1
|
Wang L, Peng J, Wen B, Zhai Z, Yuan S, Zhang Y, Ii L, Li W, Ding Y, Wang Y, Ye F. Contrast-Enhanced Computed Tomography-Based Machine Learning Radiomics Predicts IDH1 Expression and Clinical Prognosis in Head and Neck Squamous Cell Carcinoma. Acad Radiol 2025; 32:976-987. [PMID: 39256086 DOI: 10.1016/j.acra.2024.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/06/2024] [Accepted: 08/17/2024] [Indexed: 09/12/2024]
Abstract
RATIONALE AND OBJECTIVES Isocitrate dehydrogenase 1 (IDH1) is a potential therapeutic target across various tumor types. Here, we aimed to devise a radiomic model capable of predicting the IDH1 expression levels in patients with head and neck squamous cell carcinoma (HNSCC) and examined its prognostic significance. MATERIALS AND METHODS We utilized genomic data, clinicopathological features, and contrast-enhanced computed tomography (CECT) images from The Cancer Genome Atlas and the Cancer Imaging Archive for prognosis analysis and radiomic model construction. The selection of optimal features was conducted using the intraclass correlation coefficient, minimum redundancy maximum relevance, and recursive feature elimination algorithms. A radiomic model for IDH1 prediction and radiomic score (RS) were established using a gradient-boosting machine. Associations between IDH1 expression, RS, clinicopathological variables, and overall survival (OS) were determined using univariate and multivariate Cox proportional hazards regression analyses and Kaplan-Meier curves. RESULTS IDH1 emerged as a distinct predictive factor in patients with HNSCC (hazard ratio [HR] 1.535, 95% confidence interval [CI]: 1.117-2.11, P = 0.008). The radiomic model, built on eight optimal features, demonstrated area under the curve values of 0.848 and 0.779 in the training and validation sets, respectively, for predicting IDH1 expression levels. Calibration and decision curve analyses validated the model's suitability and clinical utility. RS was significantly associated with OS (HR=2.22, 95% CI: 1.026-4.805, P = 0.043). CONCLUSION IDH1 expression is a significant prognostic marker. The developed radiomic model, derived from CECT features, offers a promising approach for diagnosing and prognosticating HNSCC.
Collapse
Affiliation(s)
- Le Wang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Jilin Peng
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Baohong Wen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ziyu Zhai
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Sijie Yuan
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yulin Zhang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ling Ii
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Weijie Li
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yinghui Ding
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yixu Wang
- Department of Otolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing 100044, China
| | - Fanglei Ye
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
2
|
Sørensen MD, Nielsen O, Reifenberger G, Kristensen BW. The presence of TIM-3 positive cells in WHO grade III and IV astrocytic gliomas correlates with isocitrate dehydrogenase mutation status. Brain Pathol 2021; 31:e12921. [PMID: 33244787 PMCID: PMC8412096 DOI: 10.1111/bpa.12921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022] Open
Abstract
Diffuse gliomas are aggressive brain tumors that respond poorly to immunotherapy including immune checkpoint inhibition. This resistance may arise from an immunocompromised microenvironment and deficient immune recognition of tumor cells because of low mutational burden. The most prominent genetic alterations in diffuse glioma are mutations in the isocitrate dehydrogenase (IDH) genes that generate the immunosuppressive oncometabolite d-2-hydroxyglutarate. Our objective was to explore the association between IDH mutation and presence of cells expressing the immune checkpoint proteins galectin-9 and/or T cell immunoglobulin and mucin-domain containing-3 (TIM-3). Astrocytic gliomas of World Health Organization (WHO) grades III or IV (36 IDH-mutant and 36 IDH-wild-type) from 72 patients were included in this study. A novel multiplex chromogenic immunohistochemistry panel was applied using antibodies against galectin-9, TIM-3, and the oligodendrocyte transcription factor 2 (OLIG2). Validation studies were performed using data from The Cancer Genome Atlas (TCGA) project. IDH mutation was associated with decreased levels of TIM-3+ cells (p < 0.05). No significant association was found between galectin-9 and IDH status (p = 0.10). Most TIM-3+ and galectin-9+ cells resembled microglia/macrophages, and very few TIM-3+ and/or galectin-9+ cells co-expressed OLIG2. The percentage of TIM-3+ T cells was generally low, however, IDH-mutant tumors contained significantly fewer TIM-3+ T cells (p < 0.01) and had a lower interaction rate between TIM-3+ T cells and galectin-9+ microglia/macrophages (p < 0.05). TCGA data confirmed lower TIM-3 mRNA expression in IDH-mutant compared to IDH-wild-type astrocytic gliomas (p = 0.013). Our results show that IDH mutation is associated with diminished levels of TIM-3+ cells and fewer interactions between TIM-3+ T cells and galectin-9+ microglia/macrophages, suggesting reduced activity of the galectin-9/TIM-3 immune checkpoint pathway in IDH-mutant astrocytic gliomas.
