1
|
Pollak MR, Friedman DJ. APOL1-associated kidney disease: modulators of the genotype-phenotype relationship. Curr Opin Nephrol Hypertens 2025; 34:191-198. [PMID: 40047214 DOI: 10.1097/mnh.0000000000001068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
PURPOSE OF REVIEW Apolipoprotein-L1 (APOL1) G1 and G2 risk variants, found in people of recent west sub-Saharan African ancestry, dramatically increase the likelihood of kidney disease, yet the incomplete penetrance an diverse clinical manifestations underscore the need to understand the molecular and environmental factors that modulate APOL1-mediated toxicity. RECENT FINDINGS Recent studies confirm that risk variants exert a toxic gain-of-function effect, exacerbated by inflammatory triggers such as HIV infection and COVID-19. Epigenetic mechanisms and microRNA pathways further modulate APOL1 expression, influencing disease penetrance. Multiple models have clarified how subcellular localization, signal peptide processing, and interactions with the endoplasmic reticulum may contribute to pathogenesis. Therapeutic advances include inhibitors targeting APOL1 ion channel activity and strategies that block key inflammatory signaling pathways. SUMMARY These findings highlight a multifaceted disease process driven by both the intrinsic toxic potential of APOL1 variants and numerous extrinsic triggers. Understanding this complex interplay will be pivotal for risk stratification and the development of precision therapies, potentially improving outcomes for populations disproportionately affected by APOL1-associated kidney disease.
Collapse
Affiliation(s)
- Martin R Pollak
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
2
|
Liu X, Zhou D, Su Y, Liu H, Su Q, Shen T, Zhang M, Mi X, Zhang Y, Yue S, Zhang Z, Wang D, Tan X. PDIA4 targets IRE1α/sXBP1 to alleviate NLRP3 inflammasome activation and renal tubular injury in diabetic kidney disease. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167645. [PMID: 39743023 DOI: 10.1016/j.bbadis.2024.167645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
The role of ER stress in the pathogenesis of diabetic kidney diseases (DKD) remains unclear. We employed bioinformatics to identify the UPR pathway activation, inflammation, and programmed cell death patterns in diabetic tubules. Levels of IRE1α/sXBP1 signaling, NLRP3 inflammasome activity and pyroptosis in tubular cells under high glucose conditions were measured. IRE1α knockdown was used to determine its role in glucose-triggered activation of the NLRP3 inflammasome and pyroptosis. PDIA4 overexpression and silencing were used to assess its impact on the IRE1α/sXBP1 pathway. The dynamic interaction among PDIA4, GRP78, and IRE1α under high glucose were analyzed using immunoprecipitation and crosslinking assays. In STZ-induced and db/db mouse models of DKD, the regulatory role of PDIA4 on IRE1α/sXBP1 signaling and diabetic tubular inflammation and injury were evaluated. Our study showed that IRE1α/sXBP1, NLRP3 inflammasome, and pyroptosis are activated in the renal tubules of DKD patients. Induction of IRE1α pathway mediated the glucose-triggered activation of the NLRP3 inflammasome and pyroptosis. Moreover, overexpression of PDIA4 decreased the activation of IRE1α/sXBP1 under high glucose conditions. High glucose leads to the release of GRP78 from IRE1α and an increased interaction between IRE1α and PDIA4. In mouse models of DKD, overexpressing PDIA4 mitigated diabetic tubular injury and inflammation, marked by decreased IRE1α/sXBP1 and NLRP3 inflammasome. In conclusion, our findings demonstrate that high glucose triggers NLRP3 inflammasome and pyroptosis via the IRE1α/sXBP1 pathway in renal tubular cells. Overexpression of PDIA4 suppresses IRE1α signaling by binding to its oligomeric form, implying a promising therapeutic intervention for DKD.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Pathology, School of Medicine, Nankai University, Tianjin, China
| | - Donghui Zhou
- Department of Pathology, School of Medicine, Nankai University, Tianjin, China
| | - Yu Su
- Department of Pathology, School of Medicine, Nankai University, Tianjin, China
| | - Hongling Liu
- Department of Pathology, School of Medicine, Nankai University, Tianjin, China
| | - Qiuyue Su
- Department of Pathology, School of Medicine, Nankai University, Tianjin, China
| | - Tianyu Shen
- Department of Pathology, School of Medicine, Nankai University, Tianjin, China
| | - Mianzhi Zhang
- Dongfang Hospital of Beijing University of Chinese medicine, Beijing, China
| | - Xue Mi
- Department of Pathology, School of Medicine, Nankai University, Tianjin, China
| | - Yuying Zhang
- Department of Pathology, School of Medicine, Nankai University, Tianjin, China
| | - Shijing Yue
- Department of Pathology, School of Medicine, Nankai University, Tianjin, China
| | - Zhujun Zhang
- Department of Pathology, School of Medicine, Nankai University, Tianjin, China
| | - Dekun Wang
- Department of Pathology, School of Medicine, Nankai University, Tianjin, China.
