of kidney disease in long-term longitudinal follow-up, which can delay diagnosis and allow disease progression in some cases. METHODS To determine the clinical utility of genetic screening in this population, we performed targeted genetic testing using a custom, 32-gene next-generation sequencing panel for progressive kidney disease on children referred to the Texas Children's Hospital Pediatric Nephrology clinic for persistent, microscopic hematuria (n = 30; cohort 1). Patients with microscopic hematuria identified by urinalysis on at least two separate occasions were eligible for enrollment, but those with other evidence of kidney disease were excluded. Results were analyzed for sequence variants using the American College of Medical Genetics and Genomics (ACMG) guideline for data interpretation and were validated using a secondary analysis of a dataset of children with hematuria and normal kidney function who had undergone genetic testing as part of an industry-sponsored program (cohort 2; n = 67). RESULTS In cohort 1 33% of subjects (10/30) had pathogenic or likely pathogenic (P/LP) variants in the type IV collagen genes (COL4A3/A4/A5), and 10% (3/30) had variants of uncertain significance in these genes. The high diagnostic rate in type IV collagen genes was confirmed in cohort 2, where 27% (18/67) of subjects had P/LP variants in COL4A3/A4/A5 genes. CONCLUSIONS Children with persistent, isolated microscopic hematuria have a high likelihood of having pathogenic variants in type IV collagen genes and genetic screening should be considered. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Joseph L Alge
- Department of Pediatrics, Division of Pediatric Nephrology, Baylor College Medicine, Houston, TX, 77030, USA
| | - Nasim Bekheirnia
- Department of Pediatrics, Division of Pediatric Nephrology, Baylor College Medicine, Houston, TX, 77030, USA
| | | | - Xiang Qin
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Steven E Scherer
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael C Braun
- Department of Pediatrics, Division of Pediatric Nephrology, Baylor College Medicine, Houston, TX, 77030, USA
| | - Mir Reza Bekheirnia
- Department of Pediatrics, Division of Pediatric Nephrology, Baylor College Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
36
|
Watanabe H, Goto S, Hosojima M, Kabasawa H, Imai N, Ito Y, Narita I. Pathogenic variants of Alport syndrome and monogenic diabetes identified by exome sequencing in a family. Hum Genome Var 2023; 10:5. [PMID: 36732323 PMCID: PMC9894847 DOI: 10.1038/s41439-023-00233-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 02/04/2023] Open
Abstract
We present a family of two female Alport syndrome patients with a family history of impaired glucose tolerance. Whole exome sequencing identified a novel heterozygous variant of COL4A5 NM_033380.3: c.2636 C > A (p.S879*) and a rare variant of GCK NM_001354800.1: c.1135 G > A (p.A379T) as the causes of Alport syndrome and monogenic diabetes, respectively. Two independent pathogenic variants affected the clinical phenotypes. Clinical next-generation sequencing is helpful for identifying the causes of patients' manifestations.
Collapse
Affiliation(s)
- Hirofumi Watanabe
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Shin Goto
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Michihiro Hosojima
- Department of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hideyuki Kabasawa
- Department of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naofumi Imai
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yumi Ito
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Health Promotion Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
37
|
Abstract
Hundreds of different genetic causes of chronic kidney disease are now recognized, and while individually rare, taken together they are significant contributors to both adult and pediatric diseases. Traditional genetics approaches relied heavily on the identification of large families with multiple affected members and have been fundamental to the identification of genetic kidney diseases. With the increased utilization of massively parallel sequencing and improvements to genotype imputation, we can analyze rare variants in large cohorts of unrelated individuals, leading to personalized care for patients and significant research advancements. This review evaluates the contribution of rare disorders to patient care and the study of genetic kidney diseases and highlights key advancements that utilize new techniques to improve our ability to identify new gene-disease associations.
