1
|
Khazali AS, Hadrawi WH, Ibrahim F, Othman S, Nor Rashid N. Thrombocytopenia in dengue infection: mechanisms and a potential application. Expert Rev Mol Med 2024; 26:e26. [PMID: 39397710 PMCID: PMC11488332 DOI: 10.1017/erm.2024.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 03/18/2024] [Accepted: 05/30/2024] [Indexed: 10/15/2024]
Abstract
Thrombocytopenia is a common symptom and one of the warning signs of dengue virus (DENV) infection. Platelet depletion is critical as it may lead to other severe dengue symptoms. Understanding the molecular events of this condition during dengue infection is challenging because of the multifaceted factors involved in DENV infection and the dynamics of the disease progression. Platelet levels depend on the balance between platelet production and platelet consumption or clearance. Megakaryopoiesis and thrombopoiesis, two interdependent processes in platelet production, are hampered during dengue infection. Conversely, platelet elimination via platelet activation, apoptosis and clearance processes are elevated. Together, these anomalies contribute to thrombocytopenia in dengue patients. Targeting the molecular events of dengue-mediated thrombocytopenia shows great potential but still requires further investigation. Nonetheless, the application of new knowledge in this field, such as immature platelet fraction analysis, may facilitate physicians in monitoring the progression of the disease.
Collapse
Affiliation(s)
- Ahmad Suhail Khazali
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM) Cawangan Perlis, Arau, Perlis, Malaysia
| | - Waqiyuddin Hilmi Hadrawi
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Fatimah Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
- Center for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shatrah Othman
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nurshamimi Nor Rashid
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Center for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Noval Rivas M, Kocatürk B, Franklin BS, Arditi M. Platelets in Kawasaki disease: mediators of vascular inflammation. Nat Rev Rheumatol 2024; 20:459-472. [PMID: 38886559 DOI: 10.1038/s41584-024-01119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 06/20/2024]
Abstract
Kawasaki disease, a systemic vasculitis that affects young children and can result in coronary artery aneurysms, is the leading cause of acquired heart disease among children. A hallmark of Kawasaki disease is increased blood platelet counts and platelet activation, which is associated with an increased risk of developing resistance to intravenous immunoglobulin and coronary artery aneurysms. Platelets and their releasate, including granules, microparticles, microRNAs and transcription factors, can influence innate immunity, enhance inflammation and contribute to vascular remodelling. Growing evidence indicates that platelets also interact with immune and non-immune cells to regulate inflammation. Platelets boost NLRP3 inflammasome activation and IL-1β production by human immune cells by releasing soluble mediators. Activated platelets form aggregates with leukocytes, such as monocytes and neutrophils, enhancing numerous functions of these cells and promoting thrombosis and inflammation. Leukocyte-platelet aggregates are increased in children with Kawasaki disease during the acute phase of the disease and can be used as biomarkers for disease severity. Here we review the role of platelets in Kawasaki disease and discuss progress in understanding the immune-effector role of platelets in amplifying inflammation related to Kawasaki disease vasculitis and therapeutic strategies targeting platelets or platelet-derived molecules.
Collapse
Affiliation(s)
- Magali Noval Rivas
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Guerin Children's, Cedars Sinai Medical Center, Los Angeles, CA, USA
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Begüm Kocatürk
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Bernardo S Franklin
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Moshe Arditi
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Guerin Children's, Cedars Sinai Medical Center, Los Angeles, CA, USA.