| | - Xiaoyue Tan
- Department of Pathology, School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
3
|
Bhale AS, Meilhac O, d'Hellencourt CL, Vijayalakshmi MA, Venkataraman K. Cholesterol transport and beyond: Illuminating the versatile functions of HDL apolipoproteins through structural insights and functional implications. Biofactors 2024; 50:922-956. [PMID: 38661230 DOI: 10.1002/biof.2057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
High-density lipoproteins (HDLs) play a vital role in lipid metabolism and cardiovascular health, as they are intricately involved in cholesterol transport and inflammation modulation. The proteome of HDL particles is indeed complex and distinct from other components in the bloodstream. Proteomics studies have identified nearly 285 different proteins associated with HDL; however, this review focuses more on the 15 or so traditionally named "apo" lipoproteins. Important lipid metabolizing enzymes closely working with the apolipoproteins are also discussed. Apolipoproteins stand out for their integral role in HDL stability, structure, function, and metabolism. The unique structure and functions of each apolipoprotein influence important processes such as inflammation regulation and lipid metabolism. These interactions also shape the stability and performance of HDL particles. HDLs apolipoproteins have multifaceted roles beyond cardiovascular diseases (CVDs) and are involved in various physiological processes and disease states. Therefore, a detailed exploration of these apolipoproteins can offer valuable insights into potential diagnostic markers and therapeutic targets. This comprehensive review article aims to provide an in-depth understanding of HDL apolipoproteins, highlighting their distinct structures, functions, and contributions to various physiological processes. Exploiting this knowledge holds great potential for improving HDL function, enhancing cholesterol efflux, and modulating inflammatory processes, ultimately benefiting individuals by limiting the risks associated with CVDs and other inflammation-based pathologies. Understanding the nature of all 15 apolipoproteins expands our knowledge of HDL metabolism, sheds light on their pathological implications, and paves the way for advancements in the diagnosis, prevention, and treatment of lipid and inflammatory-related disorders.
Collapse
Affiliation(s)
- Aishwarya Sudam Bhale
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Olivier Meilhac
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Saint-Pierre, France
| | - Christian Lefebvre d'Hellencourt
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Saint-Pierre, France
| | | | - Krishnan Venkataraman
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
4
|
Zhu JY, Fu Y, van de Leemput J, Yu Y, Li J, Ray PE, Han Z. HIV-1 Nef acts in synergy with APOL1-G1 to induce nephrocyte cell death in a new Drosophila model of HIV-related kidney diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584069. [PMID: 38496548 PMCID: PMC10942446 DOI: 10.1101/2024.03.08.584069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background: People carrying two APOL1 risk alleles (RA) G1 or G2 are at greater risk of developing HIV-associated nephropathy (HIVAN). Studies in transgenic mice showed that the expression of HIV-1 genes in podocytes, and nef in particular, led to HIVAN. However, it remains unclear whether APOL1-RA and HIV-1 Nef interact to induce podocyte cell death. Method: We generated transgenic (Tg) flies that express APOL1-G1 (derived from a child with HIVAN) and HIV-1 nef specifically in the nephrocytes, the fly equivalent of mammalian podocytes, and assessed their individual and combined effects on the nephrocyte filtration structure and function. Results: We found that HIV-1 Nef acts in synergy with APOL1-G1 resulting in nephrocyte structural and functional defects. Specifically, HIV-1 Nef itself can induce endoplasmic reticulum (ER) stress without affecting autophagy. Furthermore, Nef exacerbates the organelle acidification defects and autophagy reduction induced by APOL1-G1. The synergy between HIV-1 Nef and APOL1-G1 is built on their joint effects on elevating ER stress, triggering nephrocyte dysfunction and ultimately cell death. Conclusions: Using a new Drosophila model of HIV-1-related kidney diseases, we identified ER stress as the converging point for the synergy between HIV-1 Nef and APOL1-G1 in inducing nephrocyte cell death. Given the high relevance between Drosophila nephrocytes and human podocytes, this finding suggests ER stress as a new therapeutic target for HIV-1 and APOL1-associated nephropathies.
