1
|
Wang Y, Zeng Y, Fu Y, Liu Z, Hu X, Tang C, Cai J, Dong Z. Repression of peroxisome proliferation-activated receptor γ coactivator-1α by p53 after kidney injury promotes mitochondrial damage and maladaptive kidney repair. Kidney Int 2025; 107:869-887. [PMID: 40010492 DOI: 10.1016/j.kint.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
Maladaptive kidney repair after injury is associated with a loss of mitochondrial homeostasis, but the underlying mechanism is largely unknown. Moreover, it remains unclear whether this mitochondrial change contributes to maladaptive kidney repair or the development of chronic kidney problems after injury. Here, we report that the transcriptional coactivator peroxisome proliferation-activated receptor γ coactivator-1α (PGC1a), a master regulator of mitochondrial biogenesis, was persistently downregulated during maladaptive kidney repair after repeated low-dose cisplatin nephrotoxicity or unilateral ischemia/reperfusion injury. Administration of the PGC1α activator ZLN005 after either kidney injury not only preserved mitochondria but also attenuated kidney dysfunction, tubular damage, interstitial fibrosis, and inflammation. PGC1α downregulation in these models was associated with p53 activation. Notably, knockout of p53 from proximal tubules prevented PGC1α downregulation, attenuated chronic kidney pathologies and minimized functional decline. Inhibition of p53 with pifithrin-α, a cell permeable p53 inhibitor, had similar effects. Mechanistically, p53 bound to the PGC1α gene promoter during maladaptive kidney repair, and this binding was suppressed by pifithrin-α. Together, our results indicate that p53 is induced during maladaptive kidney repair to repress PGC1α transcriptionally, resulting in mitochondrial dysfunction for the development of chronic kidney problems. Activation of PGC1α and inhibition of p53 may improve kidney repair after injury and prevent the development of chronic kidney problems.
Collapse
MESH Headings
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/antagonists & inhibitors
- Animals
- Mitochondria/pathology
- Mitochondria/metabolism
- Mitochondria/drug effects
- Reperfusion Injury/pathology
- Reperfusion Injury/metabolism
- Reperfusion Injury/genetics
- Male
- Mice, Knockout
- Cisplatin/toxicity
- Mice, Inbred C57BL
- Disease Models, Animal
- Kidney/pathology
- Kidney/drug effects
- Kidney/metabolism
- Down-Regulation
- Mice
- Promoter Regions, Genetic
- Acute Kidney Injury/pathology
- Acute Kidney Injury/metabolism
- Acute Kidney Injury/chemically induced
- Acute Kidney Injury/genetics
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/prevention & control
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/genetics
- Benzothiazoles/pharmacology
- Humans
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Kidney Tubules, Proximal/drug effects
- Toluene/analogs & derivatives
- Toluene/pharmacology
- Organelle Biogenesis
Collapse
Affiliation(s)
- Ying Wang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China; Department of Nephrology, The Third Xiangya Hospital at Central South University, Changsha, Hunan, China; Postdoctoral Station of Pharmacy, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuqing Zeng
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Ying Fu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Zhiwen Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Xiaoru Hu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA; Research Department, Augusta VA Medical Center, Augusta, Georgia, USA
| | - Chengyuan Tang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Juan Cai
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China.
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA; Research Department, Augusta VA Medical Center, Augusta, Georgia, USA.
| |
Collapse
|
2
|
Carollo C, Sorce A, Cirafici E, Mulè G, Caimi G. Sirtuins and Resveratrol in Cardiorenal Diseases: A Narrative Review of Mechanisms and Therapeutic Potential. Nutrients 2025; 17:1212. [PMID: 40218970 PMCID: PMC11990745 DOI: 10.3390/nu17071212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Aging is a very complex process, and it has been linked with Sirtuins. Sirtuin enzymes are a family of deacetylases that are related to caloric restriction and aging by modulating energy metabolism, genomic stability, and stress resistance. Up to now, seven sirtuins have been recognized. This narrative review aimed to analyze the literature produced between January 2005 and March 2025 to evaluate the role of sirtuins in chronic kidney disease and, as heart and kidney diseases are strictly interrelated, to explore their role in heart diseases and cardio-renal cross-talk. A reciprocal relationship between CKD and aging seems to exist since CKD may contribute to premature biological aging of different organ systems. SIRTs are involved in the pathophysiology of renal diseases; their activation can delay the progression of several renal diseases. Notably, an increasing number of studies linked SIRTs with different CVDs. SIRTs affect the production of mitochondrial reactive oxygen species (ROS) by modulating mitochondrial function. The imbalance of SIRT levels may increase the vulnerability to CVDs. SIRTs are involved in the pathophysiological mechanisms of HFpEF (heart failure with preserved ejection fraction) through different signaling pathways. Fibrosis is the linkage mechanism between the heart and kidney in the development of cardio-renal diseases. Current studies on sirtuins, resveratrol, and cardiorenal disease highlight their potential therapeutic benefits in regulating blood pressure, kidney function, lipid profiles, and inflammation, making them a promising area of investigation for improving cardiovascular and renal health outcomes. However, significant gaps remain. The limited availability of highly selective and potent sirtuin modulators hampers their clinical translation, as most existing compounds exhibit poor bioavailability and suboptimal pharmacokinetic properties.
Collapse
Affiliation(s)
- Caterina Carollo
- Department of Health Promotion, Mother and Child Care, Internal and Specialistic Medicine, University of Palermo, 90127 Palermo, Italy (E.C.); (G.M.)
| | | | | | | | | |
Collapse
|
3
|
Koyuncu F, Solmaz FA, Gulle K, Ilhan I, Tepebasi MY, Ozden ES, Kirdemir P. Effect of dexpanthenol on glycerol-induced acute kidney injury by targeting the PGC-1α/SIRT3 pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04071-5. [PMID: 40131385 DOI: 10.1007/s00210-025-04071-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
Rhabdomyolysis (RM) can lead to life-threatening myoglobinuric acute kidney injury (AKI). Despite various treatment modalities for AKI, their effectiveness remains limited. Dexpanthenol (DEX) is an antioxidant, anti-inflammatory, and anti-apoptotic agent with demonstrated protective effects on various tissues. The current study aimed to investigate the protective effects and genetic mechanisms of DEX in AKI due to glycerol-induced RM. Thirty-two female Wistar Albino rats weighing between 250-300 g were allocated into four groups of eight rats each. The control group was given five days of intraperitoneal saline. The RM group was treated with an intramuscular injection of 8 ml/kg of 50% glycerol solution. The RM + DEX group was administered an intramuscular injection of 8 ml/kg of 50% glycerol solution and an intraperitoneal injection of 500 mg/kg DEX for five days, starting one hour after glycerol administration. The DEX group was treated with an intraperitoneal injection of 500 mg/kg DEX for five days. On the sixth day, rats were sacrificed and kidney tissues were taken. Histopathological analyses were performed on kidney tissue. Biochemical analyses were performed on kidney tissue and blood to evaluate kidney function and oxidative stress (BUN, creatinine, urea, CK, LDH, cystatin C, TAS, TOS, MDA, and CAT). Additionally, PGC-1α and SIRT-3 gene expression levels in kidney tissue were determined by qRT-PCR. All biomarkers significantly increased in the RM group. DEX treatment significantly reduced urea and creatinine levels. The increase in TOS levels and OSI in the RM group was significant compared to the control group, DEX treatment significantly reversed these effects. The RM and RM + DEX groups exhibited RM and nephropathy. Histopathological analysis revealed improvements in the RM + DEX group compared to the RM group. DEX treatment increased the expression of PGC-1α and SIRT-3 in the RM + DEX group. Histopathological and biochemical improvements, including reduced kidney damage and oxidative stress, were observed with DEX treatment and was associated with increased expression of the PGC-1α and SIRT-3 genes.
Collapse
Affiliation(s)
- Fadimana Koyuncu
- Department of Anaesthesiology and Reanimation, Faculty of Medicine, Suleyman Demirel University, Cunur, 32260, Isparta, Turkey
| | - Filiz Alkaya Solmaz
- Department of Anaesthesiology and Reanimation, Faculty of Medicine, Suleyman Demirel University, Cunur, 32260, Isparta, Turkey.
| | - Kanat Gulle
- Department of Histology-Embryology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Ilter Ilhan
- Department of Biochemistry, Faculty of Medicine, Suleyman Demirel University, Isparta, Türkiye
| | | | - Eyyup Sabri Ozden
- Department of Anaesthesiology and Reanimation, Faculty of Medicine, Suleyman Demirel University, Cunur, 32260, Isparta, Turkey
| | - Pakize Kirdemir
- Department of Anaesthesiology and Reanimation, Faculty of Medicine, Suleyman Demirel University, Cunur, 32260, Isparta, Turkey
| |
Collapse
|
4
|
Zhang C, Xiong Y, Luo Y, Liu K, Tong Q, Song Y, Qiu Z. Morroniside Ameliorates High-Fat and High-Fructose-Driven Chronic Kidney Disease by Motivating AMPK-TFEB Signal Activation to Accelerate Lipophagy and Inhibiting Inflammatory Response. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6158-6172. [PMID: 40011073 DOI: 10.1021/acs.jafc.4c07684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Studies have substantiated that dietary-fat- and fructose-overconsumption-caused lipid metabolism disorders can trigger renal lipotoxicity to drive the progression of chronic kidney disease (CKD). This study was conducted to evaluate the efficacy of morroniside, a natural active substance extracted from the fruit of Cornus officinalis, in inhibiting the progression of CKD in high-fat and high-fructose-fed mice. Our results showed histological changes such as fatty degeneration of renal tubular cells, tubular dilatation, glomerular fibrosis, and abnormal renal function in the kidneys of high-fat- and high-fructose-fed mice, which was significantly improved after morroniside treatment. Mechanistically, morroniside maintained renal lipid metabolism homeostasis and inhibited NLRP3 inflammatory vesicle activation by activating AMPKα to promote TFEB nuclear translocation-mediated lipophagy. Consistent results were observed in palmitic acid-induced HK-2 cells. Notably, silencing AMPKα or TFEB both reversed the effects of morroniside in promoting lipophagy and inhibiting the activation of inflammatory responses in vivo and in vitro. Therefore, our study provides compelling evidence that morroniside delays CKD progression by promoting AMPK/TFEB-mediated lipophagy and inhibiting NLRP3 inflammasome activation, suggesting that dietary supplementation with morroniside and morroniside-rich foods (such as Cornus officinalis) might be an effective strategy for the prevention of CKD.
Collapse
MESH Headings
- Animals
- Mice
- AMP-Activated Protein Kinases/genetics
- AMP-Activated Protein Kinases/metabolism
- AMP-Activated Protein Kinases/immunology
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/immunology
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/physiopathology
- Renal Insufficiency, Chronic/etiology
- Male
- Mice, Inbred C57BL
- Cornus/chemistry
- Fructose/adverse effects
- Fructose/metabolism
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/immunology
- Humans
- Diet, High-Fat/adverse effects
- Signal Transduction/drug effects
- Autophagy/drug effects
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/immunology
- Lipid Metabolism/drug effects
- Kidney/drug effects
- Kidney/metabolism
- Kidney/immunology
- Plant Extracts/administration & dosage
- Glycosides
Collapse
Affiliation(s)
- Cong Zhang
- College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Yangkun Xiong
- College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yingxi Luo
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Kexin Liu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Qiao Tong
- Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310023, China
| | - Yingying Song
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Zhenpeng Qiu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Hubei Shizhen Laboratory, Wuhan 430061, China
| |
Collapse
|
5
|
Humphries TLR, Lee S, Urquhart AJ, Vesey DA, Micallef AS, Winterford C, Kassianos AJ, Galloway GJ, Francis RS, Gobe GC. Metabolite pathway alterations identified by magnetic resonance metabolomics in a proximal tubular epithelial cell line treated with TGF-β1. Physiol Rep 2025; 13:e70249. [PMID: 39957082 PMCID: PMC11830627 DOI: 10.14814/phy2.70249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/18/2025] Open
Abstract
Tubulointerstitial fibrosis is a characteristic hallmark of chronic kidney disease (CKD). Metabolic perturbations in cellular energy metabolism contribute to the pathogenesis of CKD, but the chemical contributors remain unclear. The aim of this investigation was to use two dimensional 1H-nuclear magnetic resonance (2D-COSY) metabolomics to identify the chemical changes of kidney fibrogenesis. An in vitro transforming growth factor-β1 (TGF-β1)-induced model of kidney fibrogenesis with human kidney-2 (HK-2) proximal tubular epithelial cells (PTEC) was used. The model was validated by assaying for various pro-fibrotic molecules, using quantitative PCR and Western blotting. 2D-COSY was performed on treated cells. Morphological and functional changes characteristic of tubulointerstitial fibrosis were confirmed in the model; expression of fibronectin, collagen type IV, smooth muscle actin, oxidative stress enzymes increased (p < 0.05). NMR metabolomics provided evidence of altered metabolite signatures associated with glycolysis and glutamine metabolism, with decreased myo-inositol and choline, and metabolites of the oxidative phase of the pentose phosphate pathway with increased glucose and glucuronic acid. The altered PTEC cellular metabolism likely supports the rapid fibrogenic energy demands. These results, using 2D-COSY metabolomics, support development of a biomarker panel of fibrosis detectable using clinical magnetic resonance spectroscopy to diagnose and manage CKD.