Collapse
Affiliation(s)
- Mark D Elliott
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA;
- Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Institute for Genomic Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Hila Milo Rasouly
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA;
- Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Ali G Gharavi
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA;
- Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Institute for Genomic Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
38
|
Aberrant splicing caused by exonic single nucleotide variants positioned 2nd or 3rd to the last nucleotide in the COL4A5 gene. Clin Exp Nephrol 2023; 27:218-226. [PMID: 36371577 PMCID: PMC9950164 DOI: 10.1007/s10157-022-02294-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND AND OBJECTIVES The evident genotype-phenotype correlation shown by the X-linked Alport syndrome warrants the assessment of the impact of identified gene variants on aberrant splicing. We previously reported that single nucleotide variants (SNVs) in the last nucleotide of exons in COL4A5 cause aberrant splicing. It is known that the nucleotides located 2nd and 3rd to the last nucleotides of exons can also play an essential role in the first step of the splicing process. In this study, we aimed to investigate whether SNVs positioned 2nd or 3rd to the last nucleotide of exons in COL4A5 resulted in aberrant splicing. METHODS We selected eight candidate variants: six from the Human Gene Variant Database Professional and two from our cohort. We performed an in-vitro splicing assay and reverse transcription-polymerase chain reaction (RT-PCR) for messenger RNA obtained from patients, if available. RESULTS The candidate variants were initially classified into the following groups: three nonsense, two missense, and three synonymous variants. Splicing assays and RT-PCR for messenger RNA revealed that six of the eight variants caused aberrant splicing. Four variants, initially classified as non-truncating variants, were found to be truncating ones, which usually show relatively more severe phenotypes. CONCLUSION We revealed that exonic SNVs positioned 2nd or 3rd to the last nucleotide of exons in the COL4A5 were responsible for aberrant splicing. The results of our study suggest that attention should be paid when interpreting the pathogenicity of exonic SNVs near the 5' splice site.
Collapse
|
39
|
Di H, Zhang J, Gao E, Zheng C, Huang X, Wang Q, Yu X, Liu Z. Dissecting the genotype-phenotype correlation of COL4A5 gene mutation and its response to renin-angiotensin-aldosterone system blockers in Chinese male patients with Alport syndrome. Nephrol Dial Transplant 2022; 37:2487-2495. [PMID: 35020912 DOI: 10.1093/ndt/gfac002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Alport syndrome (AS) is an inherited type IV collagen-related disorder with an irreversible tendency to progress to end-stage renal disease (ESRD). X-linked AS (XLAS) is caused by mutations in the COL4A5 gene. The aim of this study was to investigate the effects of underlying mutations on clinical manifestations and the response to therapy in XLAS. METHODS We conducted a retrospective cohort study of 187 Chinese male patients with XLAS confirmed by pathological examination and genetic analysis. The Kaplan-Meier method and Cox proportional hazards model were used to assess the age and risk of progression to ESRD under different genotypes and treatment conditions. RESULTS A strong relationship between transcript type and renal outcome was observed, with the median age of ESRD onset being 22 years for truncating mutations and 39 years for non-truncating mutations. The response of affected patients to renin-angiotensin-aldosterone system (RAAS) blockers was genotype-associated. This therapy delayed the onset of ESRD by 16 years in patients with non-truncating mutations and 3 years in patients with truncating mutations. The efficacy of RAAS blockers functioned in a time-dependent manner, with a 7% reduction in the risk of progression to ESRD per each 6-month increase in treatment duration [hazard ratio 0.93 (95% confidence interval 0.89-0.96); P < 0.001]. CONCLUSIONS Clinical features and response to RAAS blockers were observed to be strongly correlated with the genotypes of male XLAS patients. Genotyping of COL4A5 gene mutations is essential and is a useful tool to assess the prognosis of AS patients.