Collapse
|
5
|
Paz-Barba M, Muñoz Garcia A, de Winter TJJ, de Graaf N, van Agen M, van der Sar E, Lambregtse F, Daleman L, van der Slik A, Zaldumbide A, de Koning EJP, Carlotti F. Apolipoprotein L genes are novel mediators of inflammation in beta cells. Diabetologia 2024; 67:124-136. [PMID: 37924378 PMCID: PMC10709252 DOI: 10.1007/s00125-023-06033-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/22/2023] [Indexed: 11/06/2023]
Abstract
AIMS/HYPOTHESIS Inflammation induces beta cell dysfunction and demise but underlying molecular mechanisms remain unclear. The apolipoprotein L (APOL) family of genes has been associated with innate immunity and apoptosis in non-pancreatic cell types, but also with metabolic syndrome and type 2 diabetes mellitus. Here, we hypothesised that APOL genes play a role in inflammation-induced beta cell damage. METHODS We used single-cell transcriptomics datasets of primary human pancreatic islet cells to study the expression of APOL genes upon specific stress conditions. Validation of the findings was carried out in EndoC-βH1 cells and primary human islets. Finally, we performed loss- and gain-of-function experiments to investigate the role of APOL genes in beta cells. RESULTS APOL genes are expressed in primary human beta cells and APOL1, 2 and 6 are strongly upregulated upon inflammation via the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway. APOL1 overexpression increases endoplasmic reticulum stress while APOL1 knockdown prevents cytokine-induced beta cell death and interferon-associated response. Furthermore, we found that APOL genes are upregulated in beta cells from donors with type 2 diabetes compared with donors without diabetes mellitus. CONCLUSIONS/INTERPRETATION APOLs are novel regulators of islet inflammation and may contribute to beta cell damage during the development of diabetes. DATA AVAILABILITY scRNAseq data generated by our laboratory and used in this study are available in the Gene Expression Omnibus (GEO; www.ncbi.nlm.nih.gov/geo/ ), accession number GSE218316.
Collapse
Affiliation(s)
- Miriam Paz-Barba
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Amadeo Muñoz Garcia
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Twan J J de Winter
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Natascha de Graaf
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Maarten van Agen
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Elisa van der Sar
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ferdy Lambregtse
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Lizanne Daleman
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Arno van der Slik
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Eelco J P de Koning
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Françoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
6
|
Koehler S, Huber TB. Insights into human kidney function from the study of Drosophila. Pediatr Nephrol 2023; 38:3875-3887. [PMID: 37171583 PMCID: PMC10584755 DOI: 10.1007/s00467-023-05996-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/13/2023]
Abstract
Biological and biomedical research using Drosophila melanogaster as a model organism has gained recognition through several Nobel prizes within the last 100 years. Drosophila exhibits several advantages when compared to other in vivo models such as mice and rats, as its life cycle is very short, animal maintenance is easy and inexpensive and a huge variety of transgenic strains and tools are publicly available. Moreover, more than 70% of human disease-causing genes are highly conserved in the fruit fly. Here, we explain the use of Drosophila in nephrology research and describe two kidney tissues, Malpighian tubules and the nephrocytes. The latter are the homologous cells to mammalian glomerular podocytes and helped to provide insights into a variety of signaling pathways due to the high morphological similarities and the conserved molecular make-up between nephrocytes and podocytes. In recent years, nephrocytes have also been used to study inter-organ communication as links between nephrocytes and the heart, the immune system and the muscles have been described. In addition, other tissues such as the eye and the reproductive system can be used to study the functional role of proteins being part of the kidney filtration barrier.
Collapse
Affiliation(s)
- Sybille Koehler
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Zhu JY, Lee JG, Fu Y, van de Leemput J, Ray PE, Han Z. APOL1-G2 accelerates nephrocyte cell death by inhibiting the autophagy pathway. Dis Model Mech 2023; 16:dmm050223. [PMID: 37969018 PMCID: PMC10765414 DOI: 10.1242/dmm.050223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/30/2023] [Indexed: 11/17/2023] Open
Abstract
People of African ancestry who carry the APOL1 risk alleles G1 or G2 are at high risk of developing kidney diseases through not fully understood mechanisms that impair the function of podocytes. It is also not clear whether the APOL1-G1 and APOL1-G2 risk alleles affect these cells through similar mechanisms. Previously, we have developed transgenic Drosophila melanogaster lines expressing either the human APOL1 reference allele (G0) or APOL1-G1 specifically in nephrocytes, the cells homologous to mammalian podocytes. We have found that nephrocytes that expressed the APOL1-G1 risk allele display accelerated cell death, in a manner similar to that of cultured human podocytes and APOL1 transgenic mouse models. Here, to compare how the APOL1-G1 and APOL1-G2 risk alleles affect the structure and function of nephrocytes in vivo, we generated nephrocyte-specific transgenic flies that either expressed the APOL1-G2 or both G1 and G2 (G1G2) risk alleles on the same allele. We found that APOL1-G2- and APOL1-G1G2-expressing nephrocytes developed more severe changes in autophagic pathways, acidification of organelles and the structure of the slit diaphragm, compared to G1-expressing nephrocytes, leading to their premature death. We conclude that both risk alleles affect similar key cell trafficking pathways, leading to reduced autophagy and suggesting new therapeutic targets to prevent APOL1 kidney diseases.