Collapse
Affiliation(s)
- Mia D Sørensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Ole Nielsen
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Guido Reifenberger
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Institute of Neuropathology, Heinrich Heine University, Düsseldorf, Germany.,German Cancer Consortium (DKT), partner site Essen/Düsseldorf, Essen, Germany
| | - Bjarne W Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Sbirkov Y, Burnusuzov H, Sarafian V. Metabolic reprogramming in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 2020; 67:e28255. [PMID: 32293782 DOI: 10.1002/pbc.28255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
The first observations of altered metabolism in malignant cells were made nearly 100 years ago and therapeutic strategies targeting cell metabolism have been in clinical use for several decades. In this review, we summarize our current understanding of cell metabolism dysregulation in childhood acute lymphoblastic leukemia (cALL). Reprogramming of cellular bioenergetic processes can be expected in the three distinct stages of cALL: at diagnosis, during standard chemotherapy, and in cases of relapse. Upregulation of glycolysis, dependency on anaplerotic energy sources, and activation of the electron transport chain have all been observed in cALL. While the current treatment strategies are tackling some of these aberrations, cALL cells are likely to be able to rewire their metabolism in order to escape therapy, which may contribute to a refractory disease and relapse. Finally, here we focus on novel therapeutic approaches emerging from our evolving understanding of the alterations of different metabolic networks in lymphoblasts.
Collapse
Affiliation(s)
- Yordan Sbirkov
- Department of Medical Biology, Medical University of Plovdiv, Plovdiv, Bulgaria.,Research Institute at Medical University- Plovdiv, Plovdiv, Bulgaria
| | - Hasan Burnusuzov
- Research Institute at Medical University- Plovdiv, Plovdiv, Bulgaria.,Department of Pediatrics and Medical Genetics, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University of Plovdiv, Plovdiv, Bulgaria.,Research Institute at Medical University- Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
4
|
Ribeiro ML, Reyes-Garau D, Armengol M, Fernández-Serrano M, Roué G. Recent Advances in the Targeting of Epigenetic Regulators in B-Cell Non-Hodgkin Lymphoma. Front Genet 2019; 10:986. [PMID: 31681423 PMCID: PMC6807552 DOI: 10.3389/fgene.2019.00986] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022] Open
Abstract
In the last 10 years, major advances have been made in the diagnosis and development of selective therapies for several blood cancers, including B-cell non-Hodgkin lymphoma (B-NHL), a heterogeneous group of malignancies arising from the mature B lymphocyte compartment. However, most of these entities remain incurable and current treatments are associated with variable efficacy, several adverse events, and frequent relapses. Thus, new diagnostic paradigms and novel therapeutic options are required to improve the prognosis of patients with B-NHL. With the recent deciphering of the mutational landscapes of B-cell disorders by high-throughput sequencing, it came out that different epigenetic deregulations might drive and/or promote B lymphomagenesis. Consistently, over the last decade, numerous epigenetic drugs (or epidrugs) have emerged in the clinical management of B-NHL patients. In this review, we will present an overview of the most relevant epidrugs tested and/or used so far for the treatment of different subtypes of B-NHL, from first-generation epigenetic therapies like histone acetyl transferases (HDACs) or DNA-methyl transferases (DNMTs) inhibitors to new agents showing selectivity for proteins that are mutated, translocated, and/or overexpressed in these diseases, including EZH2, BET, and PRMT. We will dissect the mechanisms of action of these epigenetic inhibitors, as well as the molecular processes underlying their lack of efficacy in refractory patients. This review will also provide a summary of the latest strategies being employed in preclinical and clinical settings, and will point out the most promising lines of investigation in the field.