Collapse
Affiliation(s)
- Hongling Di
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiahui Zhang
- Key Laboratory of Biosystems Homeostasis and Protection of the Ministry of Education, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Erzhi Gao
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chunxia Zheng
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xianghua Huang
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qing Wang
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaomin Yu
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
40
|
Boeckhaus J, Hoefele J, Riedhammer KM, Nagel M, Beck BB, Choi M, Gollasch M, Bergmann C, Sonntag JE, Troesch V, Stock J, Gross O. Lifelong effect of therapy in young patients with the COL4A5 Alport missense variant p.(Gly624Asp): a prospective cohort study. Nephrol Dial Transplant 2022; 37:2496-2504. [PMID: 35022790 DOI: 10.1093/ndt/gfac006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Angiotensin-converting enzyme inhibitors (ACEis) have evolved as a first-line therapy for delaying end-stage renal failure (ESRF) in Alport syndrome (AS). The present study tested the hypothesis of a superior nephroprotective potential of an early ACEi intervention, examining a cohort with the COL4A5 missense variant p.(Gly624Asp). METHODS In this observational cohort study (NCT02378805), 114 individuals with the identical gene variant were explored for age at ESRF and life expectancy in correlation with treatment as endpoints. RESULTS All 13 untreated hemizygous patients developed ESRF (mean age 48.9 ± 13.7 years), as did 3 very late treated hemizygotes (51.7 ± 4.2 years), with a mean life expectancy of 59.2 ± 9.6 years. All 28 earlier-treated [estimated glomerular filtration rate (eGFR) ≥60 mL/min/1.73 m2] hemizygous patients were still alive and still had not reached ESRF. Therapy minimized the annual loss of their GFR, similar to the annual loss in healthy individuals. Of 65 heterozygotes, 4 untreated individuals developed ESRF at an age of 53.3 ± 20.7 years. None of the treated heterozygous females developed ESRF. CONCLUSIONS For the first time, this study shows that in AS, early therapy in individuals with missense variants might have the potential to delay renal failure for their lifetime and thus to improve life expectancy and quality of life without the need for renal replacement therapy. Some treated patients have reached their retirement age with still-functioning kidneys, whereas their untreated relatives have reached ESRF at the same or a younger age. Thus, in children with glomerular haematuria, early testing for Alport-related gene variants could lead to timely nephroprotective intervention.
Collapse
Affiliation(s)
- Jan Boeckhaus
- Clinic for Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Julia Hoefele
- Institute of Human Genetics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Korbinian M Riedhammer
- Institute of Human Genetics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Nephrology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Mato Nagel
- Center for Nephrology and Metabolic Medicine, Weisswasser, Germany
| | - Bodo B Beck
- Institute of Human Genetics, Center for Molecular Medicine Cologne, and Center for Rare and Hereditary Kidney Disease, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mira Choi
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Maik Gollasch
- Department of Internal and Geriatric Medicine, University Medicine Greifswald, Greifswald, Germany.,Experimental and Clinical Research Center, Charité University Medicine Berlin, Berlin, Germany
| | - Carsten Bergmann
- Department of Medicine, Nephrology, University Hospital Freiburg, Germany.,Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany
| | - Joseph E Sonntag
- Clinic for Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Victoria Troesch
- Clinic for Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Johanna Stock
- Clinic for Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Oliver Gross
- Clinic for Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
41
|
Savige J, Renieri A, Ars E, Daga S, Pinto AM, Rothe H, Gale DP, Aksenova M, Cerkauskaite A, Bielska O, Lipska-Zietkiewicz B, Gibson JT. Digenic Alport Syndrome. Clin J Am Soc Nephrol 2022; 17:1697-1706. [PMID: 35675912 PMCID: PMC9718039 DOI: 10.2215/cjn.03120322] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Digenic Alport syndrome refers to the inheritance of pathogenic variants in COL4A5 plus COL4A3 or COL4A4 or in COL4A3 plus COL4A4 Where digenic Alport syndrome includes a pathogenic COL4A5 variant, the consequences depend on the sex of the affected individual, COL4A5 variant "severity," and the nature of the COL4A3 or COL4A4 change. A man with a pathogenic COL4A5 variant has all his collagen IV α3α4α5-heterotrimers affected, and an additional COL4A3 or COL4A4 variant may not worsen disease. A woman with a pathogenic COL4A5 variant has on average 50% of her heterotrimers affected, which is increased to 75% with a further COL4A3 or COL4A4 variant and associated with a higher risk of proteinuria. In digenic Alport syndrome with pathogenic COL4A3 and COL4A4 variants, 75% of the heterotrimers are affected. The COL4A3 and COL4A4 genes occur head-to-head on chromosome 2, and inheritance is autosomal dominant when both variants affect the same chromosome (in cis) or recessive when they affect different chromosomes (in trans). This form of digenic disease results in increased proteinuria and a median age of kidney failure intermediate between autosomal dominant and autosomal recessive Alport syndrome. Previous guidelines have suggested that all pathogenic or likely pathogenic digenic variants should be identified and reported. Affected family members should be identified, treated, and discouraged from kidney donation. Inheritance within a family is easier to predict if the two variants are considered independently and if COL4A3 and COL4A4 variants are known to be inherited on the same or different chromosomes.