Collapse
Affiliation(s)
- Jun-yi Zhu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jin-Gu Lee
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yulong Fu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Patricio E. Ray
- Department of Pediatrics, Child Health Research Center, University of Virginia, Charlottesville, VA 22903, USA
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
8
|
Lee JG, Fu Y, Zhu JY, Wen P, van de Leemput J, Ray PE, Han Z. A SNARE protective pool antagonizes APOL1 renal toxicity in Drosophila nephrocytes. Cell Biosci 2023; 13:199. [PMID: 37925499 PMCID: PMC10625211 DOI: 10.1186/s13578-023-01147-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/12/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND People of Sub-Saharan African ancestry are at higher risk of developing chronic kidney disease (CKD), attributed to the Apolipoprotein L1 (APOL1) gene risk alleles (RA) G1 and G2. The underlying mechanisms by which the APOL1-RA precipitate CKD remain elusive, hindering the development of potential treatments. RESULTS Using a Drosophila genetic modifier screen, we found that SNARE proteins (Syx7, Ykt6, and Syb) play an important role in preventing APOL1 cytotoxicity. Reducing the expression of these SNARE proteins significantly increased APOL1 cytotoxicity in fly nephrocytes, the equivalent of mammalian podocytes, whereas overexpression of Syx7, Ykt6, or Syb attenuated their toxicity in nephrocytes. These SNARE proteins bound to APOL1-G0 with higher affinity than APOL1-G1/G2, and attenuated APOL1-G0 cytotoxicity to a greater extent than either APOL1-RA. CONCLUSIONS Using a Drosophila screen, we identified SNARE proteins (Syx7, Ykt6, and Syb) as antagonists of APOL1-induced cytotoxicity by directly binding APOL1. These data uncovered a new potential protective role for certain SNARE proteins in the pathogenesis of APOL1-CKD and provide novel therapeutic targets for APOL1-associated nephropathies.
Collapse
Affiliation(s)
- Jin-Gu Lee
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine (UMSOM), 670 West Baltimore Street, 4052 HSFIII, Baltimore, MD, 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yulong Fu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine (UMSOM), 670 West Baltimore Street, 4052 HSFIII, Baltimore, MD, 21201, USA
- Department of Pathology, University of Alabama Birmingham, Birmingham, AL, 35249, USA
| | - Jun-Yi Zhu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine (UMSOM), 670 West Baltimore Street, 4052 HSFIII, Baltimore, MD, 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Pei Wen
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine (UMSOM), 670 West Baltimore Street, 4052 HSFIII, Baltimore, MD, 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine (UMSOM), 670 West Baltimore Street, 4052 HSFIII, Baltimore, MD, 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Patricio E Ray
- Child Health Research Center, Department of Pediatrics, University of Virginia School of Medicine, 409 Lane Road, Charlottesville, VA, 22908, USA.
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine (UMSOM), 670 West Baltimore Street, 4052 HSFIII, Baltimore, MD, 21201, USA.
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
9
|
Pell J, Nagata S, Menon MC. Nonpodocyte Roles of APOL1 Variants: An Evolving Paradigm. KIDNEY360 2023; 4:e1325-e1331. [PMID: 37461136 PMCID: PMC10550003 DOI: 10.34067/kid.0000000000000216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Since the seminal discovery of the trypanolytic, exonic variants in apolipoprotein L1 (APOL1) and their association with kidney disease in individuals of recent African ancestry, a wide body of research has emerged offering key insights into the mechanisms of disease. Importantly, the podocyte has become a focal point for our understanding of how risk genotype leads to disease, with activation of putative signaling pathways within the podocyte identified as playing a causal role in podocytopathy, FSGS, and progressive renal failure. However, the complete mechanism of genotype-to-phenotype progression remains incompletely understood in APOL1-risk individuals. An emerging body of evidence reports more than podocyte-intrinsic expression of APOL1 risk variants is needed for disease to manifest. This article reviews the seminal data and reports which placed the podocyte at the center of our understanding of APOL1-FSGS, as well as the evident shortcomings of this podocentric paradigm. We examine existing evidence for environmental and genetic factors that may influence disease, drawing from both clinical data and APOL1's fundamental role as an immune response gene. We also review the current body of data for APOL1's impact on nonpodocyte cells, including endothelial cells, the placenta, and immune cells in both a transplant and native setting. Finally, we discuss the implications of these emerging data and how the paradigm of disease might evolve as a result.