Collapse
Affiliation(s)
- Tyrone L. R. Humphries
- Kidney Disease Research CollaborativeThe University of Queensland and Translational Research InstituteBrisbaneQueenslandAustralia
- School of Biomedical Sciences, Macgregor BuildingThe University of QueenslandSt LuciaQueenslandAustralia
- Department of Kidney and Transplant ServicesPrincess Alexandra HospitalWoolloongabbaQueenslandAustralia
| | - Soobin Lee
- Kidney Disease Research CollaborativeThe University of Queensland and Translational Research InstituteBrisbaneQueenslandAustralia
- School of Biomedical Sciences, Macgregor BuildingThe University of QueenslandSt LuciaQueenslandAustralia
| | - Aaron J. Urquhart
- Kidney Disease Research CollaborativeThe University of Queensland and Translational Research InstituteBrisbaneQueenslandAustralia
- School of Biomedical Sciences, Macgregor BuildingThe University of QueenslandSt LuciaQueenslandAustralia
| | - David A. Vesey
- Kidney Disease Research CollaborativeThe University of Queensland and Translational Research InstituteBrisbaneQueenslandAustralia
- Department of Kidney and Transplant ServicesPrincess Alexandra HospitalWoolloongabbaQueenslandAustralia
| | - Aaron S. Micallef
- Central Analytical Research FacilityQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Clay Winterford
- QIMR‐Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Andrew J. Kassianos
- Conjoint Internal Medicine Laboratory, Chemical PathologyPathology QueenslandBrisbaneQueenslandAustralia
| | - Graham J. Galloway
- Kidney Disease Research CollaborativeThe University of Queensland and Translational Research InstituteBrisbaneQueenslandAustralia
- Herston Imaging Research FacilityThe University of QueenslandHerstonQueenslandAustralia
| | - Ross S. Francis
- Kidney Disease Research CollaborativeThe University of Queensland and Translational Research InstituteBrisbaneQueenslandAustralia
- Department of Kidney and Transplant ServicesPrincess Alexandra HospitalWoolloongabbaQueenslandAustralia
| | - Glenda C. Gobe
- Kidney Disease Research CollaborativeThe University of Queensland and Translational Research InstituteBrisbaneQueenslandAustralia
- School of Biomedical Sciences, Macgregor BuildingThe University of QueenslandSt LuciaQueenslandAustralia
| |
Collapse
|
6
|
Xing Y, Huang D, Lin P, Zhou Y, Chen D, Ye C, Wu M. Salvianolic acid C promotes renal gluconeogenesis in fibrotic kidneys through PGC1α. Biochem Biophys Res Commun 2025; 744:151174. [PMID: 39700761 DOI: 10.1016/j.bbrc.2024.151174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Impaired renal gluconeogenesis is recently identified as a hallmark of chronic kidney disease. However, the therapeutic approach to promote renal gluconeogenesis in CKD is still lacking. We aimed to study whether Salvianolic acid C (SAC), a nature compound extracted from the traditional Chinese medicine Danshen, inhibits renal fibrosis through promotion of gluconeogenesis. TGF-β stimulated HK2 human renal epithelial cells and mice with unilateral ureteral obstruction (UUO) were used as in vitro and in vivo models to study renal fibrosis. Fibrotic and gluconeogenic changes were determined by Western blotting analysis, quantitative PCR and Masson staining. Glucose and lactate concentrations were measured in cell culture and renal tissues. We found that SAC treatment inhibits the deposition of extracellular matrix proteins and the expression of fibrotic markers such as fibronectin, N-cadherin, Vimentin, aSMA, pSmad3, and Snail in UUO kidneys or renal cells. Inhibition of these fibrotic markers by SAC treatment was associated with enhanced expression of three gluconeogenic enzymes such as PCK1, G6PC and FBP1 in renal tissues or cells. SAC increase the concentration of glucose in the supernatant of renal cells. Lactate concentration was reduced by SAC in renal tissues or cells. Pyruvate and glucose tolerance tests showed that SAC improve the impaired glucose metabolism systemically in UUO mice. Peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC1ɑ) was downregulated in mouse kidneys after UUO operation, which was increased by SAC treatment. Moreover, PGC1α inhibitor SR-18292 reversed the anti-fibrotic effect and pro-gluconeogenic effect caused by SAC in renal cells. In conclusion, SAC inhibits renal fibrosis through promotion of PGC1α-mediated renal gluconeogenesis.
Collapse
Affiliation(s)
- Yufeng Xing
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China; TCM Institute of Kidney Disease of Shanghai University of Traditional Chinese Medicine, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, China
| | - Di Huang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China; TCM Institute of Kidney Disease of Shanghai University of Traditional Chinese Medicine, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, China
| | - Pinglan Lin
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China; TCM Institute of Kidney Disease of Shanghai University of Traditional Chinese Medicine, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, China
| | - Yijing Zhou
- Department of Nephrology, JiaXing Hospital of Traditional Chinese Medicine, JiaXing, China
| | - Dongping Chen
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China; TCM Institute of Kidney Disease of Shanghai University of Traditional Chinese Medicine, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, China
| | - Chaoyang Ye
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China; TCM Institute of Kidney Disease of Shanghai University of Traditional Chinese Medicine, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, China.
| | - Ming Wu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China; TCM Institute of Kidney Disease of Shanghai University of Traditional Chinese Medicine, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, China.
| |
Collapse
|
7
|
Elliott J, Oyama MA. Sodium glucose transporter 2 inhibitors: Will these drugs benefit non-diabetic veterinary patients with cardiac and kidney diseases? J Vet Pharmacol Ther 2025; 48 Suppl 1:1-18. [PMID: 39001645 PMCID: PMC11737021 DOI: 10.1111/jvp.13472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/14/2024] [Accepted: 07/03/2024] [Indexed: 01/18/2025]
Abstract
Sodium glucose transporter type 2 (SGLT2) inhibitors have been introduced into human medicine where their beneficial effects go beyond the expected improvement in blood glucose control. These drugs appear to prevent progression of both cardiovascular and kidney diseases, not only in diabetic but also in non-diabetic human patients. As these drugs have received conditional approval for use in diabetic cats and are being used in other veterinary species, the intriguing question as to whether they will have similar cardioprotective and nephroprotective effects in dogs and cats is being asked. The primary mechanism(s) by which SGLT2 inhibitors are cardio- and nephroprotective remain to be fully characterized. This paper reviews these suggested mechanisms in the context of the pathophysiology of progressive cardiovascular and kidney diseases in dogs and cats with the goal of predicting which categories of non-diabetic veterinary patients these drugs might be of most benefit.
Collapse
Affiliation(s)
- Jonathan Elliott
- Department of Comparative Biomedical SciencesRoyal Veterinary College, University of LondonLondonUK
| | - Mark A. Oyama
- Department of Clinical Sciences & Advanced MedicineUniversity of Pennsylvania School of Veterinary MedicinePhiladelphiaPennsylvaniaUSA
| |
Collapse
|
8
|
Zhang X, Wu W, Li Y, Peng Z. Exploring the role and therapeutic potential of lipid metabolism in acute kidney injury. Ren Fail 2024; 46:2403652. [PMID: 39319697 PMCID: PMC11425701 DOI: 10.1080/0886022x.2024.2403652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
Acute kidney injury (AKI) is a prevalent condition, yet no specific treatment is available. Extensive research has revealed the pivotal role of lipid-related alterations in AKI. Lipid metabolism plays an essential role in the sustenance of the kidneys. In addition to their energy-supplying function, lipids contribute to the formation of renal biomembranes and the establishment of the renal microenvironment. Moreover, lipids or their metabolites actively participate in signal transduction, which governs various vital biological processes, such as proliferation, differentiation, apoptosis, autophagy, and epithelial-mesenchymal transition. While previous studies have focused predominantly on abnormalities in lipid metabolism in chronic kidney disease, this review focuses on lipid metabolism anomalies in AKI. We explore the significance of lipid metabolism products as potential biomarkers for the early diagnosis and classification of AKI. Additionally, this review assesses current preclinical investigations on the modulation of lipid metabolism in the progression of AKI. Finally, on the basis of existing research, this review proposes future directions, highlights challenges, and presents novel targets and innovative ideas for the treatment of and intervention in AKI.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Wen Wu
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
- Department of Critical Care Medicine, Yichang Central People's Hospital, Yichang, China
| | - Yiming Li
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
- Department of Critical Care Medicine, Center of Critical Care Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Gupta P, Zhu S, Gui Y, Zhou D. Metabolic Chaos in Kidney Disease: Unraveling Energy Dysregulation. J Clin Med 2024; 13:6772. [PMID: 39597916 PMCID: PMC11594442 DOI: 10.3390/jcm13226772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Acute kidney injury (AKI) and chronic kidney disease (CKD) share a fundamental disruption: metabolic dysfunction. METHODS A literature review was performed to determine the metabolic changes that occur in AKI and CKD as well as potential therapeutic targets related to these changes. RESULTS In AKI, increased energy demand in proximal tubular epithelial cells drives a shift from fatty acid oxidation (FAO) to glycolysis. Although this shift offers short-term support, it also heightens cellular vulnerability to further injury. As AKI progresses to CKD, metabolic disruption intensifies, with both FAO and glycolysis becoming downregulated, exacerbating cellular damage and fibrosis. These metabolic alterations are governed by shifts in gene expression and protein signaling pathways, which can now be precisely analyzed through advanced omics and histological methods. CONCLUSIONS This review examines these metabolic disturbances and their roles in disease progression, highlighting therapeutic interventions that may restore metabolic balance and enhance kidney function. Many metabolic changes that occur in AKI and CKD can be utilized as therapeutic targets, indicating a need for future studies related to the clinical utility of these therapeutics.
Collapse
Affiliation(s)
- Priya Gupta
- School of Medicine, University of Connecticut, Farmington, CT 06030, USA;
| | - Saiya Zhu
- Division of Nephrology, Department of Medicine, School of Medicine, University of Connecticut, Farmington, CT 06030, USA; (S.Z.); (Y.G.)
| | - Yuan Gui
- Division of Nephrology, Department of Medicine, School of Medicine, University of Connecticut, Farmington, CT 06030, USA; (S.Z.); (Y.G.)
| | - Dong Zhou
- Division of Nephrology, Department of Medicine, School of Medicine, University of Connecticut, Farmington, CT 06030, USA; (S.Z.); (Y.G.)
| |
Collapse
|
10
|
Li X, Li Q, Jiang X, Song S, Zou W, Yang Q, Liu S, Chen S, Wang C. Inhibition of SGLT2 protects podocytes in diabetic kidney disease by rebalancing mitochondria-associated endoplasmic reticulum membranes. Cell Commun Signal 2024; 22:534. [PMID: 39511548 PMCID: PMC11542362 DOI: 10.1186/s12964-024-01914-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Sodium-glucose cotransporter 2 (SGLT2) inhibitors have changed the therapeutic landscape for diabetic kidney disease (DKD) patients, but their underlying mechanisms are complicated and not fully understood. Mitochondria-associated endoplasmic reticulum membranes (MAMs), the dynamic contact sites between mitochondria and the endoplasmic reticulum (ER), serve as intracellular platforms important for regulating cellular fate and function. This study explored the roles and mechanisms of SGLT2 inhibitors in regulating MAMs formation in diabetic podocytes. METHODS We assessed MAMs formation in podocytes from DKD patients' renal biopsy samples and induced an increase in MAMs formation in cultured human podocytes by transfecting OMM-ER linker plasmid to investigate the effects of MAMs imbalance on podocyte injury. Empagliflozin-treated diabetic mice and podocyte-specific SGLT2 knockout diabetic mice (diabetic states were induced by streptozotocin and a high-fat diet), empagliflozin-treated podocytes, SGLT2-downregulated podocytes, and SGLT2-overexpressing podocytes were used to investigate the effects and mechanisms of SGLT2 inhibitors on MAMs formation in diabetic podocytes. RESULTS MAMs were increased in podocytes and were associated with renal dysfunction in DKD patients. Increased MAMs aggravated HG-induced podocyte injury. The expression of SGLT2 was increased in diabetic podocytes. In addition, empagliflozin-treatment and podocyte-specific SGLT2 knockout attenuated MAMs formation and podocyte injury in diabetic mice. Empagliflozin treatment and SGLT2 knockdown decreased podocyte MAMs formation by activating the AMP-activated protein kinase (AMPK) pathway, while SGLT2 overexpression had the opposite effect. CONCLUSIONS Inhibition of SGLT2 attenuates MAMs imbalance in diabetic podocytes by activating the AMPK pathway. This study expands our knowledge of the roles of SGLT2 inhibitors in improving DKD podocyte injury and provides new insights into DKD treatment.
Collapse
Affiliation(s)
- Xuehong Li
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Qiong Li
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Xinying Jiang
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Shicong Song
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Wei Zou
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Qinglan Yang
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Sirui Liu
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China
| | - Shuangqin Chen
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China.
| | - Cheng Wang
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China.