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Asgari A, Jurasz P. Role of Nitric Oxide in Megakaryocyte Function. Int J Mol Sci 2023; 24:ijms24098145. [PMID: 37175857 PMCID: PMC10179655 DOI: 10.3390/ijms24098145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Megakaryocytes are the main members of the hematopoietic system responsible for regulating vascular homeostasis through their progeny platelets, which are generally known for maintaining hemostasis. Megakaryocytes are characterized as large polyploid cells that reside in the bone marrow but may also circulate in the vasculature. They are generated directly or through a multi-lineage commitment step from the most primitive progenitor or Hematopoietic Stem Cells (HSCs) in a process called "megakaryopoiesis". Immature megakaryocytes enter a complicated development process defined as "thrombopoiesis" that ultimately results in the release of extended protrusions called proplatelets into bone marrow sinusoidal or lung microvessels. One of the main mediators that play an important modulatory role in hematopoiesis and hemostasis is nitric oxide (NO), a free radical gas produced by three isoforms of nitric oxide synthase within the mammalian cells. In this review, we summarize the effect of NO and its signaling on megakaryopoiesis and thrombopoiesis under both physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Amir Asgari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G-2E1, Canada
| | - Paul Jurasz
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G-2E1, Canada
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G-2H7, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB T6G-2S2, Canada
- Mazankowski Alberta Heart Institute, Edmonton, AB T6G-2R7, Canada
| |
Collapse
|
4
|
Bolkun L, Tynecka M, Wasiluk T, Piszcz J, Starosz A, Grubczak K, Moniuszko M, Eljaszewicz A. A Proliferation-Inducing Ligand and B-Cell Activating Factor Are Upregulated in Patients with Essential Thrombocythemia. J Clin Med 2022; 11:jcm11164663. [PMID: 36012902 PMCID: PMC9409834 DOI: 10.3390/jcm11164663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 12/20/2022] Open
Abstract
A proliferation-inducing ligand (APRIL) and B-cell activating factor (BAFF) are cytokines belonging to the tumor necrosis factor family which play an essential role in B-cell maturation, differentiation, and survival. Recent evidence indicates their importance in hematological disorders; however, their function in essential thrombocytosis (ET) pathogenesis remains elusive. Therefore, we aimed to analyze the role of APRIL and BAFF in megakaryocytopoiesis in ET patients. We observed elevated levels of APRIL and BAFF in the plasma of ET patients compared with healthy controls, while no differences were found among patients with different JAK2(V617F) statuses. In addition, APRIL levels were positively associated with the number of platelets and WBC count. In the bone marrow, APRIL but not BAFF levels were higher in ET patients with the JAK2(V617F) mutation; however, JAK2(V617F)-negative patients showed slightly reduced levels of BAFF. In ET patients, we showed that the differentiation of CD34+ progenitor cells towards megakaryocytes induces the expression of both APRIL and BAFF. More importantly, APRIL neutralization significantly reduced platelet production. In conclusion, our data provide evidence that blocking APRIL signaling, which acts as an autocrine growth factor for terminal megakaryocytopoiesis, inhibits platelet production in ET patients, regardless of the status of JAK2(V617F) mutation.
Collapse
Affiliation(s)
- Lukasz Bolkun
- Department of Haematology, Medical University of Bialystok, ul. M. Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland
- Correspondence: (L.B.); (A.E.); Tel.: +48-85-7468230 (L.B.); +48-85-748-59-72 (A.E.); Fax: +48-85-748-59-71 (A.E.)
| | - Marlena Tynecka
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269 Bialystok, Poland
| | - Tomasz Wasiluk
- Regional Centre for Transfusion Medicine, Bialystok, ul. M. Skłodowskiej-Curie 23, 15-950 Bialystok, Poland
| | - Jaroslaw Piszcz
- Department of Haematology, Medical University of Bialystok, ul. M. Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Aleksandra Starosz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269 Bialystok, Poland
| | - Kamil Grubczak
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269 Bialystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269 Bialystok, Poland
- Department of Allergology and Internal Medicine, Medical University of Bialystok, ul. M. Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269 Bialystok, Poland
- Correspondence: (L.B.); (A.E.); Tel.: +48-85-7468230 (L.B.); +48-85-748-59-72 (A.E.); Fax: +48-85-748-59-71 (A.E.)