Collapse
Affiliation(s)
- John Pell
- Department of Medicine , Yale University, New Haven , Connecticut
| | | | | |
Collapse
|
10
|
Gilhaus K, Cepok C, Kamm D, Surmann B, Nedvetsky PI, Emich J, Sundukova A, Saatkamp K, Nüsse H, Klingauf J, Wennmann DO, George B, Krahn MP, Pavenstädt HJ, Vollenbröker BA. Activation of Hippo Pathway Damages Slit Diaphragm by Deprivation of Ajuba Proteins. J Am Soc Nephrol 2023; 34:1039-1055. [PMID: 36930055 PMCID: PMC10278832 DOI: 10.1681/asn.0000000000000107] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/06/2023] [Indexed: 03/18/2023] Open
Abstract
SIGNIFICANCE STATEMENT Nuclear exclusion of the cotranscription factor YAP, which is a consequence of activation of the Hippo signaling pathway, leads to FSGS and podocyte apoptosis. Ajuba proteins play an important role in the glomerular filtration barrier by keeping the Hippo pathway inactive. In nephrocytes from Drosophila melanogaster , a well-established model system for podocyte research, Ajuba proteins ensure slit diaphragm (SD) formation and function. Hippo pathway activation leads to mislocalization of Ajuba proteins, decreased SD formation, rearrangement of the actin cytoskeleton, and increased SD permeability. Targeting the kinases of the Hippo pathway with specific inhibitors in the glomerulus could, therefore, be a promising strategy for therapy of FSGS. BACKGROUND The highly conserved Hippo pathway, which regulates organ growth and cell proliferation by inhibiting transcriptional cofactors YAP/TAZ, plays a special role in podocytes, where activation of the pathway leads to apoptosis. The Ajuba family proteins (Ajuba, LIM domain-containing protein 1 (LIMD1) and Wilms tumor protein 1-interacting protein [WTIP]) can bind and inactivate large tumor suppressor kinases 1 and 2, (LATS1/2) two of the Hippo pathway key kinases. WTIP, furthermore, connects the slit diaphragm (SD), the specialized cell-cell junction between podocytes, with the actin cytoskeleton. METHODS We used garland cell nephrocytes of Drosophila melanogaster to monitor the role of Ajuba proteins in Hippo pathway regulation and structural integrity of the SD. Microscopy and functional assays analyzed the interplay between Ajuba proteins and LATS2 regarding expression, localization, interaction, and effects on the functionality of the SD. RESULTS In nephrocytes, the Ajuba homolog Djub recruited Warts (LATS2 homolog) to the SD. Knockdown of Djub activated the Hippo pathway. Reciprocally, Hippo activation reduced the Djub level. Both Djub knockdown and Hippo activation led to morphological changes in the SD, rearrangement of the cortical actin cytoskeleton, and increased SD permeability. Knockdown of Warts or overexpression of constitutively active Yki prevented these effects. In podocytes, Hippo pathway activation or knockdown of YAP also decreased the level of Ajuba proteins. CONCLUSIONS Ajuba proteins regulate the structure and function of the SD in nephrocytes, connecting the SD protein complex to the actin cytoskeleton and maintaining the Hippo pathway in an inactive state. Hippo pathway activation directly influencing Djub expression suggests a self-amplifying feedback mechanism.
Collapse
Affiliation(s)
- Kevin Gilhaus
- Molecular Nephrology, Medical Clinic D, University Hospital of Münster, Münster, Germany
| | - Claudia Cepok
- Molecular Nephrology, Medical Clinic D, University Hospital of Münster, Münster, Germany
| | - David Kamm
- Molecular Nephrology, Medical Clinic D, University Hospital of Münster, Münster, Germany
| | - Beate Surmann
- Molecular Nephrology, Medical Clinic D, University Hospital of Münster, Münster, Germany
| | - Pavel I. Nedvetsky
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Münster, Germany
| | - Jana Emich
- Institute of Reproductive Genetics, University Hospital of Münster, Münster, Germany
| | - Alina Sundukova
- Molecular Nephrology, Medical Clinic D, University Hospital of Münster, Münster, Germany
| | - Katharina Saatkamp
- Molecular Nephrology, Medical Clinic D, University Hospital of Münster, Münster, Germany
| | - Harald Nüsse
- Institute of Medical Physics and Biophysics, Westfälische-Wilhelms University Münster, Münster, Germany
| | - Jürgen Klingauf
- Institute of Medical Physics and Biophysics, Westfälische-Wilhelms University Münster, Münster, Germany
| | - Dirk O. Wennmann
- Molecular Nephrology, Medical Clinic D, University Hospital of Münster, Münster, Germany
| | - Britta George
- Molecular Nephrology, Medical Clinic D, University Hospital of Münster, Münster, Germany
| | - Michael P. Krahn
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Münster, Germany
| | | | - Beate A. Vollenbröker
- Molecular Nephrology, Medical Clinic D, University Hospital of Münster, Münster, Germany
| |
Collapse
|
11
|
Krausel V, Pund L, Nüsse H, Bachir H, Ricker A, Klingauf J, Weide T, Pavenstädt H, Krahn MP, Braun DA. The transcription factor ATF4 mediates endoplasmic reticulum stress-related podocyte injury and slit diaphragm defects. Kidney Int 2022; 103:872-885. [PMID: 36587794 DOI: 10.1016/j.kint.2022.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 10/25/2022] [Accepted: 11/17/2022] [Indexed: 12/30/2022]
Abstract