Collapse
Affiliation(s)
- Marcelo L. Ribeiro
- Laboratory of Experimental Hematology, Department of Hematology, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University Medical School, Braganca Paulista, São Paulo, Brazil
| | - Diana Reyes-Garau
- Laboratory of Experimental Hematology, Department of Hematology, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Marc Armengol
- Laboratory of Experimental Hematology, Department of Hematology, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Miranda Fernández-Serrano
- Laboratory of Experimental Hematology, Department of Hematology, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Gaël Roué
- Laboratory of Experimental Hematology, Department of Hematology, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Li L, Eid JE, Paz AC, Trent JC. Metabolic Enzymes in Sarcomagenesis: Progress Toward Biology and Therapy. BioDrugs 2017; 31:379-392. [DOI: 10.1007/s40259-017-0237-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Vasanthakumar A, Godley LA. 5-hydroxymethylcytosine in cancer: significance in diagnosis and therapy. Cancer Genet 2015; 208:167-77. [PMID: 25892122 DOI: 10.1016/j.cancergen.2015.02.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 12/22/2022]
Abstract
Emerging data have demonstrated that 5-methylcytosine (5-mC) and its oxidized products 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-fC), and 5-carboxylcytosine (5-CaC) play unique roles in several biological processes, including the control of gene expression and in the pathogenesis of cancer. In this review, we focus on 5-hmC and the disruption of its distribution in several cancers, including hematological malignancies and solid tumors. We present an outline of how 5-hmC is closely associated with metabolic pathways and may be the missing link connecting epigenetics with metabolism in the context of cancer cells. Finally, we discuss the diagnostic and prognostic importance of 5-mC and 5-hmC patterning, and how we may be able to establish new paradigms in cancer therapy based on these alterations.
Collapse
Affiliation(s)
- Aparna Vasanthakumar
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Lucy A Godley
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
Zhang Y, Paz Mejia A, Temple HT, Trent J, Rosenberg AE. Squamous cell carcinoma arising in dedifferentiated chondrosarcoma proved by isocitrate dehydrogenase mutation analysis. Hum Pathol 2014; 45:1541-5. [DOI: 10.1016/j.humpath.2014.02.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/26/2013] [Accepted: 02/10/2014] [Indexed: 01/24/2023]
|
8
|
Madzo J, Vasanthakumar A, Godley LA. Perturbations of 5-hydroxymethylcytosine patterning in hematologic malignancies. Semin Hematol 2013; 50:61-9. [PMID: 23507484 DOI: 10.1053/j.seminhematol.2013.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The recent identification of covalent cytosine modifications derived from the metabolism of 5-methylcytosine (5-mC) and catalyzed by the TET proteins has facilitated molecular insight into a new subclass of acute myeloid leukemias (AMLs). TET2-mutant AMLs have the predicted hypermethylation phenotype expected given the inability of the mutant TET2 protein to convert 5-mC to 5-hydroxymethylcytosine (5-hmC). In addition, IDH1/2 mutations confer a gain-of-function, allowing the enzymes to process α-ketoglutarate to 2-hydroxyglutarate, which inhibits the TET proteins and ultimately induces the same hypermethylation phenotype. New techniques are being developed rapidly that have the unprecedented capacity to distinguish among the various covalent cytosine modifications now known to exist. Soon, these methods will be harnessed to yield a new level of insight into AMLs with altered distribution of 5-hmC, information that may allow new diagnostic and therapeutic approaches for patients with this subtype of AML.