Collapse
Affiliation(s)
- Judy Savige
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Parkville, Victoria, Australia
| | - Alessandra Renieri
- Medical Genetics Unit, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetics Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Elisabet Ars
- Department of Nephrology, Molecular Biology Laboratory , Fundacio Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Sergio Daga
- Medical Genetics Unit, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Anna Maria Pinto
- Genetics Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Hansjorg Rothe
- Centre for Nephrology and Metabolic Disorders, Weisswasser, Germany
| | - Daniel P. Gale
- Department of Renal Medicine, University College London, London, United Kingdom
| | - Marina Aksenova
- Department of Nephrology, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Moscow, Russia
| | - Agne Cerkauskaite
- Division of Diagnostics and Treatment of Rare Kidney and Metabolic Diseases, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | - Olga Bielska
- Centre for Rare Diseases and Clinical Genetics Unit, Medical University of Gdansk, Gdansk, Poland
| | - Beata Lipska-Zietkiewicz
- Centre for Rare Diseases and Clinical Genetics Unit, Medical University of Gdansk, Gdansk, Poland
| | - Joel T. Gibson
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
42
|
An Update on Women and Girls with Alport Syndrome. CURRENT PEDIATRICS REPORTS 2022. [DOI: 10.1007/s40124-022-00279-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Kashtan CE. Genetic testing and glomerular hematuria-A nephrologist's perspective. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:399-403. [PMID: 35775584 PMCID: PMC9796064 DOI: 10.1002/ajmg.c.31987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/25/2022] [Accepted: 06/19/2022] [Indexed: 01/29/2023]
Abstract
Alport syndrome is an inherited disorder of the kidneys that results from variants in three collagen IV genes-COL4A3, COL4A4, and COL4A5. Early diagnosis and pharmacologic intervention can delay the progression of chronic kidney disease and the onset of kidney failure in patients with Alport syndrome. This article describes the evolution of approaches to the diagnosis and early treatment of Alport syndrome.
Collapse
Affiliation(s)
- Clifford E. Kashtan
- Division of Pediatric NephrologyUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| |
Collapse
|
44
|
Chavez E, Rodriguez J, Drexler Y, Fornoni A. Novel Therapies for Alport Syndrome. Front Med (Lausanne) 2022; 9:848389. [PMID: 35547199 PMCID: PMC9081811 DOI: 10.3389/fmed.2022.848389] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022] Open
Abstract
Alport syndrome (AS) is a hereditary kidney disease associated with proteinuria, hematuria and progressive kidney failure. It is characterized by a defective glomerular basement membrane caused by mutations in type IV collagen genes COL4A3/A4/A5 which result in defective type IV collagen α3, α4, or α5 chains, respectively. Alport syndrome has three different patterns of inheritance: X-linked, autosomal and digenic. In a study of CKD of unknown etiology type IV collagen gene mutations accounted for the majority of the cases of hereditary glomerulopathies which suggests that AS is often underrecognized. The natural history and prognosis in patients with AS is variable and is determined by genetics and environmental factors. At present, no preventive or curative therapies exist for AS. Current treatment includes the use of renin-angiotensin-aldosterone system inhibitors which slow progression of kidney disease and prolong life expectancy. Ramipril was found in retrospective studies to delay the onset of ESKD and was recently demonstrated to be safe and effective in children and adolescents, supporting that early initiation of Renin Angiotensin Aldosterone System (RAAS) blockade is very important. Mineralocorticoid receptor blockers might be favorable for patients who develop "aldosterone breakthrough." While the DAPA-CKD trial suggests a beneficial effect of SGLT2 inhibitors in CKD of non-metabolic origin, only a handful of patients had Alport in this cohort, and therefore conclusions can't be extrapolated for the treatment of AS with SGLT2 inhibitors. Advances in our understanding on the pathogenesis of Alport syndrome has culminated in the development of innovative therapeutic approaches that are currently under investigation. We will provide a brief overview of novel therapeutic targets to prevent progression of kidney disease in AS. Our review will include bardoxolone methyl, an oral NRf2 activator; lademirsen, an anti-miRNA-21 molecule; sparsentan, dual endothelin type A receptor (ETAR) and angiotensin 1 receptor inhibitor; atrasentan, oral selective ETAR inhibitor; lipid-modifying agents, including cholesterol efflux transporter ATP-binding cassette A1 (ABCA1) inducers, discoidin domain receptor 1 (DDR1) inhibitors and osteopontin blocking agents; the antimalarial drug hydroxychloroquine; the antiglycemic drug metformin and the active vitamin D analog paricalcitol. Future genomic therapeutic strategies such as chaperone therapy, genome editing and stem cell therapy will also be discussed.