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
11
|
Xue JL, Ji JL, Zhou Y, Zhang Y, Liu BC, Ma RX, Li ZL. The multifaceted effects of mitochondria in kidney diseases. Mitochondrion 2024; 79:101957. [PMID: 39270830 DOI: 10.1016/j.mito.2024.101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria serve as the primary site for aerobic respiration within cells, playing a crucial role in maintaining cellular homeostasis. To maintain homeostasis and meet the diverse demands of the cells, mitochondria have evolved intricate systems of quality control, mainly including mitochondrial dynamics, mitochondrial autophagy (mitophagy) and mitochondrial biogenesis. The kidney, characterized by its high energy requirements, is particularly abundant in mitochondria. Interestingly, the mitochondria display complex behaviors and functions. When the kidney is suffered from obstructive, ischemic, hypoxic, oxidative, or metabolic insults, the dysfunctional mitochondrial derived from the defects in the mitochondrial quality control system contribute to cellular inflammation, cellular senescence, and cell death, posing a threat to the kidney. However, in addition to causing injury to the kidney in several cases, mitochondria also exhibit protective effect on the kidney. In recent years, accumulating evidence indicated that mitochondria play a crucial role in adaptive repair following kidney diseases caused by various etiologies. In this article, we comprehensively reviewed the current understanding about the multifaceted effects of mitochondria on kidney diseases and their therapeutic potential.
Collapse
Affiliation(s)
- Jia-Le Xue
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jia-Ling Ji
- Department of Pediatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Zhou
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yao Zhang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Rui-Xia Ma
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Zuo-Lin Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
12
|
Xu Q, Liu H, Ding Shiwen Fan X, Lv W, Jiang Y, Liang Y, Xu H, Dai J. PGC-1α regulates endoplasmic reticulum stress in IPF-derived fibroblasts. Int Immunopharmacol 2024; 138:112514. [PMID: 38943974 DOI: 10.1016/j.intimp.2024.112514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 07/01/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is considered to be associated with aging. Both ER stress and the unfolded protein response (UPR) have been associated with pulmonary fibrosis via key mechanisms including AEC apoptosis, EMT, altered myofibroblast differentiation, and M2 macrophage polarization. A relationship between ER stress and aging has also been demonstrated in vitro, with increased p16 and p21 levels seen in lung epithelial cells of older IPF patients. The mechanism underlying ER stress regulation of IPF fibroblasts is still unclear. In this study, we aimed to delineate ER stress regulation in IPF-derived fibroblasts. Here, we found that ER stress markers (p-eIF2α, p-IREα, ATF6) and fibrosis markers (α-SMA and Collagen-I) were significantly increased in lung tissues of IPF patients and bleomycin-induced mouse models. Notably, the expression of PGC-1α was decreased in fibroblasts. In vivo experiments were designed using an AAV-6 vector mediated conditional PGC-1α knockout driven by a specific α-SMA promoter. Ablation of PGC-1α expression in fibroblasts promoted ER stress and supported the development of pulmonary fibrosis in a bleomycin-induced mouse model. In another experimental group, mice with conditional knockout of PGC-1α in fibroblasts and injected intraperitoneally with 4-PBA (an endoplasmic reticulum stress inhibitor) were protected from lung fibrosis. We further constructed an AAV-6 vector mediated PGC-1α overexpression model driven by a specific Collagen-I promoter. Overexpression of PGC-1α in fibroblasts suppressed ER stress and attenuated development of pulmonary fibrosis in bleomycin-induced mouse models. Taken together, this study identified PGC-1α as a promising target for developing novel therapeutic options for the treatment of lung fibrosis.
Collapse
Affiliation(s)
- Qinghua Xu
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Huarui Liu
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Xiaorui Ding Shiwen Fan
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Wenting Lv
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yuxian Jiang
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yi Liang
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Hongyang Xu
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jinghong Dai
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.
| |
Collapse
|
13
|
Peti-Peterdi J, Gyarmati G. See the power in kidney cells with ATP biosensor. Kidney Int 2024; 106:362-364. [PMID: 39174197 PMCID: PMC11493342 DOI: 10.1016/j.kint.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 08/24/2024]
Abstract
Yamamoto et al. developed an exciting technical advance to examine intracellular adenosine triphosphate levels with single-cell resolution in intact living kidney tissue, including in tubular and vascular segments that lie deep under the kidney surface. The work is a significant advance on prior in vivo biosensor studies, and it allows for mechanistic investigation of alterations in cell metabolism, kidney disease pathobiology, and the effects of drug treatments on energy sources in different kidney cell types.
Collapse
Affiliation(s)
- János Peti-Peterdi
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA; Department of Medicine, University of Southern California, Los Angeles, California, USA.
| | - Georgina Gyarmati
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
14
|
Ye Y, Li M, Chen W, Wang H, He X, Liu N, Guo Z, Zheng C. Natural polysaccharides as promising reno-protective agents for the treatment of various kidney injury. Pharmacol Res 2024; 207:107301. [PMID: 39009291 DOI: 10.1016/j.phrs.2024.107301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/13/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
Renal injury, a prevalent clinical outcome with multifactorial etiology, imposes a substantial burden on society. Currently, there remains a lack of effective management and treatments. Extensive research has emphasized the diverse biological effects of natural polysaccharides, which exhibit promising potential for mitigating renal damage. This review commences with the pathogenesis of four common renal diseases and the shared mechanisms underlying renal injury. The renoprotective roles of polysaccharides in vivo and in vitro are summarized in the following five aspects: anti-oxidative stress effects, anti-apoptotic effects, anti-inflammatory effects, anti-fibrotic effects, and gut modulatory effects. Furthermore, we explore the structure-activity relationship and bioavailability of polysaccharides in relation to renal injury, as well as investigate their utility as biomaterials for alleviating renal injury. The clinical experiments of polysaccharides applied to patients with chronic kidney disease are also reviewed. Broadly, this review provides a comprehensive perspective on the research direction of natural polysaccharides in the context of renal injury, with the primary aim to serve as a reference for the clinical development of polysaccharides as pharmaceuticals and prebiotics for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Yufei Ye
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China; Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Maoting Li
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China; Department of Nephrology, Naval Medical Center of PLA, Second Military Medical University/Naval Medical University, 338 West Huaihai Road, Shanghai 200052, China
| | - Wei Chen
- Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Hongrui Wang
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xuhui He
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Nanmei Liu
- Department of Nephrology, Naval Medical Center of PLA, Second Military Medical University/Naval Medical University, 338 West Huaihai Road, Shanghai 200052, China.
| | - Zhiyong Guo
- Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Chengjian Zheng
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China.
| |
Collapse
|
15
|
Peng X, Ni H, Kuang B, Wang Z, Hou S, Gu S, Gong N. Sirtuin 3 in renal diseases and aging: From mechanisms to potential therapies. Pharmacol Res 2024; 206:107261. [PMID: 38917912 DOI: 10.1016/j.phrs.2024.107261] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
The longevity protein sirtuins (SIRTs) belong to a family of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases. In mammals, SIRTs comprise seven members (SIRT1-7) which are localized to different subcellular compartments. As the most prominent mitochondrial deacetylases, SIRT3 is known to be regulated by various mechanisms and participate in virtually all aspects of mitochondrial homeostasis and metabolism, exerting significant impact on multiple organs. Notably, the kidneys possess an abundance of mitochondria that provide substantial energy for filtration and reabsorption. A growing body of evidence now supports the involvement of SIRT3 in several renal diseases, including acute kidney injury, chronic kidney disease, and diabetic nephropathy; notably, these diseases are all associated with aging. In this review, we summarize the emerging role of SIRT3 in renal diseases and aging, and highlights the intricate mechanisms by which SIRT3 exerts its effects. In addition, we highlight the potential therapeutic significance of modulating SIRT3 and provide valuable insights into the therapeutic role of SIRT3 in renal diseases to facilitate clinical application.
Collapse
Affiliation(s)
- Xuan Peng
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Haiqiang Ni
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Baicheng Kuang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhiheng Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Shuaiheng Hou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Shiqi Gu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Nianqiao Gong
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
16
|
Cortés-Camacho F, Zambrano-Vásquez OR, Aréchaga-Ocampo E, Castañeda-Sánchez JI, Gonzaga-Sánchez JG, Sánchez-Gloria JL, Sánchez-Lozada LG, Osorio-Alonso H. Sodium-Glucose Cotransporter Inhibitors: Cellular Mechanisms Involved in the Lipid Metabolism and the Treatment of Chronic Kidney Disease Associated with Metabolic Syndrome. Antioxidants (Basel) 2024; 13:768. [PMID: 39061837 PMCID: PMC11274291 DOI: 10.3390/antiox13070768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Metabolic syndrome (MetS) is a multifactorial condition that significantly increases the risk of cardiovascular disease and chronic kidney disease (CKD). Recent studies have emphasized the role of lipid dysregulation in activating cellular mechanisms that contribute to CKD progression in the context of MetS. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have demonstrated efficacy in improving various components of MetS, including obesity, dyslipidemia, and insulin resistance. While SGLT2i have shown cardioprotective benefits, the underlying cellular mechanisms in MetS and CKD remain poorly studied. Therefore, this review aims to elucidate the cellular mechanisms by which SGLT2i modulate lipid metabolism and their impact on insulin resistance, mitochondrial dysfunction, oxidative stress, and CKD progression. We also explore the potential benefits of combining SGLT2i with other antidiabetic drugs. By examining the beneficial effects, molecular targets, and cytoprotective mechanisms of both natural and synthetic SGLT2i, this review provides a comprehensive understanding of their therapeutic potential in managing MetS-induced CKD. The information presented here highlights the significance of SGLT2i in addressing the complex interplay between metabolic dysregulation, lipid metabolism dysfunction, and renal impairment, offering clinicians and researchers a valuable resource for developing improved treatment strategies and personalized approaches for patients with MetS and CKD.
Collapse
Affiliation(s)
- Fernando Cortés-Camacho
- Doctorado en Ciencias Biologicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico; (F.C.-C.); (O.R.Z.-V.)
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico; (J.G.G.-S.); (L.G.S.-L.)
| | - Oscar René Zambrano-Vásquez
- Doctorado en Ciencias Biologicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico; (F.C.-C.); (O.R.Z.-V.)
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico; (J.G.G.-S.); (L.G.S.-L.)
| | - Elena Aréchaga-Ocampo
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Mexico City 05348, Mexico;
| | | | - José Guillermo Gonzaga-Sánchez
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico; (J.G.G.-S.); (L.G.S.-L.)
| | - José Luis Sánchez-Gloria
- Department of Internal Medicine, Division of Nephrology, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Laura Gabriela Sánchez-Lozada
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico; (J.G.G.-S.); (L.G.S.-L.)
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico; (J.G.G.-S.); (L.G.S.-L.)
| |
Collapse
|
17
|
Katerelos M, Gleich K, Harley G, Loh K, Oakhill JS, Kemp BE, de Souza DP, Narayana VK, Coughlan MT, Laskowski A, Ling NXY, Murray-Segal L, Brink R, Lee M, Power DA, Mount PF. The AMPK activator ATX-304 alters cellular metabolism to protect against cisplatin-induced acute kidney injury. Biomed Pharmacother 2024; 175:116730. [PMID: 38749175 DOI: 10.1016/j.biopha.2024.116730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024] Open
Abstract
Acute kidney injury (AKI) disrupts energy metabolism. Targeting metabolism through AMP-activated protein kinase (AMPK) may alleviate AKI. ATX-304, a pan-AMPK activator, was evaluated in C57Bl/6 mice and tubular epithelial cell (TEC) cultures. Mice received ATX-304 (1 mg/g) or control chow for 7 days before cisplatin-induced AKI (CI-AKI). Primary cultures of tubular epithelial cells (TECs) were pre-treated with ATX-304 (20 µM, 4 h) prior to exposure to cisplatin (20 µM, 23 h). ATX-304 increased acetyl-CoA carboxylase phosphorylation, indicating AMPK activation. It protected against CI-AKI measured by serum creatinine (control 0.05 + 0.03 mM vs ATX-304 0.02 + 0.01 mM, P = 0.03), western blot for neutrophil gelatinase-associated lipocalin (NGAL) (control 3.3 + 1.8-fold vs ATX-304 1.2 + 0.55-fold, P = 0.002), and histological injury (control 3.5 + 0.59 vs ATX-304 2.7 + 0.74, P = 0.03). In TECs, pre-treatment with ATX-304 protected against cisplatin-mediated injury, as measured by lactate dehydrogenase release, MTS cell viability, and cleaved caspase 3 expression. ATX-304 protection against cisplatin was lost in AMPK-null murine embryonic fibroblasts. Metabolomic analysis in TECs revealed that ATX-304 (20 µM, 4 h) altered 66/126 metabolites, including fatty acids, tricarboxylic acid cycle metabolites, and amino acids. Metabolic studies of live cells using the XFe96 Seahorse analyzer revealed that ATX-304 increased the basal TEC oxygen consumption rate by 38%, whereas maximal respiration was unchanged. Thus, ATX-304 protects against cisplatin-mediated kidney injury via AMPK-dependent metabolic reprogramming, revealing a promising therapeutic strategy for AKI.