| |
Collapse
|
5
|
Wang Y, Jiang H, Hu X, Fu W. Bone marrow NLRP3 inflammasome-IL-1β signal regulates post-myocardial infarction megakaryocyte development and platelet production. Biochem Biophys Res Commun 2021; 585:96-102. [PMID: 34801938 DOI: 10.1016/j.bbrc.2021.11.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
Platelet plays an important role in the progression of atherosclerosis. Recently it has been reported that myocardial infarction (MI) triggers megakaryopoiesis and thrombopoiesis in the bone marrow and leads to increased circulating platelets, which might contribute to the aggravation of atherosclerosis. However, the underlying mechanisms remain unclear. Here, we analyzed post-MI bone marrow tissue and found that MI induced an upregulation of bone marrow NOD-like Receptor Protein 3 (NLRP3) and subsequent secretion of IL-1β, an essential stimulator of megakaryopoiesis. Targeting NLRP3 using a specific inhibitor MCC950 reduced bone marrow IL-1β expression. Using bone marrow whole-mount immunofluorescence staining combined with flow cytometry, we demonstrated that MCC950 reduced megakaryocyte cellularity and maturity, and effectively attenuated the excessive platelet production after MI. Importantly, mice subjected to MI treated with MCC950 showed a higher survival rate compared with the only MI group. Taken together, this study shows that bone marrow NLRP3-IL-1β signal regulates megakaryocyte development and platelet production after myocardial infarction. It provides a new hint that pharmacological inhibition of NLRP3 might become a potential therapeutic approach for controlling excessive thrombopoiesis after MI.
Collapse
Affiliation(s)
- You Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, PR China; Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Xiaorong Hu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Wenwen Fu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, PR China; Hubei Key Laboratory of Cardiology, Wuhan, PR China.
| |
Collapse
|
6
|
Dosch AR, Singh S, Nagathihalli NS, Datta J, Merchant NB. Interleukin-1 signaling in solid organ malignancies. Biochim Biophys Acta Rev Cancer 2021; 1877:188670. [PMID: 34923027 DOI: 10.1016/j.bbcan.2021.188670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/19/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
Abstract
As inflammation plays a critical role in the development and progression of cancer, therapeutic targeting of cytokine pathways involved in both tumorigenesis and dictating response to clinical treatments are of significant interest. Recent evidence has highlighted the importance of the pro-inflammatory cytokine interleukin-1 (IL-1) as a key mediator of tumor growth, metastatic disease spread, immunosuppression, and drug resistance in cancer. IL-1 promotes tumorigenesis through diverse mechanisms, including the activation of oncogenic signaling pathways directly in tumor cells and via orchestrating crosstalk between the cellular constituents of the tumor microenvironment (TME), thereby driving cancer growth. This review will provide an overview of IL-1 signaling and physiology and summarize the disparate mechanisms involving IL-1 in tumorigenesis and cancer progression. Additionally, clinical studies targeting IL-1 signaling in the management of solid organ tumors will be summarized herein.
Collapse
Affiliation(s)
- Austin R Dosch
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States of America
| | - Samara Singh
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States of America
| | - Nagaraj S Nagathihalli
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States of America
| | - Jashodeep Datta
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States of America
| | - Nipun B Merchant
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States of America.
| |
Collapse
|
7
|
Lee WS, Kato M, Sugawara E, Kono M, Kudo Y, Kono M, Fujieda Y, Bohgaki T, Amengual O, Oku K, Yasuda S, Onodera T, Iwasaki N, Atsumi T. Protective Role of Optineurin Against Joint Destruction in Rheumatoid Arthritis Synovial Fibroblasts. Arthritis Rheumatol 2020; 72:1493-1504. [DOI: 10.1002/art.41290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/14/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Wen Shi Lee
- Hokkaido University, Sapporo, Japan, and Tokyo Medical and Dental University Tokyo Japan
| | | | | | | | | | | | | | | | | | | | - Shinsuke Yasuda
- Hokkaido University, Sapporo, Japan, and Tokyo Medical and Dental University Tokyo Japan
| | | | | | | |
Collapse
|
8
|
Couldwell G, Machlus KR. Modulation of megakaryopoiesis and platelet production during inflammation. Thromb Res 2019; 179:114-120. [PMID: 31128560 DOI: 10.1016/j.thromres.2019.05.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/19/2019] [Accepted: 05/13/2019] [Indexed: 12/24/2022]
Abstract
Megakaryocytes (MKs) are widely known as the progenitor cells of platelets. These large, polyploid cells are a derivative of the hematopoietic stem cell (HSC), and reside in the bone marrow, lining blood vessel walls where they release their platelet progeny into circulation. Although little is known about how MKs differ under various environmental stressors, both chronic and acute inflammation alter the differentiation and molecular content of MKs. Furthermore, evidence suggests that the release of inflammatory cytokines may induce MK rupture and rapid release of platelets as a mechanism to quickly replenish diminished platelet counts in response to inflammation. Similarities between MKs and their close relatives, white blood cells, have introduced the notion that MKs may play a role in combating infection by engulfing and presenting antigens, and passing this information to circulating platelets. In addition, MKs exposed to varying bone marrow environments produce different platelets which enter circulation primed to respond to and combat inflammation, infection, or injury. This review focuses on how inflammation alters MK production, maturation, and platelet production. In addition, it introduces the idea that inflammation reprograms MKs to create different, more pathogenic platelets and leads them to take on different roles as responders to deleterious conditions. In the future, studies determining how platelets are altered in disease states may lead to novel MK- and platelet-based therapeutic targets to mitigate inflammation-related morbidity and mortality.