Collapse
Affiliation(s)
- Efren Chavez
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Juanly Rodriguez
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yelena Drexler
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States.,Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
45
|
Savige J, Huang M, Croos Dabrera MS, Shukla K, Gibson J. Genotype-Phenotype Correlations for Pathogenic COL4A3–COL4A5 Variants in X-Linked, Autosomal Recessive, and Autosomal Dominant Alport Syndrome. Front Med (Lausanne) 2022; 9:865034. [PMID: 35602506 PMCID: PMC9120524 DOI: 10.3389/fmed.2022.865034] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/24/2022] [Indexed: 12/28/2022] Open
Abstract
Alport syndrome is inherited as an X-linked (XL), autosomal recessive (AR), or autosomal dominant (AD) disease, where pathogenic COL4A3 – COL4A5 variants affect the basement membrane collagen IV α3α4α5 network. About 50% of pathogenic variants in each gene (major rearrangements and large deletions in 15%, truncating variants in 20%, splicing changes in 15%) are associated with “severe” disease with earlier onset kidney failure, and hearing loss and ocular abnormalities in males with XL inheritance and in males and females with AR disease. Severe variants are also associated with early proteinuria which is itself a risk factor for kidney failure. The other half of pathogenic variants are missense changes which are mainly Gly substitutions. These are generally associated with later onset kidney failure, hearing loss, and less often with major ocular abnormalities. Further determinants of severity for missense variants for XL disease in males, and in AD disease, include Gly versus non-Gly substitutions; increased distance from a non-collagenous interruption or terminus; and Gly substitutions with a more (Arg, Glu, Asp, Val, and Trp) or less disruptive (Ala, Ser, and Cys) residue. Understanding genotype-phenotype correlations in Alport syndrome is important because they help predict the likely age at kidney failure, and the need for early and aggressive management with renin-angiotensin system blockade and other therapies. Genotype-phenotype correlations also help standardize patients with Alport syndrome undergoing trials of clinical treatment. It is unclear whether severe variants predispose more often to kidney cysts or coincidental IgA glomerulonephritis which are recognized increasingly in COL4A3-, COL4A4 - and COL4A5-associated disease.
Collapse
|
46
|
Kashtan CE. What the Adult Nephrologist Should Know About Alport Syndrome. Adv Chronic Kidney Dis 2022; 29:225-230. [PMID: 36084969 DOI: 10.1053/j.ackd.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/11/2022]
Abstract
Recent trends in the diagnosis, treatment, and classification of collagen IV-associated kidney disease are likely to result in increasing numbers of people in adult nephrology practices who have a confirmed diagnosis of Alport syndrome. These trends include the increasing use of genetic testing in the diagnostic evaluation of people with hematuria, focal segmental glomerulosclerosis, and chronic kidney disease of unknown etiology; early treatment with inhibitors of the renin-angiotensin-aldosterone system to delay kidney failure; and application of an expanded definition of Alport syndrome based on genotype rather than phenotype. This commentary discusses these trends and their implications for the adult nephrologist.