Collapse
Affiliation(s)
- Marina Katerelos
- Department of Nephrology, Austin Health, Heidelberg, Victoria 3084, Australia; Kidney Laboratory, The Institute for Breathing and Sleep (IBAS), Austin Health, Heidelberg, Victoria 3084, Australia
| | - Kurt Gleich
- Department of Nephrology, Austin Health, Heidelberg, Victoria 3084, Australia; Kidney Laboratory, The Institute for Breathing and Sleep (IBAS), Austin Health, Heidelberg, Victoria 3084, Australia
| | - Geoff Harley
- Department of Nephrology, Austin Health, Heidelberg, Victoria 3084, Australia; Kidney Laboratory, The Institute for Breathing and Sleep (IBAS), Austin Health, Heidelberg, Victoria 3084, Australia
| | - Kim Loh
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Jonathan S Oakhill
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Bruce E Kemp
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - David P de Souza
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Vinod K Narayana
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Melinda T Coughlan
- Glycation, Nutrition and Metabolism Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Parkville, Victoria 3052, Australia
| | - Adrienne Laskowski
- Glycation, Nutrition and Metabolism Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Naomi X Y Ling
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Lisa Murray-Segal
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Robert Brink
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia; St. Vincent's Clinical School, University of New South Wales, St. Vincent's Hospital, Darlinghurst, New South Wales 2010, Australia
| | - Mardiana Lee
- Department of Nephrology, Austin Health, Heidelberg, Victoria 3084, Australia; Kidney Laboratory, The Institute for Breathing and Sleep (IBAS), Austin Health, Heidelberg, Victoria 3084, Australia
| | - David A Power
- Department of Nephrology, Austin Health, Heidelberg, Victoria 3084, Australia; Kidney Laboratory, The Institute for Breathing and Sleep (IBAS), Austin Health, Heidelberg, Victoria 3084, Australia; Department of Medicine (Austin), The University of Melbourne, Heidelberg ,Victoria 3084, Australia
| | - Peter F Mount
- Department of Nephrology, Austin Health, Heidelberg, Victoria 3084, Australia; Kidney Laboratory, The Institute for Breathing and Sleep (IBAS), Austin Health, Heidelberg, Victoria 3084, Australia; Department of Medicine (Austin), The University of Melbourne, Heidelberg ,Victoria 3084, Australia.
| |
Collapse
|
18
|
Silvaroli JA, Bisunke B, Kim JY, Stayton A, Jayne LA, Martinez SA, Nguyen C, Patel PS, Vanichapol T, Verma V, Akhter J, Bolisetty S, Madhavan SM, Kuscu C, Coss CC, Zepeda-Orozco D, Parikh SV, Satoskar AA, Davidson AJ, Eason JD, Szeto HH, Pabla NS, Bajwa A. Genome-Wide CRISPR Screen Identifies Phospholipid Scramblase 3 as the Biological Target of Mitoprotective Drug SS-31. J Am Soc Nephrol 2024; 35:681-695. [PMID: 38530359 PMCID: PMC11164119 DOI: 10.1681/asn.0000000000000338] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 03/12/2024] [Indexed: 03/27/2024] Open
Abstract
Key Points Szeto–Schiller-31–mediated mitoprotection is phospholipid scramblase 3–dependent. Phospholipid scramblase 3 is required for recovery after AKI. Background The synthetic tetrapeptide Szeto–Schiller (SS)-31 shows promise in alleviating mitochondrial dysfunction associated with common diseases. However, the precise pharmacological basis of its mitoprotective effects remains unknown. Methods To uncover the biological targets of SS-31, we performed a genome-scale clustered regularly interspaced short palindromic repeats screen in human kidney-2, a cell culture model where SS-31 mitigates cisplatin-associated cell death and mitochondrial dysfunction. The identified hit candidate gene was functionally validated using knockout cell lines, small interfering RNA-mediated downregulation, and tubular epithelial–specific conditional knockout mice. Biochemical interaction studies were also performed to examine the interaction of SS-31 with the identified target protein. Results Our primary screen and validation studies in hexokinase 2 and primary murine tubular epithelial cells showed that phospholipid scramblase 3 (PLSCR3), an understudied inner mitochondrial membrane protein, was essential for the protective effects of SS-31. For in vivo validation, we generated tubular epithelial–specific knockout mice and found that Plscr3 gene ablation did not influence kidney function under normal conditions or affect the severity of cisplatin and rhabdomyolysis-associated AKI. However, Plscr3 gene deletion completely abrogated the protective effects of SS-31 during cisplatin and rhabdomyolysis-associated AKI. Biochemical studies showed that SS-31 directly binds to a previously uncharacterized N -terminal domain and stimulates PLSCR3 scramblase activity. Finally, PLSCR3 protein expression was found to be increased in the kidneys of patients with AKI. Conclusions PLSCR3 was identified as the essential biological target that facilitated the mitoprotective effects of SS-31 in vitro and in vivo .
Collapse
Affiliation(s)
- Josie A. Silvaroli
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Bijay Bisunke
- Department of Genetics, Genomics, and Informatics; College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Ji Young Kim
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Amanda Stayton
- Department of Genetics, Genomics, and Informatics; College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Laura A. Jayne
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Shirely A. Martinez
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Christopher Nguyen
- Department of Genetics, Genomics, and Informatics; College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Prisha S. Patel
- Department of Genetics, Genomics, and Informatics; College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Thitinee Vanichapol
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Vivek Verma
- Department of Medicine, University of Alabama, Birmingham, Alabama
| | - Juheb Akhter
- Department of Medicine, University of Alabama, Birmingham, Alabama
| | | | - Sethu M. Madhavan
- Division of Nephrology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Cem Kuscu
- Department of Surgery, College of Medicine, Transplant Research Institute, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Christopher C. Coss
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Diana Zepeda-Orozco
- Department of Pediatrics, The Ohio State University College of Medicine and Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Samir V. Parikh
- Division of Nephrology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Anjali A. Satoskar
- Division of Renal and Transplant Pathology, Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Alan J. Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - James D. Eason
- Department of Surgery, College of Medicine, Transplant Research Institute, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hazel H. Szeto
- Social Profit Network Research Lab, Menlo Park, California
| | - Navjot S. Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Amandeep Bajwa
- Department of Genetics, Genomics, and Informatics; College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Surgery, College of Medicine, Transplant Research Institute, The University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Microbiology, Immunology, and Biochemistry; College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
19
|
Kurochkina ON, Korotkov DA, Sazhina AS, Bogomolov AN. Metabolic reprogramming as the basis for sodium-glucose co-transporter type 2 inhibitors cardio- and nephroprotective effect. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2024; 20:258-264. [DOI: 10.20996/1819-6446-2024-3014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
In recent years, it has been shown that sodium-g lucose co-transporter type 2 inhibitors (SGLT2), drugs for type 2 diabetes mellitus treatment, significantly improve metabolic parameters and have protective effect on the kidneys and heart not only in patients with type 2 diabetes mellitus. New research indicates that the progression of chronic heart failure (CHF) and chronic kidney disease (CKD) involves metabolic reprogramming, which consists of a deterioration in energy metabolism in the heart as a result of a mismatch between glucose uptake and its oxidation, leading to the accumulation of glucose-6-phosphate (G6P), glycogen and activation of the pentose phosphate pathway. This nutrient excess activates the mammalian target of rapamycin (mTOR), thereby promoting pathological myocardial remodeling, and at the same time suppresses the nutrient deficiency sensors SIRT1, AMPK and PGC-1α, which is accompanied by mitochondrial dysfunction, increased oxidative stress and decreased fatty acid oxidation. Similar processes occur in the proximal convoluted tubules of the kidneys in CKD, leading to renal dysfunction, albuminuria, and interstitial fibrosis. SGLT2 inhibitors inhibit the reabsorption of sodium and glucose in the proximal tubule, which leads to increased urinary glucose excretion and moderate osmotic diuresis and natriuresis. Nutrient deficiency resulting from glucose excretion promotes the activation of AMPK, which is involved in the regulation of mitochondrial biogenesis by stimulating PGC-1α, stimulates catabolic metabolism and activates autophagy by inhibiting mTORC1, which is accompanied by antiinflammatory effects, reduced oxidative stress and apoptosis and increased autophagy. These processes are accompanied by a decrease in blood pressure and a decrease in the load on the myocardium, with a simultaneous decrease in the tone of the sympathetic nervous system. Taking SGLT2 inhibitors is accompanied by normalization of tubuloglomerular feedback and a decrease in hyperfiltration, which has a beneficial effect on glomerular hemodynamics, as well as stimulation of erythropoiesis as a result of simulating systemic hypoxia. The described processes may serve as the basis for the cardioprotective and nephroprotective effects of SGLT2 inhibitors.
Collapse
Affiliation(s)
| | | | | | - A N. Bogomolov
- St. Petersburg Institute of Bioregulation and Gerontology
| |
Collapse
|
20
|
Li RY, Guo L. Exercise in Diabetic Nephropathy: Protective Effects and Molecular Mechanism. Int J Mol Sci 2024; 25:3605. [PMID: 38612417 PMCID: PMC11012151 DOI: 10.3390/ijms25073605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Diabetic nephropathy (DN) is a serious complication of diabetes, and its progression is influenced by factors like oxidative stress, inflammation, cell death, and fibrosis. Compared to drug treatment, exercise offers a cost-effective and low-risk approach to slowing down DN progression. Through multiple ways and mechanisms, exercise helps to control blood sugar and blood pressure and reduce serum creatinine and albuminuria, thereby alleviating kidney damage. This review explores the beneficial effects of exercise on DN improvement and highlights its potential mechanisms for ameliorating DN. In-depth understanding of the role and mechanism of exercise in improving DN would pave the way for formulating safe and effective exercise programs for the treatment and prevention of DN.
Collapse
Affiliation(s)
- Ruo-Ying Li
- School of Exercise and Health, Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China;
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Liang Guo
- School of Exercise and Health, Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China;
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
21
|
Ding W, Yang X, Lai K, Jiang Y, Liu Y. The potential of therapeutic strategies targeting mitochondrial biogenesis for the treatment of insulin resistance and type 2 diabetes mellitus. Arch Pharm Res 2024; 47:219-248. [PMID: 38485900 DOI: 10.1007/s12272-024-01490-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/07/2024] [Indexed: 04/07/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a persistent metabolic disorder marked by deficiencies in insulin secretion and/or function, affecting various tissues and organs and leading to numerous complications. Mitochondrial biogenesis, the process by which cells generate new mitochondria utilizing existing ones plays a crucial role in energy homeostasis, glucose metabolism, and lipid handling. Recent evidence suggests that promoting mitochondrial biogenesis can alleviate insulin resistance in the liver, adipose tissue, and skeletal muscle while improving pancreatic β-cell function. Moreover, enhanced mitochondrial biogenesis has been shown to ameliorate T2DM symptoms and may contribute to therapeutic effects for the treatment of diabetic nephropathy, cardiomyopathy, retinopathy, and neuropathy. This review summarizes the intricate connection between mitochondrial biogenesis and T2DM, highlighting the potential of novel therapeutic strategies targeting mitochondrial biogenesis for T2DM treatment and its associated complications. It also discusses several natural products that exhibit beneficial effects on T2DM by promoting mitochondrial biogenesis.
Collapse
Affiliation(s)
- Wenwen Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaoxue Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Kaiyi Lai
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
22
|
Sun M, Wang F, Li H, Li M, Wang Y, Wang C, Zhang Y, Zhang D, Li J, Yao S. Maresin-1 Attenuates Sepsis-Associated Acute Kidney Injury via Suppressing Inflammation, Endoplasmic Reticulum Stress and Pyroptosis by Activating the AMPK/SIRT3 Pathway. J Inflamm Res 2024; 17:1349-1364. [PMID: 38434585 PMCID: PMC10908291 DOI: 10.2147/jir.s442729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Background Sepsis-associated acute kidney injury (SA-AKI) is a common complication in patients with sepsis, triggering high morbidity and mortality. Maresin-1 (MaR1) is a pro-resolution lipid mediator that promotes the resolution of acute inflammation and protects organs from inflammation. Methods In this study, we established an SA-AKI model using cecal ligation and puncture (CLP) and investigated the effect and mechanism of MaR1. The blood and kidneys were harvested 24 hours after surgery. The blood biochemical/routine indicators, renal function, SA-AKI-related pathophysiological processes, and AMPK/SIRT3 signaling in septic mice were observed by histological staining, immunohistochemical staining, Western blot, qPCR, ELISA and TUNEL Assay. Results MaR1 treatment alleviated kidney injury in septic mice, reflected in improved pathological changes in renal structure and renal function. MaR1 treatment decreased the levels of serum creatinine (sCr) and blood urea nitrogen (BUN) and the expressions of KIM-1, NGAL and TIMP-2, which were related to kidney injury, while inhibited the expressions of inflammatory factors TNF-α, IL-1β and IL-6. The expression of endoplasmic reticulum stress-related indicators p-PERK/PERK, GRP78, p-EIF2α/EIF2α, ATF4, CHOP, and pyroptosis-related indicators Caspase-1, NLRP3, GSDMD, IL-18, and IL-1β also decreased after MaR1 treatment. The mechanism may be related to the activation of the AMPK/SIRT3 signaling pathway, and an AMPK inhibitor (compound C) partially reverses MaR1's protective effects in septic mice. Conclusion Taken together, these findings suggest that MaR1 may partially ameliorate SA-AKI by activating the AMPK/SIRT3 signaling pathway, providing a potential new perspective for research on SA-AKI.