Collapse
Affiliation(s)
- Jozef Madzo
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637-1470, USA
| | | | | |
Collapse
|
9
|
Abstract
Recent genome-wide discovery studies have identified a spectrum of mutations in different malignancies and have led to the elucidation of novel pathways that contribute to oncogenic transformation. The discovery of mutations in the genes encoding isocitrate dehydrogenase (IDH) has uncovered a critical role for altered metabolism in oncogenesis, and the neomorphic, oncogenic function of IDH mutations affects several epigenetic and gene regulatory pathways. Here we discuss the relevance of IDH mutations to leukemia pathogenesis, therapy, and outcome and how mutations in IDH1 and IDH2 affect the leukemia epigenome, hematopoietic differentiation, and clinical outcome.
Collapse
Affiliation(s)
- Anna Sophia McKenney
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | |
Collapse
|
10
|
Zhang C, Moore LM, Li X, Yung WKA, Zhang W. IDH1/2 mutations target a key hallmark of cancer by deregulating cellular metabolism in glioma. Neuro Oncol 2013; 15:1114-26. [PMID: 23877318 DOI: 10.1093/neuonc/not087] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Isocitrate dehydrogenase (IDH) enzymes have recently become a focal point for research aimed at understanding the biology of glioma. IDH1 and IDH2 are mutated in 50%-80% of astrocytomas, oligodendrogliomas, oligoastrocytomas, and secondary glioblastomas but are seldom mutated in primary glioblastomas. Gliomas with IDH1/2 mutations always harbor other molecular aberrations, such as TP53 mutation or 1p/19q loss. IDH1 and IDH2 mutations may serve as prognostic factors because patients with an IDH-mutated glioma survive significantly longer than those with an IDH-wild-type tumor. However, the molecular pathogenic role of IDH1/2 mutations in the development of gliomas is unclear. The production of 2-hydroxyglutarate and enhanced NADP+ levels in tumor cells with mutant IDH1/2 suggest mechanisms through which these mutations contribute to tumorigenesis. Elucidating the pathogenesis of IDH mutations will improve understanding of the molecular mechanisms of gliomagenesis and may lead to development of a new molecular classification system and novel therapies.
Collapse
Affiliation(s)
- Chunzhi Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
11
|
Yao Y, Chan AKY, Qin ZY, Chen LC, Zhang X, Pang JCS, Li HM, Wang Y, Mao Y, Ng HK, Zhou LF. Mutation analysis of IDH1 in paired gliomas revealed IDH1 mutation was not associated with malignant progression but predicted longer survival. PLoS One 2013; 8:e67421. [PMID: 23840696 PMCID: PMC3696098 DOI: 10.1371/journal.pone.0067421] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 05/21/2013] [Indexed: 12/26/2022] Open
Abstract
Recurrence and progression to higher grade lesions are characteristic behaviorsof gliomas. Though IDH1 mutation frequently occurs and is considered as an early event in gliomagenesis, little is known about its role in the recurrence and progression of gliomas. We therefore analysed IDH1 and IDH2 statusat codon 132 of IDH1 and codon 172 of IDH2 by direct sequencing and anti-IDH1-R132H immunohistochemistry in 53 paired samples and their recurrences, including 29 low- grade gliomas, 16 anaplastic gliomas and 8 Glioblastomas. IDH1/IDH2 mutation was detected in 32 primarytumors, with 25 low- grade gliomas and 6 anaplastic gliomas harboring IDH1 mutation and 1 low- grade glioma harboring IDH2 mutation. All of the paired tumors showed consistent IDH1 and IDH2 status. Patients were analyzed according to IDH1 status and tumor-related factors. Malignant progression at recurrence was noted in 22 gliomas and was not associated with IDH1 mutation. Survival analysis revealed patients with IDH1 mutated gliomas had a significantly longer progression-free survival (PFS) and overall survival (OS). In conclusion, this study demonstrated a strong tendency of IDH1/IDH2 status being consistent during progression of glioma. IDH1 mutation was not a predictive marker for malignant progression and it was a potential prognostic marker for gliomas of Chinese patients.
Collapse
Affiliation(s)
- Yu Yao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|