Collapse
Affiliation(s)
| | - Kellie R Machlus
- Division of Hematology, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Iacono A, Sprocati M, Giuliani AL, Di Virgilio F, Borgna-Pignatti C, Maggiore G. Extreme thrombocytosis in systemic juvenile idiopathic arthritis. A case report. Ital J Pediatr 2019; 45:73. [PMID: 31234906 PMCID: PMC6591931 DOI: 10.1186/s13052-019-0664-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/31/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Systemic onset juvenile idiopathic arthritis (SoJIA) is a rare inflammatory disorder characterized by remitting fevers, evanescent rash, generalized lymphadenopathy, hepatomegaly/splenomegaly, and/or serositis. CASE PRESENTATION Here we report the case of a 5 years-old girl with SoJIA complicated by severe thrombocytosis. Treatment with the Interleukin-1β (IL-1β) receptor antagonist Anakinra caused a fast reduction of blood platelets and of the associated systemic inflammatory response. Measurement of IL-1β, IL-6 and Tpo plasma levels at different time points confirmed the etiopathogenetic role of IL-1β in causing the thrombocytosis, while Tpo did not appear to be involved and this explains the excellent response to treatment with Anakinra. CONCLUSION The excellent response to treatment with the IL-1β receptor antagonist, suggests a key pathogenic role of IL-1β in thrombocytosis as well as in the associated systemic symptoms of inflammation.
Collapse
Affiliation(s)
- Alessandra Iacono
- Department of Medical Sciences, Pediatrics, University of Ferrara, Ferrara, Italy.
| | - Monica Sprocati
- Department of Medical Sciences, Pediatrics, University of Ferrara, Ferrara, Italy
| | - Anna Lisa Giuliani
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Medicine, University of Ferrara, 44121 Cona, Ferrara, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Medicine, University of Ferrara, 44121 Cona, Ferrara, Italy
| | | | - Giuseppe Maggiore
- Department of Medical Sciences, Pediatrics, University of Ferrara, Ferrara, Italy
| |
Collapse
|
10
|
Mussbacher M, Salzmann M, Brostjan C, Hoesel B, Schoergenhofer C, Datler H, Hohensinner P, Basílio J, Petzelbauer P, Assinger A, Schmid JA. Cell Type-Specific Roles of NF-κB Linking Inflammation and Thrombosis. Front Immunol 2019; 10:85. [PMID: 30778349 PMCID: PMC6369217 DOI: 10.3389/fimmu.2019.00085] [Citation(s) in RCA: 428] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 01/11/2019] [Indexed: 12/22/2022] Open
Abstract
The transcription factor NF-κB is a central mediator of inflammation with multiple links to thrombotic processes. In this review, we focus on the role of NF-κB signaling in cell types within the vasculature and the circulation that are involved in thrombo-inflammatory processes. All these cells express NF-κB, which mediates important functions in cellular interactions, cell survival and differentiation, as well as expression of cytokines, chemokines, and coagulation factors. Even platelets, as anucleated cells, contain NF-κB family members and their corresponding signaling molecules, which are involved in platelet activation, as well as secondary feedback circuits. The response of endothelial cells to inflammation and NF-κB activation is characterized by the induction of adhesion molecules promoting binding and transmigration of leukocytes, while simultaneously increasing their thrombogenic potential. Paracrine signaling from endothelial cells activates NF-κB in vascular smooth muscle cells and causes a phenotypic switch to a “synthetic” state associated with a decrease in contractile proteins. Monocytes react to inflammatory situations with enforced expression of tissue factor and after differentiation to macrophages with altered polarization. Neutrophils respond with an extension of their life span—and upon full activation they can expel their DNA thereby forming so-called neutrophil extracellular traps (NETs), which exert antibacterial functions, but also induce a