Collapse
Affiliation(s)
- Miaomiao Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, People’s Republic of China
| | - Fuquan Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, People’s Republic of China
| | - Haopeng Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, People’s Republic of China
| | - Mengyu Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, People’s Republic of China
| | - Yu Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, People’s Republic of China
| | - Chenchen Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, People’s Republic of China
| | - Yan Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, People’s Republic of China
| | - Dingyu Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, People’s Republic of China
- Wuhan Jinyintan Hospital, Wuhan, 430023, People’s Republic of China
| | - Jianhua Li
- Department of Critical Care Medicine, Chongqing University Jiangjin Hospital, Chongqing, People’s Republic of China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, People’s Republic of China
| |
Collapse
|
23
|
Zhang T, Xu L, Guo X, Tao H, Liu Y, Liu X, Zhang Y, Meng X. The potential of herbal drugs to treat heart failure: The roles of Sirt1/AMPK. J Pharm Anal 2024; 14:157-176. [PMID: 38464786 PMCID: PMC10921247 DOI: 10.1016/j.jpha.2023.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/09/2023] [Accepted: 09/05/2023] [Indexed: 03/12/2024] Open
Abstract
Heart failure (HF) is a highly morbid syndrome that seriously affects the physical and mental health of patients and generates an enormous socio-economic burden. In addition to cardiac myocyte oxidative stress and apoptosis, which are considered mechanisms for the development of HF, alterations in cardiac energy metabolism and pathological autophagy also contribute to cardiac abnormalities and ultimately HF. Silent information regulator 1 (Sirt1) and adenosine monophosphate-activated protein kinase (AMPK) are nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases and phosphorylated kinases, respectively. They play similar roles in regulating some pathological processes of the heart through regulating targets such as peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), protein 38 mitogen-activated protein kinase (p38 MAPK), peroxisome proliferator-activated receptors (PPARs), and mammalian target of rapamycin (mTOR). We summarized the synergistic effects of Sirt1 and AMPK in the heart, and listed the traditional Chinese medicine (TCM) that exhibit cardioprotective properties by modulating the Sirt1/AMPK pathway, to provide a basis for the development of Sirt1/AMPK activators or inhibitors for the treatment of HF and other cardiovascular diseases (CVDs).
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaowei Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Honglin Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yue Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianfeng Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, Sichuan, 620032, China
| |
Collapse
|
24
|
Hurtado KA, Janda J, Schnellmann RG. Lasmiditan restores mitochondrial quality control mechanisms and accelerates renal recovery after ischemia-reperfusion injury. Biochem Pharmacol 2023; 218:115855. [PMID: 37866804 PMCID: PMC10872401 DOI: 10.1016/j.bcp.2023.115855] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/01/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Mitochondrial dysfunction is a well-established result of acute kidney injury (AKI). Previously, we identified that 5-hydroxytryptamine 1F (5-HT1F) receptor agonism with lasmiditan induces mitochondrial biogenesis (MB) and improves renal vasculature and function in an AKI mouse model. We hypothesize that lasmiditan also modulates mitochondrial dynamics and mitophagy in a mouse model of AKI. METHODS Male mice were subjected to renal ischemia/reperfusion (I/R) and treated daily with lasmiditan (0.3 mg/kg) or vehicle beginning 24 h after injury for 3 or 6d. Serum creatinine was measured to estimate glomerular filtration. Electron microscopy was used to assess mitochondrial morphology and mitophagy. Mitochondrial-related protein were confirmed with immunoblotting. Mitochondrial function was assessed with ATP measurements. RESULTS Lasmiditan treatment improved mitochondrial and kidney recovery as early as 3d post-AKI, as evidenced by increased ATP, and decreased serum creatinine, respectively. Electron micrographs of renal cortices revealed that lasmiditan also decreased mitochondrial damage and increased mitochondrial area and size by 6d after I/R injury. Additionally, lasmiditan treatment increased mitolysosomes by 3d, indicating induction of mitophagy. Phosphorylation of mitophagy-related proteins were also increased in the renal cortices of lasmiditan-treated AKI mice 3d after I/R injury, whereas fusion-related proteins were increased at 6d after I/R injury. CONCLUSION These data reveal that lasmiditan accelerates renal recovery, restores normal mitochondrial membrane and cristae morphology, decreases excessive mitochondrial fission, and accelerates mitophagy post-AKI in a time-dependent manner, establishing mitochondrial function and recovery from AKI.
Collapse
Affiliation(s)
- Kevin A Hurtado
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Jaroslav Janda
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA; Southern Arizona VA Health Care System, Tucson, AZ, USA; Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
25
|
Chevalier RL. Why is chronic kidney disease progressive? Evolutionary adaptations and maladaptations. Am J Physiol Renal Physiol 2023; 325:F595-F617. [PMID: 37675460 DOI: 10.1152/ajprenal.00134.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/08/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023] Open
Abstract
Despite significant advances in renal physiology, the global prevalence of chronic kidney disease (CKD) continues to increase. The emergence of multicellular organisms gave rise to increasing complexity of life resulting in trade-offs reflecting ancestral adaptations to changing environments. Three evolutionary traits shape CKD over the lifespan: 1) variation in nephron number at birth, 2) progressive nephron loss with aging, and 3) adaptive kidney growth in response to decreased nephron number. Although providing plasticity in adaptation to changing environments, the cell cycle must function within constraints dictated by available energy. Prioritized allocation of energy available through the placenta can restrict fetal nephrogenesis, a risk factor for CKD. Moreover, nephron loss with aging is a consequence of cell senescence, a pathway accelerated by adaptive nephron hypertrophy that maintains metabolic homeostasis at the expense of increased vulnerability to stressors. Driven by reproductive fitness, natural selection operates in early life but diminishes thereafter, leading to an exponential increase in CKD with aging, a product of antagonistic pleiotropy. A deeper understanding of the evolutionary constraints on the cell cycle may lead to manipulation of the balance between progenitor cell renewal and differentiation, regulation of cell senescence, and modulation of the balance between cell proliferation and hypertrophy. Application of an evolutionary perspective may enhance understanding of adaptation and maladaptation by nephrons in the progression of CKD, leading to new therapeutic advances.
Collapse
Affiliation(s)
- Robert L Chevalier
- Department of Pediatrics, The University of Virginia, Charlottesville, Virginia, United States
| |
Collapse
|
26
|
Xiao H, Xie Y, Xi K, Xie J, Liu M, Zhang Y, Cheng Z, Wang W, Guo B, Wu S. Targeting Mitochondrial Sirtuins in Age-Related Neurodegenerative Diseases and Fibrosis. Aging Dis 2023; 14:1583-1605. [PMID: 37196115 PMCID: PMC10529758 DOI: 10.14336/ad.2023.0203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/03/2023] [Indexed: 05/19/2023] Open
Abstract
Aging is a natural and complex biological process that is associated with widespread functional declines in numerous physiological processes, terminally affecting multiple organs and tissues. Fibrosis and neurodegenerative diseases (NDs) often occur with aging, imposing large burdens on public health worldwide, and there are currently no effective treatment strategies for these diseases. Mitochondrial sirtuins (SIRT3-5), which are members of the sirtuin family of NAD+-dependent deacylases and ADP-ribosyltransferases, are capable of regulating mitochondrial function by modifying mitochondrial proteins that participate in the regulation of cell survival under various physiological and pathological conditions. A growing body of evidence has revealed that SIRT3-5 exert protective effects against fibrosis in multiple organs and tissues, including the heart, liver, and kidney. SIRT3-5 are also involved in multiple age-related NDs, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. Furthermore, SIRT3-5 have been noted as promising targets for antifibrotic therapies and the treatment of NDs. This review systematically highlights recent advances in knowledge regarding the role of SIRT3-5 in fibrosis and NDs and discusses SIRT3-5 as therapeutic targets for NDs and fibrosis.
Collapse
Affiliation(s)
- Haoxiang Xiao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Yuqiao Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Kaiwen Xi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Jinyi Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Mingyue Liu
- Medical School, Yan’an University, Yan’an, China
| | - Yangming Zhang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Zishuo Cheng
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Baolin Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| |
Collapse
|
27
|
Liu T, Jin Q, Yang L, Mao H, Ma F, Wang Y, Li P, Zhan Y. Regulation of autophagy by natural polyphenols in the treatment of diabetic kidney disease: therapeutic potential and mechanism. Front Endocrinol (Lausanne) 2023; 14:1142276. [PMID: 37635982 PMCID: PMC10448531 DOI: 10.3389/fendo.2023.1142276] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of diabetes and a leading cause of end-stage renal disease worldwide. Autophagy plays an important role in maintaining cellular homeostasis in renal physiology. In DKD, the accumulation of advanced glycation end products induces decreased renal autophagy-related protein expression and transcription factor EB (TFEB) nuclear transfer, leading to impaired autophagy and lysosomal function and blockage of autophagic flux. This accelerates renal resident cell injury and apoptosis, mediates macrophage infiltration and phenotypic changes, ultimately leading to aggravated proteinuria and fibrosis in DKD. Natural polyphenols show promise in treating DKD by regulating autophagy and promoting nuclear transfer of TFEB and lysosomal repair. This review summarizes the characteristics of autophagy in DKD, and the potential application and mechanisms of some known natural polyphenols as autophagy regulators in DKD, with the goal of contributing to a deeper understanding of natural polyphenol mechanisms in the treatment of DKD and promoting the development of their applications. Finally, we point out the limitations of polyphenols in current DKD research and provide an outlook for their future research.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Jin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Yongli Zhan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
28
|
Wang H, Liu D, Zheng B, Yang Y, Qiao Y, Li S, Pan S, Liu Y, Feng Q, Liu Z. Emerging Role of Ferroptosis in Diabetic Kidney Disease: Molecular Mechanisms and Therapeutic Opportunities. Int J Biol Sci 2023; 19:2678-2694. [PMID: 37324941 PMCID: PMC10266077 DOI: 10.7150/ijbs.81892] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/05/2023] [Indexed: 06/17/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common and severe microvascular complications of diabetes mellitus (DM), and has become the leading cause of end-stage renal disease (ESRD) worldwide. Although the exact pathogenic mechanism of DKD is still unclear, programmed cell death has been demonstrated to participate in the occurrence and development of diabetic kidney injury, including ferroptosis. Ferroptosis, an iron-dependent form of cell death driven by lipid peroxidation, has been identified to play a vital role in the development and therapeutic responses of a variety of kidney diseases, such as acute kidney injury (AKI), renal cell carcinoma and DKD. In the past two years, ferroptosis has been well investigated in DKD patients and animal models, but the specific mechanisms and therapeutic effects have not been fully revealed. Herein, we reviewed the regulatory mechanisms of ferroptosis, summarized the recent findings associated with the involvement of ferroptosis in DKD, and discussed the potential of ferroptosis as a promising target for DKD treatment, thereby providing a valuable reference for basic study and clinical therapy of DKD.
Collapse
Affiliation(s)
- Hui Wang
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Dongwei Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Bin Zheng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Yang Yang
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Yingjin Qiao
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Shiyang Li
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Shaokang Pan
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Yong Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| |
Collapse
|
29
|
Chen Z, Zhu Z, Liang W, Luo Z, Hu J, Feng J, Zhang Z, Luo Q, Yang H, Ding G. Reduction of anaerobic glycolysis contributes to angiotensin II-induced podocyte injury with foot process effacement. Kidney Int 2023; 103:735-748. [PMID: 36731609 DOI: 10.1016/j.kint.2023.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 02/01/2023]
Abstract
Activation of the renin-angiotensin system is associated with podocyte injury and has been well demonstrated as a pivotal factor in the progression of chronic kidney disease. Podocyte energy metabolism is crucial for maintaining their physiological functions. However, whether renin-angiotensin system activation promotes chronic kidney disease progression by disturbing the energy metabolism of podocytes has not been elucidated. Angiotensin II, the main active molecule of the renin-angiotensin system, plays a crucial role in chronic kidney disease initiation and progression, but its impact on podocyte metabolism remains unclear. Here, we demonstrate a rapid decrease in the expression of pyruvate kinase M2, a key glycolytic enzyme, and reduced glycolytic flux in podocytes exposed to angiotensin II in vivo and in vitro. Podocyte-specific deletion of pyruvate kinase M2 in mice aggravated angiotensin II-induced glomerular and podocyte injury with foot process effacement and proteinuria. The inhibition of glycolysis was accompanied by adenosine triphosphate deficiency, cytoskeletal remodeling and podocyte apoptosis. Mechanistically, we found that angiotensin II-induced glycolysis impairment contributed to an insufficient energy supply to the foot process, leading to podocyte injury. Additionally, pyruvate kinase M2 expression was found to be reduced in podocytes from kidney biopsies of patients with hypertensive nephropathy and diabetic kidney disease. Thus, our findings suggest that glycolysis activation is a potential therapeutic strategy for podocyte injury.