Mutations in OSGEP and four other genes that encode subunits of the KEOPS complex cause Galloway-Mowat syndrome, a severe, inherited kidney-neurological disease. The complex catalyzes an essential posttranscriptional modification of tRNA and its loss of function induces endoplasmic reticulum (ER) stress. Here, using Drosophila melanogaster garland nephrocytes and cultured human podocytes, we aimed to elucidate the molecular pathogenic mechanisms of KEOPS-related glomerular disease and to test pharmacological inhibition of ER stress-related signaling as a therapeutic principle. We found that ATF4, an ER stress-mediating transcription factor, or its fly orthologue Crc, were upregulated in both fly nephrocytes and human podocytes. Knockdown of Tcs3, a fly orthologue of OSGEP, caused slit diaphragm defects, recapitulating the human kidney phenotype. OSGEP cDNA with mutations found in patients lacked the capacity for rescue. Genetic interaction studies in Tcs3-deficient nephrocytes revealed that Crc mediates not only cell injury, but surprisingly also slit diaphragm defects, and that genetic or pharmacological inhibition of Crc activation attenuates both phenotypes. These findings are conserved in human podocytes where ATF4 inhibition improved the viability of podocytes with OSGEP knockdown, with chemically induced ER stress, and where ATF4 target genes and pro-apoptotic gene clusters are upregulated upon OSGEP knockdown. Thus, our data identify ATF4-mediated signaling as a molecular link among ER stress, slit diaphragm defects, and podocyte injury, and our data suggest that modulation of ATF4 signaling may be a potential therapeutic target for certain podocyte diseases.
Collapse
Affiliation(s)
- Vanessa Krausel
- Department D of Internal Medicine, University Hospital of Munster, Munster, Germany
| | - Lisanne Pund
- Department D of Internal Medicine, University Hospital of Munster, Munster, Germany
| | - Harald Nüsse
- Institute of Medical Physics and Biophysics, University of Munster, Munster, Germany
| | - Hussein Bachir
- Department D of Internal Medicine, University Hospital of Munster, Munster, Germany
| | - Andrea Ricker
- Institute of Medical Physics and Biophysics, University of Munster, Munster, Germany
| | - Jürgen Klingauf
- Institute of Medical Physics and Biophysics, University of Munster, Munster, Germany
| | - Thomas Weide
- Department D of Internal Medicine, University Hospital of Munster, Munster, Germany
| | - Hermann Pavenstädt
- Department D of Internal Medicine, University Hospital of Munster, Munster, Germany
| | - Michael P Krahn
- Department D of Internal Medicine, University Hospital of Munster, Munster, Germany
| | - Daniela A Braun
- Department D of Internal Medicine, University Hospital of Munster, Munster, Germany.
| |
Collapse
|
12
|
Nguyen A, Suen SC, Lin E. APOL1 Genotype, Proteinuria, and the Risk of Kidney Failure: A Secondary Analysis of the AASK (African American Study of Kidney Disease and Hypertension) and CRIC (Chronic Renal Insufficiency Cohort) Studies. Kidney Med 2022; 4:100563. [PMID: 36479469 PMCID: PMC9720339 DOI: 10.1016/j.xkme.2022.100563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Rationale & Objective Patients with a high-risk Apolipoprotein L1 (APOL1) genotype are more likely to develop chronic kidney disease and kidney failure. It is unclear whether this increased risk is entirely mediated by the development of proteinuria. Study Design Retrospective observational study of the African American Study of Kidney Disease and Hypertension cohort and Chronic Renal Insufficiency Cohort. Exposures & Predictors Self-identified race (Black/non-Black) and presence of high-risk APOL1 genotype. The primary model was adjusted for age, sex, diabetes, estimated glomerular filtration rate, and urinary protein-creatinine ratio. Outcomes Time to kidney failure defined as time to dialysis or transplantation. Analytical Approach We used Cox proportional hazard models to study how proteinuria mediates the association between APOL1 and kidney failure. We modeled proteinuria at baseline and as a time-varying covariate. Results A high-risk APOL1 genotype was associated with a significantly higher risk of kidney failure, even for patients with minimal proteinuria (HR, 1.87; 95% CI, 1.23-2.84). The association was not significant among patients with high proteinuria (HR, 1.22; 95% CI, 0.93-1.61). When modeling proteinuria as a time-varying covariate, a high-risk APOL1 genotype was associated with higher kidney failure risk even among patients who never developed proteinuria (HR, 2.04; 95% CI, 1.10-3.77). Compared to non-Black patients, Black patients without the high-risk genotype did not have higher risk of kidney failure (HR, 0.96; 95% CI, 0.85-1.10). Limitations Two datasets were combined to increase statistical power. Limited generalizability beyond the study cohorts. Residual confounding common to observational studies. Conclusions A high-risk APOL1 genotype is significantly associated with increased kidney failure risk, especially among patients without baseline proteinuria. Although our results suggest that the risk is partially mediated through proteinuria, higher kidney failure risk was present even among patients who never developed proteinuria. Providers should consider screening for the high-risk APOL1 genotype, especially among Black patients without proteinuria in populations with chronic kidney disease.