Collapse
Affiliation(s)
- Clifford E Kashtan
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN.
| |
Collapse
|
47
|
Daga S, Ding J, Deltas C, Savige J, Lipska-Ziętkiewicz BS, Hoefele J, Flinter F, Gale DP, Aksenova M, Kai H, Perin L, Barua M, Torra R, Miner JH, Massella L, Ljubanović DG, Lennon R, Weinstock AB, Knebelmann B, Cerkauskaite A, Gear S, Gross O, Turner AN, Baldassarri M, Pinto AM, Renieri A. The 2019 and 2021 International Workshops on Alport Syndrome. Eur J Hum Genet 2022; 30:507-516. [PMID: 35260866 PMCID: PMC8904161 DOI: 10.1038/s41431-022-01075-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Affiliation(s)
- Sergio Daga
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Jie Ding
- Peking University First Hospital, Beijing, China
| | - Constantinos Deltas
- Biobank.cy Center of Excellence in Biobanking and Biomedical Research and University of Cyprus Medical School, Nicosia, Cyprus
| | - Judy Savige
- Department of Medicine, Melbourne and Northern Health, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Beata S Lipska-Ziętkiewicz
- Rare Diseases Centre, Clinical Genetics Unit, Department of Biology and Medical Genetics, Medical University of Gdańsk, Gdansk, Poland
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Frances Flinter
- Department of Clinical Genetics, Guys' and St Thomas' NHS Foundation Trust, London, UK
| | - Daniel P Gale
- Department of Renal Medicine, University College London, London, UK
- Rare Renal Disease Registry, UK Renal Registry, Bristol, UK
| | - Marina Aksenova
- Y. Veltischev Research and Clinical Institute for Pediatrics at the Pirogov Russian National Research Medical University, Taldomskaya Street, 2, Moscow, 125412, Russia
| | - Hirofumi Kai
- Department of Molecular Medicine, Kumamoto University, Kumamoto, Japan
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Moumita Barua
- Toronto General Hospital, Toronto General Research Institute, University of Toronto, Toronto, ON, Canada
| | - Roser Torra
- Inherited Kidney Diseases, Nephrology Department, Fundació Puigvert, IIB-Sant Pau, Medicine Department, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Jeff H Miner
- Division of Nephrology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Laura Massella
- Division of Nephrology, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Danica Galešić Ljubanović
- University of Zagreb School of Medicine, Department of Pathology and Department of Nephropathology and Electron Microscopy Dubrava University Hospital, Zagreb, Croatia
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Bertrand Knebelmann
- Nephrology Department, Reference Center for Inherited Kidney Diseases (MARHEA), APHP, Necker Hospital, Paris University, Paris, France
| | - Agne Cerkauskaite
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | | | - Oliver Gross
- Department of Nephrology and Rheumatology, University Medicine Goettingen, Gottingen, Germany
| | - A Neil Turner
- Centre for Inflammation, University of Edinburgh, Edinburgh, UK
| | - Margherita Baldassarri
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Anna Maria Pinto
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy.
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy.
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy.
| |
Collapse
|
48
|
Hu Y, Li W, Tian L, Fu S, Min Y, Liu J, Xiong F. Case Report: Identification of a Novel Heterozygous Missense Mutation in COL4A3 Gene Causing Variable Phenotypes in an Autosomal-Dominant Alport Syndrome Family. Front Genet 2022; 13:839212. [PMID: 35422838 PMCID: PMC9001967 DOI: 10.3389/fgene.2022.839212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/04/2022] [Indexed: 12/02/2022] Open
Abstract
Alport syndrome (AS) is a genetic kidney disease of basement membrane collagen disorder accounting for approximately 2% of ESRD patients. Next-generation and whole-exome sequencing methods are increasingly frequently used as an efficient tool not only for the diagnosis of AS but also for the establishment of genotype–phenotype correlation. We herein report the identification of a novel heterozygous missense mutation in COL4A3 gene (c.G3566A: p.G1189E) causing variable phenotypes in an ADAS Family based on the combination of clinical, histologic, pedigree, and genetic sequencing information. The proband is a 48-year-old Chinese woman suffering from persistent subnephrotic proteinuria and intermittent hematuria without renal function impairment over a 10-year time-span. Renal biopsy showed diffuse thin basement membrane and focal interstitial foam cell infiltration. The proband’s mother progressed to end-stage renal failure and the proband’s sister presented with subnephrotic proteinuria and intermittent hematuria as well. AS was highly suspected and confirmed by exome sequencing which revealed a novel heterozygous missense mutation in COL4A3 gene (c.G3566A: p.G1189E) in all the affected family members, although their current medical conditions vary significantly. Our present finding emphasizes the significance of next-generation sequencing technology for genetic screening which gives us an accurate clinical diagnosis of ADAS patients. The identification of c.G3566A as a new ADAS-related mutation contributes to both genetic diagnosis of ADAS and further functional study of COL4A3. The variable phenotypes from the same genotype of our case also provide more information to genotype–phenotype correlation study.