Collapse
Affiliation(s)
- Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
| | - Zijing Zhu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
| | - Zilv Luo
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
| | - Jun Feng
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
| | - Zongwei Zhang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
| | - Qiang Luo
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
| | - Hongxia Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, China.
| |
Collapse
|
30
|
Pham TK, Nguyen THT, Yun HR, Vasileva EA, Mishchenko NP, Fedoreyev SA, Stonik VA, Vu TT, Nguyen HQ, Cho SW, Kim HK, Han J. Echinochrome A Prevents Diabetic Nephropathy by Inhibiting the PKC-Iota Pathway and Enhancing Renal Mitochondrial Function in db/db Mice. Mar Drugs 2023; 21:md21040222. [PMID: 37103361 PMCID: PMC10142928 DOI: 10.3390/md21040222] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Echinochrome A (EchA) is a natural bioproduct extracted from sea urchins, and is an active component of the clinical drug, Histochrome®. EchA has antioxidant, anti-inflammatory, and antimicrobial effects. However, its effects on diabetic nephropathy (DN) remain poorly understood. In the present study, seven-week-old diabetic and obese db/db mice were injected with Histochrome (0.3 mL/kg/day; EchA equivalent of 3 mg/kg/day) intraperitoneally for 12 weeks, while db/db control mice and wild-type (WT) mice received an equal amount of sterile 0.9% saline. EchA improved glucose tolerance and reduced blood urea nitrogen (BUN) and serum creatinine levels but did not affect body weight. In addition, EchA decreased renal malondialdehyde (MDA) and lipid hydroperoxide levels, and increased ATP production. Histologically, EchA treatment ameliorated renal fibrosis. Mechanistically, EchA suppressed oxidative stress and fibrosis by inhibiting protein kinase C-iota (PKCι)/p38 mitogen-activated protein kinase (MAPK), downregulating p53 and c-Jun phosphorylation, attenuating NADPH oxidase 4 (NOX4), and transforming growth factor-beta 1 (TGFβ1) signaling. Moreover, EchA enhanced AMPK phosphorylation and nuclear factor erythroid-2-related factor 2 (NRF2)/heme oxygenase 1 (HO-1) signaling, improving mitochondrial function and antioxidant activity. Collectively, these findings demonstrate that EchA prevents DN by inhibiting PKCι/p38 MAPK and upregulating the AMPKα/NRF2/HO-1 signaling pathways in db/db mice, and may provide a therapeutic option for DN.
Collapse
Affiliation(s)
- Trong Kha Pham
- Department of Physiology, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, College of Medicine, Inje University, Busan 47392, Republic of Korea
- Faculty of Biology, University of Science, Vietnam National University, Hanoi 10000, Vietnam
| | - To Hoai T. Nguyen
- Department of Physiology, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Hyeong Rok Yun
- Department of Physiology, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Elena A. Vasileva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Natalia P. Mishchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Sergey A. Fedoreyev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Valentin A. Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Thu Thi Vu
- Faculty of Biology, University of Science, Vietnam National University, Hanoi 10000, Vietnam
| | - Huy Quang Nguyen
- Faculty of Biology, University of Science, Vietnam National University, Hanoi 10000, Vietnam
| | - Sung Woo Cho
- Division of Cardiology, Department of Internal Medicine, Ilsan Paik Hospital, Cardiac & Vascular Center, College of Medicine, Inje University, Goyang 10380, Republic of Korea
| | - Hyoung Kyu Kim
- Department of Physiology, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Jin Han
- Department of Physiology, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, College of Medicine, Inje University, Busan 47392, Republic of Korea
| |
Collapse
|
31
|
Huang J, Liang Y, Zhou L. Natural products for kidney disease treatment: Focus on targeting mitochondrial dysfunction. Front Pharmacol 2023; 14:1142001. [PMID: 37007023 PMCID: PMC10050361 DOI: 10.3389/fphar.2023.1142001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
The patients with kidney diseases are increasing rapidly all over the world. With the rich abundance of mitochondria, kidney is an organ with a high consumption of energy. Hence, renal failure is highly correlated with the breakup of mitochondrial homeostasis. However, the potential drugs targeting mitochondrial dysfunction are still in mystery. The natural products have the superiorities to explore the potential drugs regulating energy metabolism. However, their roles in targeting mitochondrial dysfunction in kidney diseases have not been extensively reviewed. Herein, we reviewed a series of natural products targeting mitochondrial oxidative stress, mitochondrial biogenesis, mitophagy, and mitochondrial dynamics. We found lots of them with great medicinal values in kidney disease. Our review provides a wide prospect for seeking the effective drugs targeting kidney diseases.
Collapse
|
32
|
Song X, Leonhard WN, Kanhai AA, Steinberg GR, Pei Y, Peters DJM. Preclinical evaluation of tolvaptan and salsalate combination therapy in a Pkd1-mouse model. Front Mol Biosci 2023; 10:1058825. [PMID: 36743216 PMCID: PMC9893022 DOI: 10.3389/fmolb.2023.1058825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Background: Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic disorder and an important cause of end stage renal disease (ESRD). Tolvaptan (a V2R antagonist) is the first disease modifier drug for treatment of ADPKD, but also causes severe polyuria. AMPK activators have been shown to attenuate cystic kidney disease. Methods: In this study, we tested the efficacy of the combined administration of salsalate (a direct AMPK activator) and tolvaptan using clinically relevant doses in an adult-onset conditional Pkd1 knock-out (KO) mouse model. Results: Compared to untreated Pkd1 mutant mice, the therapeutic effects of salsalate were similar to that of tolvaptan. The combined treatment tended to be more effective than individual drugs used alone, and was associated with improved kidney survival (p < 0.0001) and reduced kidney weight to body weight ratio (p < 0.0001), cystic index (p < 0.001) and blood urea levels (p < 0.001) compared to untreated animals, although the difference between combination and single treatments was not statistically significant. Gene expression profiling and protein expression and phosphorylation analyses support the mild beneficial effects of co-treatment, and showed that tolvaptan and salsalate cooperatively attenuated kidney injury, cell proliferation, cell cycle progression, inflammation and fibrosis, and improving mitochondrial health, and cellular antioxidant response. Conclusion: These data suggest that salsalate-tolvaptan combination, if confirmed in clinical testing, might represent a promising therapeutic strategy in the treatment of ADPKD.
Collapse
Affiliation(s)
- Xuewen Song
- Division of Nephrology, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Wouter N. Leonhard
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Anish A. Kanhai
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Gregory R. Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - York Pei
- Division of Nephrology, University Health Network and University of Toronto, Toronto, ON, Canada,*Correspondence: York Pei, ; Dorien J. M. Peters,
| | - Dorien J. M. Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands,*Correspondence: York Pei, ; Dorien J. M. Peters,
| |
Collapse
|
33
|
Qiu Y, Hu X, Xu C, Lu C, Cao R, Xie Y, Yang J. Ketogenic diet alleviates renal fibrosis in mice by enhancing fatty acid oxidation through the free fatty acid receptor 3 pathway. Front Nutr 2023; 10:1127845. [PMID: 37032786 PMCID: PMC10081144 DOI: 10.3389/fnut.2023.1127845] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction The ketogenic diet (KD), as a dietary intervention, has gained importance in the treatment of solid organ structural remodeling, but its role in renal fibrosis has not been explored. Methods Male C57BL/6 mice were fed a normal diet or a KD for 6 weeks prior to unilateral ureteral obstruction (UUO), a well-established in vivo model of renal fibrosis in rodents. Seven days after UUO, serum and kidney samples were collected. Serum β-hydroxybutyrate (β-OHB) concentrations and renal fibrosis were assessed. NRK52E cells were treated with TGFβ1, a fibrosis-inducing cytokine, and with or without β-OHB, a ketone body metabolized by KD, to investigate the mechanism underlying renal fibrosis. Results KD significantly enhanced serum β-OHB levels in mice. Histological analysis revealed that KD alleviated structural destruction and fibrosis in obstructed kidneys and reduced the expression of the fibrosis protein markers α-SMA, Col1a1, and Col3a1. Expression of the rate-limiting enzymes involved in fatty acid oxidation (FAO), Cpt1a and Acox1, significantly decreased after UUO and were upregulated by KD. However, the protective effect of KD was abolished by etomoxir (a Cpt1a inhibitor). Besides, our study observed that KD significantly suppressed UUO-induced macrophage infiltration and the expression of IL-6 in the obstructive kidneys. In NRK52E cells, fibrosis-related signaling was increased by TGFβ1 and reduced by β-OHB. β-OHB treatment restored the impaired expression of Cpt1a. The effect of β-OHB was blocked by siRNA targeting free fatty acid receptor 3 (FFAR3), suggesting that β-OHB might function through the FFAR3-dependent pathway. Discussion Our results highlight that KD attenuates UUO-induced renal fibrosis by enhancing FAO via the FFAR3-dependent pathway, which provides a promising dietary therapy for renal fibrosis.
Collapse
|
34
|
Nath KA, Singh RD, Croatt AJ, Adams CM. Heme Proteins and Kidney Injury: Beyond Rhabdomyolysis. KIDNEY360 2022; 3:1969-1979. [PMID: 36514409 PMCID: PMC9717624 DOI: 10.34067/kid.0005442022] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022]
Abstract
Heme proteins, the stuff of life, represent an ingenious biologic strategy that capitalizes on the biochemical versatility of heme, and yet is one that avoids the inherent risks to cellular vitality posed by unfettered and promiscuously reactive heme. Heme proteins, however, may be a double-edged sword because they can damage the kidney in certain settings. Although such injury is often viewed mainly within the context of rhabdomyolysis and the nephrotoxicity of myoglobin, an increasing literature now attests to the fact that involvement of heme proteins in renal injury ranges well beyond the confines of this single disease (and its analog, hemolysis); indeed, through the release of the defining heme motif, destabilization of intracellular heme proteins may be a common pathway for acute kidney injury, in general, and irrespective of the underlying insult. This brief review outlines current understanding regarding processes underlying such heme protein-induced acute kidney injury (AKI) and chronic kidney disease (CKD). Topics covered include, among others, the basis for renal injury after the exposure of the kidney to and its incorporation of myoglobin and hemoglobin; auto-oxidation of myoglobin and hemoglobin; destabilization of heme proteins and the release of heme; heme/iron/oxidant pathways of renal injury; generation of reactive oxygen species and reactive nitrogen species by NOX, iNOS, and myeloperoxidase; and the role of circulating cell-free hemoglobin in AKI and CKD. Also covered are the characteristics of the kidney that render this organ uniquely vulnerable to injury after myolysis and hemolysis, and pathobiologic effects emanating from free, labile heme. Mechanisms that defend against the toxicity of heme proteins are discussed, and the review concludes by outlining the therapeutic strategies that have arisen from current understanding of mechanisms of renal injury caused by heme proteins and how such mechanisms may be interrupted.