Collapse
Affiliation(s)
- Anthony Nguyen
- University of Southern California Viterbi School of Engineering, Daniel J. Epstein Department of Industrial and Systems Engineering, Los Angeles, California
| | - Sze-chuan Suen
- University of Southern California Viterbi School of Engineering, Daniel J. Epstein Department of Industrial and Systems Engineering, Los Angeles, California
- Leonard D. Schaeffer Center for Health Policy & Economics, University of Southern California, Los Angeles, California
| | - Eugene Lin
- Leonard D. Schaeffer Center for Health Policy & Economics, University of Southern California, Los Angeles, California
- University of Southern California Keck School of Medicine, Department of Medicine, Los Angeles, California
| |
Collapse
|
13
|
Milosavljevic J, Lempicki C, Lang K, Heinkele H, Kampf LL, Leroy C, Chen M, Gerstner L, Spitz D, Wang M, Knob AU, Kayser S, Helmstädter M, Walz G, Pollak MR, Hermle T. Nephrotic Syndrome Gene TBC1D8B Is Required for Endosomal Maturation and Nephrin Endocytosis in Drosophila. J Am Soc Nephrol 2022; 33:2174-2193. [PMID: 36137753 PMCID: PMC9731638 DOI: 10.1681/asn.2022030275] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 09/01/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Variants in TBC1D8B cause nephrotic syndrome. TBC1D8B is a GTPase-activating protein for Rab11 (RAB11-GAP) that interacts with nephrin, but how it controls nephrin trafficking or other podocyte functions remains unclear. METHODS We generated a stable deletion in Tbc1d8b and used microhomology-mediated end-joining for genome editing. Ex vivo functional assays utilized slit diaphragms in podocyte-like Drosophila nephrocytes. Manipulation of endocytic regulators and transgenesis of murine Tbc1d8b provided a comprehensive functional analysis of Tbc1d8b. RESULTS A null allele of Drosophila TBC1D8B exhibited a nephrocyte-restricted phenotype of nephrin mislocalization, similar to patients with isolated nephrotic syndrome who have variants in the gene. The protein was required for rapid nephrin turnover in nephrocytes and for endocytosis of nephrin induced by excessive Rab5 activity. The protein expressed from the Tbc1d8b locus bearing the edited tag predominantly localized to mature early and late endosomes. Tbc1d8b was required for endocytic cargo processing and degradation. Silencing Hrs, a regulator of endosomal maturation, phenocopied loss of Tbc1d8b. Low-level expression of murine TBC1D8B rescued loss of the Drosophila gene, indicating evolutionary conservation. Excessive murine TBC1D8B selectively disturbed nephrin dynamics. Finally, we discovered four novel TBC1D8B variants within a cohort of 363 patients with FSGS and validated a functional effect of two variants in Drosophila, suggesting a personalized platform for TBC1D8B-associated FSGS. CONCLUSIONS Variants in TBC1D8B are not infrequent among patients with FSGS. TBC1D8B, functioning in endosomal maturation and degradation, is essential for nephrin trafficking.
Collapse
Affiliation(s)
- Julian Milosavljevic
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Camille Lempicki
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Konrad Lang
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Helena Heinkele
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Lina L. Kampf
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Claire Leroy
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Mengmeng Chen
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Lea Gerstner
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Dominik Spitz
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Minxian Wang
- Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Andrea U. Knob
- Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Séverine Kayser
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Martin Helmstädter
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- CIBSS–Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Martin R. Pollak
- Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Tobias Hermle
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW More than 5 million African-Americans, and millions more in Africa and worldwide, possess apolipoprotein L1 gene (APOL1) high-risk genotypes with an increased risk for chronic kidney disease. This manuscript reviews treatment approaches for slowing the progression of APOL1-associated nephropathy. RECENT FINDINGS Since the 2010 discovery of APOL1 as a cause of nondiabetic nephropathy in individuals with sub-Saharan African ancestry, it has become apparent that aggressive hypertension control, renin-angiotensin system blockade, steroids and conventional immunosuppressive agents are suboptimal treatments. In contrast, APOL1-mediated collapsing glomerulopathy due to interferon treatment and HIV infection, respectively, often resolve with cessation of interferon or antiretroviral therapy. Targeted therapies, including APOL1 small molecule inhibitors, APOL1 antisense oligonucleotides (ASO) and inhibitors of APOL1-associated inflammatory pathways, hold promise for these diseases. Evolving therapies and the need for clinical trials support the importance of increased use of APOL1 genotyping and kidney biopsy. SUMMARY APOL1-associated nephropathy includes a group of related phenotypes that are driven by the same two genetic variants in APOL1. Clinical trials of small molecule inhibitors, ASO, and inflammatory pathway inhibitors may improve outcomes in patients with primary forms of APOL1-associated nephropathy.