Collapse
Affiliation(s)
- Yanglin Hu
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, China
| | - Wei Li
- Department of Endocrinology, Wuhan No.1 Hospital, Wuhan, China
| | - Lulu Tian
- Department of Blood Purification, Central Theater General Hospital, Wuhan, China
| | - Shuai Fu
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, China
| | - Yonglong Min
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, China
| | - Jia Liu
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, China
| | - Fei Xiong
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, China
| |
Collapse
|
49
|
Abstract
A number of genes that cause inherited kidney disorders reside on the X chromosome. Given that males have only a single active X chromosome, these disorders clinically manifest primarily in men and boys. However, phenotypes in female carriers of X-linked kidney conditions are becoming more and more recognized. This article reviews the biology of X inactivation as well as the kidney phenotype in women and girls with a number of X-linked kidney disorders including Alport syndrome, Fabry disease, nephrogenic diabetes insipidus, X-linked hypophosphatemic rickets, Dent disease, and Lowe syndrome.
Collapse
Affiliation(s)
- Catherine Quinlan
- Department of Nephrology, Royal Children's Hospital, Melbourne, Victoria, Australia; Department of Kidney Regeneration, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Michelle N Rheault
- Division of Pediatric Nephrology, Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, MN.
| |
Collapse
|
50
|
Yamamura T, Horinouchi T, Aoto Y, Lennon R, Nozu K. The Contribution of COL4A5 Splicing Variants to the Pathogenesis of X-Linked Alport Syndrome. Front Med (Lausanne) 2022; 9:841391. [PMID: 35211492 PMCID: PMC8861460 DOI: 10.3389/fmed.2022.841391] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022] Open
Abstract
X-linked Alport syndrome (XLAS) is caused by pathogenic variants in COL4A5 and is characterized by progressive kidney disease, hearing loss, and ocular abnormalities. Recent advances in genetic analysis and further understanding of genotype-phenotype correlations in affected male patients raises the importance of detecting splicing variants in COL4A5. Aberrant splicing of COL4A5 is caused not only by canonical splice site variants but also non-canonical splice site variants such as deep intronic changes or even substitutions in exons. Patients with splicing variants account for ~15% of all cases in XLAS. In addition, it has been shown that there is a significant difference in kidney survival depending on the aberrant splicing patterns of transcripts- in particular in-frame or out-of-frame nucleotide changes in transcripts. Therefore, cDNA analysis of patient mRNA is necessary to determine the impact of splice site variants and to confirm a diagnosis of XLAS and to predict the kidney prognosis. However, it is usually difficult to amplify COL4A5 transcripts extracted from peripheral blood leukocytes. For these cases, in vitro minigene assays or RNA sequence extracted from urine derived cells can confirm aberrant splicing patterns. Moreover, controlling aberrant splicing by nucleic acids or small molecular compounds in genetic diseases are attracting attention as a potential therapeutic strategy. Here, we review the frequency of splicing variants in COL4A5, the latest diagnostic strategies, and the prospects for new therapeutic approaches.
Collapse
Affiliation(s)
- Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan.,Wellcome Centre for Cell-Matrix Research, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuya Aoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom.,Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|