Collapse
Affiliation(s)
- Karl A. Nath
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Raman Deep Singh
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Anthony J. Croatt
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Christopher M. Adams
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Mayo Clinic Rochester, Minnesota
| |
Collapse
|
35
|
Packer M. Critical Reanalysis of the Mechanisms Underlying the Cardiorenal Benefits of SGLT2 Inhibitors and Reaffirmation of the Nutrient Deprivation Signaling/Autophagy Hypothesis. Circulation 2022; 146:1383-1405. [PMID: 36315602 PMCID: PMC9624240 DOI: 10.1161/circulationaha.122.061732] [Citation(s) in RCA: 237] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/10/2022] [Indexed: 02/06/2023]
Abstract
SGLT2 (sodium-glucose cotransporter 2) inhibitors produce a distinctive pattern of benefits on the evolution and progression of cardiomyopathy and nephropathy, which is characterized by a reduction in oxidative and endoplasmic reticulum stress, restoration of mitochondrial health and enhanced mitochondrial biogenesis, a decrease in proinflammatory and profibrotic pathways, and preservation of cellular and organ integrity and viability. A substantial body of evidence indicates that this characteristic pattern of responses can be explained by the action of SGLT2 inhibitors to promote cellular housekeeping by enhancing autophagic flux, an effect that may be related to the action of these drugs to produce simultaneous upregulation of nutrient deprivation signaling and downregulation of nutrient surplus signaling, as manifested by an increase in the expression and activity of AMPK (adenosine monophosphate-activated protein kinase), SIRT1 (sirtuin 1), SIRT3 (sirtuin 3), SIRT6 (sirtuin 6), and PGC1-α (peroxisome proliferator-activated receptor γ coactivator 1-α) and decreased activation of mTOR (mammalian target of rapamycin). The distinctive pattern of cardioprotective and renoprotective effects of SGLT2 inhibitors is abolished by specific inhibition or knockdown of autophagy, AMPK, and sirtuins. In the clinical setting, the pattern of differentially increased proteins identified in proteomics analyses of blood collected in randomized trials is consistent with these findings. Clinical studies have also shown that SGLT2 inhibitors promote gluconeogenesis, ketogenesis, and erythrocytosis and reduce uricemia, the hallmarks of nutrient deprivation signaling and the principal statistical mediators of the ability of SGLT2 inhibitors to reduce the risk of heart failure and serious renal events. The action of SGLT2 inhibitors to augment autophagic flux is seen in isolated cells and tissues that do not express SGLT2 and are not exposed to changes in environmental glucose or ketones and may be related to an ability of these drugs to bind directly to sirtuins or mTOR. Changes in renal or cardiovascular physiology or metabolism cannot explain the benefits of SGLT2 inhibitors either experimentally or clinically. The direct molecular effects of SGLT2 inhibitors in isolated cells are consistent with the concept that SGLT2 acts as a nutrient surplus sensor, and thus, its inhibition causes enhanced nutrient deprivation signaling and its attendant cytoprotective effects, which can be abolished by specific inhibition or knockdown of AMPK, sirtuins, and autophagic flux.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Dallas, TX. Imperial College, London, United Kingdom
| |
Collapse
|
36
|
Singh RD, Croatt AJ, Ackerman AW, Grande JP, Trushina E, Salisbury JL, Christensen TA, Adams CM, Tchkonia T, Kirkland JL, Nath KA. Prominent Mitochondrial Injury as an Early Event in Heme Protein-Induced Acute Kidney Injury. KIDNEY360 2022; 3:1672-1682. [PMID: 36514726 PMCID: PMC9717657 DOI: 10.34067/kid.0004832022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/15/2022] [Indexed: 01/12/2023]
Abstract
Background Mitochondrial injury occurs in and underlies acute kidney injury (AKI) caused by ischemia-reperfusion and other forms of renal injury. However, to date, a comprehensive analysis of this issue has not been undertaken in heme protein-induced AKI (HP-AKI). We examined key aspects of mitochondrial function, expression of proteins relevant to mitochondrial quality control, and mitochondrial ultrastructure in HP-AKI, along with responses to heme in renal proximal tubule epithelial cells. Methods The long-established murine glycerol model of HP-AKI was examined at 8 and 24 hours after HP-AKI. Indices of mitochondrial function (ATP and NAD+), expression of proteins relevant to mitochondrial dynamics, mitochondrial ultrastructure, and relevant gene/protein expression in heme-exposed renal proximal tubule epithelial cells in vitro were examined. Results ATP and NAD+ content and the NAD+/NADH ratio were all reduced in HP-AKI. Expression of relevant proteins indicate that mitochondrial biogenesis (PGC-1α, NRF1, and TFAM) and fusion (MFN2) were impaired, as was expression of key proteins involved in the integrity of outer and inner mitochondrial membranes (VDAC, Tom20, and Tim23). Conversely, marked upregulation of proteins involved in mitochondrial fission (DRP1) occurred. Ultrastructural studies, including novel 3D imaging, indicate profound changes in mitochondrial structure, including mitochondrial fragmentation, mitochondrial swelling, and misshapen mitochondrial cristae; mitophagy was also observed. Exposure of renal proximal tubule epithelial cells to heme in vitro recapitulated suppression of PGC-1α (mitochondrial biogenesis) and upregulation of p-DRP1 (mitochondrial fission). Conclusions Modern concepts pertaining to AKI apply to HP-AKI. This study validates the investigation of novel, clinically relevant therapies such as NAD+-boosting agents and mitoprotective agents in HP-AKI.
Collapse
Affiliation(s)
- Raman Deep Singh
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic Rochester, Minnesota
| | - Anthony J. Croatt
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic Rochester, Minnesota
| | - Allan W. Ackerman
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic Rochester, Minnesota
| | - Joseph P. Grande
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Minnesota
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic Rochester, Minnesota
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Rochester, Minnesota
| | - Jeffrey L. Salisbury
- Microscopy and Cell Analysis Core Facility, Mayo Clinic Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, Minnesota
| | | | - Christopher M. Adams
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Department of Medicine, Mayo Clinic Rochester, Minnesota
| | - Tamara Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, Minnesota
| | - James L. Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, Minnesota
- Department of General Internal Medicine, Department of Medicine, Mayo Clinic Rochester, Minnesota
| | - Karl A. Nath
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic Rochester, Minnesota
| |
Collapse
|
37
|
Zhang X, Li B, Huo S, Du J, Zhang J, Song M, Cui Y, Li Y. T-2 Toxin Induces Kidney Fibrosis via the mtROS-NLRP3-Wnt/β-Catenin Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13765-13777. [PMID: 36239691 DOI: 10.1021/acs.jafc.2c05816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
T-2 toxin causes kidney fibrosis. Wnt/β-catenin signaling promotes kidney fibrosis when sustained and activated. However, whether T-2-induced kidney fibrosis involves Wnt/β-catenin signaling activation has not been explored yet. T-2 toxin causes renal mitochondrial damage, leading to mitochondrial reactive oxygen species (mtROS) overproduction and NLRP3-inflammasome activation. The activated NLRP3-inflammasome can mediate fibrosis. However, whether the NLRP3-inflammasome can be mediated by mtROS and further regulate T-2-induced kidney fibrosis through Wnt/β-catenin signaling is unclear. In this study, first, we confirmed that T-2 toxin caused Wnt/β-catenin signaling activation in mice kidneys and HK-2 cells. Second, we confirmed that mtROS activated the NLRP3-inflammasome in T-2-exposed mice kidneys and HK-2 cells. Third, we confirmed that the NLRP3-inflammasome regulated the Wnt/β-catenin signaling in T-2 toxin-exposed mice kidneys and HK-2 cells. Finally, we confirmed that Wnt/β-catenin signaling regulated fibrosis in T-2 toxin-exposed mice kidneys and HK-2 cells. The above results confirm that T-2 toxin induces kidney fibrosis via the mtROS-NLRP3-Wnt/β-catenin axis.
Collapse
Affiliation(s)
- Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bo Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Siming Huo
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiayu Du
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yilong Cui
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, 028000 Tongliao, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
38
|
Liu T, Yang L, Mao H, Ma F, Wang Y, Li S, Li P, Zhan Y. Sirtuins as novel pharmacological targets in podocyte injury and related glomerular diseases. Biomed Pharmacother 2022; 155:113620. [PMID: 36122519 DOI: 10.1016/j.biopha.2022.113620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/10/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022] Open
Abstract
Podocyte injury is a major cause of proteinuria in kidney diseases, and persistent loss of podocytes leads to rapid irreversible progression of kidney disease. Sirtuins, a class of nicotinamide adenine dinucleotide-dependent deacetylases, can promote DNA repair, modify transcription factors, and regulate the cell cycle. Additionally, sirtuins play a critical role in renoprotection, particularly against podocyte injury. They also have pleiotropic protective effects on podocyte injury-related glomerular diseases, such as improving the immune inflammatory status and oxidative stress levels, maintaining mitochondrial homeostasis, enhancing autophagy, and regulating lipid metabolism. Sirtuins deficiency causes podocyte injury in different glomerular diseases. Studies using podocyte sirtuin-specific knockout and transgenic models corroborate this conclusion. Of note, sirtuin activators have protective effects in different podocyte injury-related glomerular diseases, including diabetic kidney disease, focal segmental glomerulosclerosis, membranous nephropathy, IgA nephropathy, and lupus nephritis. These findings suggest that sirtuins are promising therapeutic targets for preventing podocyte injury. This review provides an overview of recent advances in the role of sirtuins in kidney diseases, especially their role in podocyte injury, and summarizes the possible rationale for sirtuins as targets for pharmacological intervention in podocyte injury-related glomerular diseases.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shen Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
39
|
Gao YM, Feng ST, Wen Y, Tang TT, Wang B, Liu BC. Cardiorenal protection of SGLT2 inhibitors—Perspectives from metabolic reprogramming. EBioMedicine 2022; 83:104215. [PMID: 35973390 PMCID: PMC9396537 DOI: 10.1016/j.ebiom.2022.104215] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/12/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors, initially developed as a novel class of anti-hyperglycaemic drugs, have been shown to significantly improve metabolic indicators and protect the kidneys and heart of patients with or without type 2 diabetes mellitus. The possible mechanisms mediating these unexpected cardiorenal benefits are being extensively investigated because they cannot solely be attributed to improvements in glycaemic control. Notably, emerging data indicate that metabolic reprogramming is involved in the progression of cardiorenal metabolic diseases. SGLT2 inhibitors reprogram systemic metabolism to a fasting-like metabolic paradigm, involving the metabolic switch from carbohydrates to other energetic substrates and regulation of the related nutrient-sensing pathways, which might explain some of their cardiorenal protective effects. In this review, we will focus on the current understanding of cardiorenal protection by SGLT2 inhibitors, specifically its relevance to metabolic reprogramming.
Collapse
|
40
|
Zhou Q, He X, Zhao X, Fan Q, Lai S, Liu D, He H, He M. Ginsenoside Rg1 Ameliorates Acute Renal Ischemia/Reperfusion Injury via Upregulating AMPK α1 Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3737137. [PMID: 36092159 PMCID: PMC9458375 DOI: 10.1155/2022/3737137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/29/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
Acute renal ischemia/reperfusion (I/R) injury often occurs during kidney transplantation and other kidney surgeries, and the molecular mechanism involves oxidative stress. We hypothesized that ginsenoside Rg1 (Rg1), a saponin derived from ginseng, would protect the renal tissue against acute renal I/R injury by upregulating 5' adenosine monophosphate-activated protein kinase α1 (AMPKα1) expression and inhibiting oxidative stress. The models of acute anoxia/reoxygenation (A/R) damage in normal rat kidney epithelial cell lines (NRK-52E) and acute renal I/R injury in mice were constructed. The results revealed that pretreatment with 25 μM Rg1 significantly increased NRK-52E viability, decreased lactate dehydrogenase (LDH) activity and apoptosis, suppressed reactive oxygen species generation and oxidative stress, stabilized mitochondrial membrane potential and reduced mitochondria permeability transition pore openness, decreased adenosine monophosphate/adenosine triphosphate ratio, and upregulated the expression of AMPKα1, cytochrome b-c1 complex subunit 2, NADH dehydrogenase (ubiquinone) 1 beta subcomplex subunit 8, and B-cell lymphoma 2, while downregulating BCL2-associated X protein expression. The effects of Rg1 pretreatment were similar to those of pAD/Flag-AMPKα1. After acute renal I/R injury, serum creatinine, blood urea nitrogen, LDH activity, and oxidative stress in renal tissue significantly increased. Rg1 pretreatment upregulated AMPKα1 expression, which protects against acute renal I/R injury by maintaining renal function homeostasis, inhibiting oxidative stress, and reducing apoptosis. Compound C, a specific inhibitor of AMPK, reversed the effects of Rg1. In summary, Rg1 pretreatment upregulated AMPKα1 expression, inhibited oxidative stress, maintained mitochondrial function, improved energy metabolism, reduced apoptosis, and ultimately protected renal tissue against acute renal I/R injury.
Collapse
Affiliation(s)
- Qing Zhou
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xinlan He
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Xiaoyu Zhao
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Qigui Fan
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Songqing Lai
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Dan Liu
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Huan He
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Ming He
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| |
Collapse
|
41
|
Yuan Q, Tang B, Zhang C. Signaling pathways of chronic kidney diseases, implications for therapeutics. Signal Transduct Target Ther 2022; 7:182. [PMID: 35680856 PMCID: PMC9184651 DOI: 10.1038/s41392-022-01036-5] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) is a chronic renal dysfunction syndrome that is characterized by nephron loss, inflammation, myofibroblasts activation, and extracellular matrix (ECM) deposition. Lipotoxicity and oxidative stress are the driving force for the loss of nephron including tubules, glomerulus, and endothelium. NLRP3 inflammasome signaling, MAPK signaling, PI3K/Akt signaling, and RAAS signaling involves in lipotoxicity. The upregulated Nox expression and the decreased Nrf2 expression result in oxidative stress directly. The injured renal resident cells release proinflammatory cytokines and chemokines to recruit immune cells such as macrophages from bone marrow. NF-κB signaling, NLRP3 inflammasome signaling, JAK-STAT signaling, Toll-like receptor signaling, and cGAS-STING signaling are major signaling pathways that mediate inflammation in inflammatory cells including immune cells and injured renal resident cells. The inflammatory cells produce and secret a great number of profibrotic cytokines such as TGF-β1, Wnt ligands, and angiotensin II. TGF-β signaling, Wnt signaling, RAAS signaling, and Notch signaling evoke the activation of myofibroblasts and promote the generation of ECM. The potential therapies targeted to these signaling pathways are also introduced here. In this review, we update the key signaling pathways of lipotoxicity, oxidative stress, inflammation, and myofibroblasts activation in kidneys with chronic injury, and the targeted drugs based on the latest studies. Unifying these pathways and the targeted therapies will be instrumental to advance further basic and clinical investigation in CKD.