Collapse
|
15
|
Spitz D, Comas M, Gerstner L, Kayser S, Helmstädter M, Walz G, Hermle T. mTOR-Dependent Autophagy Regulates Slit Diaphragm Density in Podocyte-like Drosophila Nephrocytes. Cells 2022; 11:2103. [PMID: 35805186 PMCID: PMC9265458 DOI: 10.3390/cells11132103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Both mTOR signaling and autophagy are important modulators of podocyte homeostasis, regeneration, and aging and have been implicated in glomerular diseases. However, the mechanistic role of these pathways for the glomerular filtration barrier remains poorly understood. We used Drosophila nephrocytes as an established podocyte model and found that inhibition of mTOR signaling resulted in increased spacing between slit diaphragms. Gain-of-function of mTOR signaling did not affect spacing, suggesting that additional cues limit the maximal slit diaphragm density. Interestingly, both activation and inhibition of mTOR signaling led to decreased nephrocyte function, indicating that a fine balance of signaling activity is needed for proper function. Furthermore, mTOR positively controlled cell size, survival, and the extent of the subcortical actin network. We also showed that basal autophagy in nephrocytes is required for survival and limits the expression of the sns (nephrin) but does not directly affect slit diaphragm formation or endocytic activity. However, using a genetic rescue approach, we demonstrated that excessive, mTOR-dependent autophagy is primarily responsible for slit diaphragm misspacing. In conclusion, we established this invertebrate podocyte model for mechanistic studies on the role of mTOR signaling and autophagy, and we discovered a direct mTOR/autophagy-dependent regulation of the slit diaphragm architecture.
Collapse
Affiliation(s)
- Dominik Spitz
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (L.G.); (S.K.); (M.H.); (G.W.)
| | - Maria Comas
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (L.G.); (S.K.); (M.H.); (G.W.)
| | - Lea Gerstner
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (L.G.); (S.K.); (M.H.); (G.W.)
| | - Séverine Kayser
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (L.G.); (S.K.); (M.H.); (G.W.)
| | - Martin Helmstädter
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (L.G.); (S.K.); (M.H.); (G.W.)
| | - Gerd Walz
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (L.G.); (S.K.); (M.H.); (G.W.)
- CIBSS—Centre for Integrative Biological Signalling Studies, 79106 Freiburg, Germany
| | - Tobias Hermle
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (L.G.); (S.K.); (M.H.); (G.W.)
| |
Collapse
|
16
|
NUP133 Controls Nuclear Pore Assembly, Transcriptome Composition, and Cytoskeleton Regulation in Podocytes. Cells 2022; 11:cells11081259. [PMID: 35455939 PMCID: PMC9025798 DOI: 10.3390/cells11081259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Steroid-resistant nephrotic syndrome (SRNS) frequently leads to end-stage renal disease, ultimately requiring kidney replacement therapies. SRNS is often caused by hereditary monogenic mutations, specifically affecting specialized epithelial cells (podocytes) of the glomerular filtration barrier. Mutations in several components of the nuclear pore complex, including NUP133 and NUP107, have been recently identified to cause hereditary SRNS. However, underlying pathomechanisms, eliciting podocyte-specific manifestations of these nucleoporopathies, remained largely elusive. Here, we generated an in vitro model of NUP133-linked nucleoporopathies using CRISPR/Cas9-mediated genome editing in human podocytes. Transcriptome, nuclear pore assembly, and cytoskeleton regulation of NUP133 loss-of-function, mutant, and wild-type podocytes were analyzed. Loss of NUP133 translated into a disruption of the nuclear pore, alterations of the podocyte-specific transcriptome, and impaired cellular protrusion generation. Surprisingly, comparative analysis of the described SRNS-related NUP133 mutations revealed only mild defects. Am impaired protein interaction in the Y-complex and decrease of NUP133 protein levels might be the primary and unifying consequence of mutant variants, leading to a partial loss-of-function phenotype and disease manifestation in susceptible cell types, such as podocytes.
Collapse
|