Collapse
Affiliation(s)
- Qian Yuan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ben Tang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
42
|
Lopez-Tello J, Jimenez-Martinez MA, Salazar-Petres E, Patel R, George AL, Kay RG, Sferruzzi-Perri AN. Identification of Structural and Molecular Signatures Mediating Adaptive Changes in the Mouse Kidney in Response to Pregnancy. Int J Mol Sci 2022; 23:6287. [PMID: 35682969 PMCID: PMC9181623 DOI: 10.3390/ijms23116287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
Pregnancy is characterized by adaptations in the function of several maternal body systems that ensure the development of the fetus whilst maintaining health of the mother. The renal system is responsible for water and electrolyte balance, as well as waste removal. Thus, it is imperative that structural and functional changes occur in the kidney during pregnancy. However, our knowledge of the precise morphological and molecular mechanisms occurring in the kidney during pregnancy is still very limited. Here, we investigated the changes occurring in the mouse kidney during pregnancy by performing an integrated analysis involving histology, gene and protein expression assays, mass spectrometry profiling and bioinformatics. Data from non-pregnant and pregnant mice were used to identify critical signalling pathways mediating changes in the maternal kidneys. We observed an expansion of renal medulla due to proliferation and infiltration of interstitial cellular constituents, as well as alterations in the activity of key cellular signalling pathways (e.g., AKT, AMPK and MAPKs) and genes involved in cell growth/metabolism (e.g., Cdc6, Foxm1 and Rb1) in the kidneys during pregnancy. We also generated plasma and urine proteomic profiles, identifying unique proteins in pregnancy. These proteins could be used to monitor and study potential mechanisms of renal adaptations during pregnancy and disease.
Collapse
Affiliation(s)
- Jorge Lopez-Tello
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | | | - Esteban Salazar-Petres
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Ritik Patel
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Amy L George
- Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Richard G Kay
- Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
43
|
Zhu Z, Hu J, Chen Z, Feng J, Yang X, Liang W, Ding G. Transition of acute kidney injury to chronic kidney disease: role of metabolic reprogramming. Metabolism 2022; 131:155194. [PMID: 35346693 DOI: 10.1016/j.metabol.2022.155194] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Acute kidney injury (AKI) is a global public health concern associated with high morbidity and mortality. Although advances in medical management have improved the in-hospital mortality of severe AKI patients, the renal prognosis for AKI patients in the later period is not encouraging. Recent epidemiological investigations have indicated that AKI significantly increases the risk for the development of chronic kidney disease (CKD) and end-stage renal disease (ESRD) in the future, further contributing to the economic burden on health care systems. The transition of AKI to CKD is complex and often involves multiple mechanisms. Recent studies have suggested that renal tubular epithelial cells (TECs) are more prone to metabolic reprogramming during AKI, in which the metabolic process in the TECs shifts from fatty acid β-oxidation (FAO) to glycolysis due to hypoxia, mitochondrial dysfunction, and disordered nutrient-sensing pathways. This change is a double-edged role. On the one hand, enhanced glycolysis acts as a compensation pathway for ATP production; on the other hand, long-term shut down of FAO and enhanced glycolysis lead to inflammation, lipid accumulation, and fibrosis, contributing to the transition of AKI to CKD. This review discusses developments and therapies focused on the metabolic reprogramming of TECs during AKI, and the emerging questions in this evolving field.
Collapse
Affiliation(s)
- Zijing Zhu
- Division of Nephrology, Renmin Hospital of Wuhan University, 430060 Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, 430060 Wuhan, China
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, 430060 Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, 430060 Wuhan, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, 430060 Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, 430060 Wuhan, China
| | - Jun Feng
- Division of Nephrology, Renmin Hospital of Wuhan University, 430060 Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, 430060 Wuhan, China
| | - Xueyan Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, 430060 Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, 430060 Wuhan, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, 430060 Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, 430060 Wuhan, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, 430060 Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, 430060 Wuhan, China.
| |
Collapse
|
44
|
Sabet N, Soltani Z, Khaksari M. The effects of exercise on kidney injury: the role of SIRT1. Mol Biol Rep 2022; 49:4025-4038. [PMID: 35449317 DOI: 10.1007/s11033-022-07122-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
In patients with kidney injury, muscle mass and strength decrease with altered muscle protein synthesis and degradation along with complications such as inflammation and low physical activity. A treatment strategy to maintain muscle metabolism in kidney injury is important. One of the proposed strategies in this regard is exercise, which in addition to inducing muscle hypertrophy, reducing plasma creatinine and urea and decreasing the severity of tubal injuries, can boost immune function and has anti-inflammatory effects. One of the molecules that have been considered as a target in the treatment of many diseases is silent information regulator 1 (SIRT1). Exercise increases the expression of SIRT1 and improves its activity. Therefore, studies that examined the effect of exercise on kidney injury considering the role of SIRT1 in this effect were reviewed to determine the direction of kidney injury research in future regarding to its prevalence, especially following diabetes, and lack of definitive treatment. In this review, we found that SIRT1 can be one of renoprotective target pathways of exercise. However, further studies are needed to determine the role of SIRT1 in different kidney injuries following exercise according to the type and severity of exercise, and the type of kidney injury.
Collapse
Affiliation(s)
- Nazanin Sabet
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.,Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran. .,Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran. .,Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
45
|
Inagi R. Organelle Stress and Metabolic Derangement in Kidney Disease. Int J Mol Sci 2022; 23:1723. [PMID: 35163648 PMCID: PMC8836232 DOI: 10.3390/ijms23031723] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 02/01/2023] Open
Abstract
Advanced multiomics analysis has revealed novel pathophysiological mechanisms in kidney disease. In particular, proteomic and metabolomic analysis shed light on mitochondrial dysfunction (mitochondrial stress) by glycation in diabetic or age-related kidney disease. Further, metabolic damage often results from organelle stress, such as mitochondrial stress and endoplasmic reticulum (ER) stress, as well as interorganelle communication, or "organelle crosstalk", in various kidney cells. These contribute to progression of the disease phenotype. Aberrant tubular mitochondrial lipid metabolism leads to tubular inflammation and fibrosis. This review article summarizes updated evidence regarding organelle stress, organelle crosstalk, and metabolic derangement in kidney disease.
Collapse
Affiliation(s)
- Reiko Inagi
- Division of Chronic Kidney Disease (CKD) Pathophysiology, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
46
|
Packialakshmi B, Stewart IJ, Burmeister DM, Feng Y, McDaniel DP, Chung KK, Zhou X. Tourniquet-induced lower limb ischemia/reperfusion reduces mitochondrial function by decreasing mitochondrial biogenesis in acute kidney injury in mice. Physiol Rep 2022; 10:e15181. [PMID: 35146957 PMCID: PMC8831939 DOI: 10.14814/phy2.15181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023] Open
Abstract
The mechanisms by which lower limb ischemia/reperfusion induces acute kidney injury (AKI) remain largely uncharacterized. We hypothesized that tourniquet-induced lower limb ischemia/reperfusion (TILLIR) would inhibit mitochondrial function in the renal cortex. We used a murine model to show that TILLIR of the high thigh regions inflicted time-dependent AKI as determined by renal function and histology. This effect was associated with decreased activities of mitochondrial complexes I, II, V and citrate synthase in the kidney cortex. Moreover, TILLIR reduced mRNA levels of a master regulator of mitochondrial biogenesis PGC-1α, and its downstream genes NDUFS1 and ATP5o in the renal cortex. TILLIR also increased serum corticosterone concentrations. TILLIR did not significantly affect protein levels of the critical regulators of mitophagy PINK1 and PARK2, mitochondrial transport proteins Tom20 and Tom70, or heat-shock protein 27. TILLIR had no significant effect on mitochondrial oxidative stress as determined by mitochondrial ability to generate reactive oxygen species, protein carbonylation, or protein levels of MnSOD and peroxiredoxin1. However, TILLIR inhibited classic autophagic flux by increasing p62 protein abundance and preventing the conversion of LC3-I to LC3-II. TILLIR increased phosphorylation of cytosolic and mitochondrial ERK1/2 and mitochondrial AKT1, as well as mitochondrial SGK1 activity. In conclusion, lower limb ischemia/reperfusion induces distal AKI by inhibiting mitochondrial function through reducing mitochondrial biogenesis. This AKI occurs without significantly affecting PINK1-PARK2-mediated mitophagy or mitochondrial oxidative stress in the kidney cortex.
Collapse
Affiliation(s)
- Balamurugan Packialakshmi
- Department of MedicineUniformed Services University of the Health SciencesBethesdaMarylandUSA
- The Henry Jackson M. Foundation for the Advancement of Military MedicineBethesdaMarylandUSA
| | - Ian J. Stewart
- Department of MedicineUniformed Services University of the Health SciencesBethesdaMarylandUSA
| | - David M. Burmeister
- Department of MedicineUniformed Services University of the Health SciencesBethesdaMarylandUSA
| | - Yuanyi Feng
- Department of BiochemistryUniformed Services University of the Health SciencesBethesdaMarylandUSA
| | - Dennis P. McDaniel
- Biomedical Instrumentation CenterUniformed Services University of the Health SciencesBethesdaMarylandUSA
| | - Kevin K. Chung
- Department of MedicineUniformed Services University of the Health SciencesBethesdaMarylandUSA
| | - Xiaoming Zhou
- Department of MedicineUniformed Services University of the Health SciencesBethesdaMarylandUSA
| |
Collapse
|
47
|
Teh YM, Mualif SA, Lim SK. A comprehensive insight into autophagy and its potential signaling pathways as a therapeutic target in podocyte injury. Int J Biochem Cell Biol 2021; 143:106153. [PMID: 34974186 DOI: 10.1016/j.biocel.2021.106153] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023]
Abstract
As part of the glomerular filtration membrane, podocyte is terminally differentiated, structurally unique, and highly specialized in maintaining kidney function. Proteinuria caused by podocyte injury (foot process effacement) is the clinical symptom of various kidney diseases (CKD), including nephrotic syndrome. Podocyte autophagy has become a powerful therapeutic strategy target in ameliorating podocyte injury. Autophagy is known to be associated significantly with sirtuin-1, proteinuria, and podocyte injury. Various key findings in podocyte autophagy were reported in the past ten years, such as the role of endoplasmic reticulum (ER) stress in podocyte autophagy impairment, podocyte autophagy-related gene, essential roles of the signaling pathways: Mammalian Target of Rapamycin (mTOR)/ Phosphoinositide 3-kinase (PI3k)/ serine/threonine kinase 1 (Akt) in podocyte autophagy. These significant factors caused podocyte injury associated with autophagy impairment. Sirtuin-1 was reported to have a vital key role in mTOR signaling, 5'AMP-activated protein kinase (AMPK) regulation, autophagy activation, and various critical pathways associated with podocyte's function and health; it has potential value to podocyte injury pathogenesis investigation. From these findings, podocyte autophagy has become an attractive therapeutic strategy to ameliorate podocyte injury, and this review will provide an in-depth review on therapeutic targets he podocyte autophagy.
Collapse
Affiliation(s)
- Yoong Mond Teh
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia
| | - Siti Aisyah Mualif
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia; Medical Device and Technology Centre (MEDiTEC), Universiti Teknologi Malaysia, Malaysia
| | - Soo Kun Lim
- Renal Division, Department of Medicine, Faculty of Medicine, University of Malaya (UM), Kuala Lumpur, Malaysia.
| |
Collapse
|
48
|
Reidy KJ, Ross MJ. Re-energizing the kidney: targeting fatty acid metabolism protects against kidney fibrosis. Kidney Int 2021; 100:742-744. [PMID: 34146599 DOI: 10.1016/j.kint.2021.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Kimberly J Reidy
- Department of Pediatrics, Division of Pediatric Nephrology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York, USA
| | - Michael J Ross
- Department of Medicine, Division of Nephrology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York, USA; Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
49
|
Duan S, Lu F, Song D, Zhang C, Zhang B, Xing C, Yuan Y. Current Challenges and Future Perspectives of Renal Tubular Dysfunction in Diabetic Kidney Disease. Front Endocrinol (Lausanne) 2021; 12:661185. [PMID: 34177803 PMCID: PMC8223745 DOI: 10.3389/fendo.2021.661185] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/21/2021] [Indexed: 12/29/2022] Open
Abstract
Over decades, substantial progress has been achieved in understanding the pathogenesis of proteinuria in diabetic kidney disease (DKD), biomarkers for DKD screening, diagnosis, and prognosis, as well as novel hypoglycemia agents in clinical trials, thereby rendering more attention focused on the role of renal tubules in DKD. Previous studies have demonstrated that morphological and functional changes in renal tubules are highly involved in the occurrence and development of DKD. Novel tubular biomarkers have shown some clinical importance. However, there are many challenges to transition into personalized diagnosis and guidance for individual therapy in clinical practice. Large-scale clinical trials suggested the clinical relevance of increased proximal reabsorption and hyperfiltration by sodium-glucose cotransporter-2 (SGLT2) to improve renal outcomes in patients with diabetes, further promoting the emergence of renal tubulocentric research. Therefore, this review summarized the recent progress in the pathophysiology associated with involved mechanisms of renal tubules, potential tubular biomarkers with clinical application, and renal tubular factors in DKD management. The mechanism of kidney protection and impressive results from clinical trials of SGLT2 inhibitors were summarized and discussed, offering a comprehensive update on therapeutic strategies targeting renal tubules.
Collapse
|