strong coagulatory response. This may cause formation of microthrombi that are important for the immobilization of pathogens, a process designated as immunothrombosis. However, deregulation of the complex cellular links between inflammation and thrombosis by unrestrained NET formation or the loss of the endothelial layer due to mechanical rupture or erosion can result in rapid activation and aggregation of platelets and the manifestation of thrombo-inflammatory diseases. Sepsis is an important example of such a disorder caused by a dysregulated host response to infection finally leading to severe coagulopathies. NF-κB is critically involved in these pathophysiological processes as it induces both inflammatory and thrombotic responses.
Collapse
Affiliation(s)
- Marion Mussbacher
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Manuel Salzmann
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Christine Brostjan
- Department of Surgery, General Hospital, Medical University of Vienna, Vienna, Austria
| | - Bastian Hoesel
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | | | - Hannes Datler
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Philipp Hohensinner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - José Basílio
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Peter Petzelbauer
- Skin and Endothelial Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Johannes A Schmid
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Çomaklı S, Sevim Ç, Kontadakis G, Doğan E, Taghizadehghalehjoughi A, Özkaraca M, Aschner M, Nikolouzakis TK, Tsatsakis A. Acute glufosinate-based herbicide treatment in rats leads to increased ocular interleukin-1β and c-Fos protein levels, as well as intraocular pressure. Toxicol Rep 2019; 6:155-160. [PMID: 30723690 PMCID: PMC6351388 DOI: 10.1016/j.toxrep.2019.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 01/15/2019] [Indexed: 01/01/2023] Open
Abstract
Glufosinate is a common herbicide with neurotoxic effects, leading to seizures, convulsions and memory loss. Glufosinate indirectly induces glutamate toxicity by inhibiting glutamine synthesis in astrocytes. Here, we studied the acute toxic effects of a glufosinate-based herbicide in rat optic nerve at three doses (40, 80 or 120 μM, equal to 714 or 21 mg/kg bw/day). Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), urea, glucose, calcium, as well as creatinine concentrations were analyzed after 24, 48 and 72 h treatment. Intraocular pressure (IOP) (expressed as the average of both eyes) was measured with a rebound tonometer. Interleukin-1β (IL-1β) and c-Fos expression were determined by immunohistochemistry. The results established that the glufosinate-based herbicide significantly increased IL-1β and c-Fos immunopositivity in the optic nerve (p < 0.05), concomitant with increased IOP. These results suggest that commercial formulations of glufosinate acutely affect the optic nerve.
Collapse
Affiliation(s)
- Selim Çomaklı
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Ataturk University, 25240, Erzurum, Turkey
- Corresponding authors.
| | - Çiğdem Sevim
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ataturk University, 25240, Erzurum, Turkey
- Corresponding authors.
| | - George Kontadakis
- Laboratory of Vision and Optics and Ophthalmology Department, School of Medicine, University of Crete, 71003, Heraklion, Greece
| | - Elif Doğan
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Ali Taghizadehghalehjoughi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Mustafa Özkaraca
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, United States
| | | | - Aristides Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003, Heraklion, Greece
| |
Collapse
|
12
|
|
13
|
Pedersen KM, Bak M, Sørensen AL, Zwisler AD, Ellervik C, Larsen MK, Hasselbalch HC, Tolstrup JS. Smoking is associated with increased risk of myeloproliferative neoplasms: A general population-based cohort study. Cancer Med 2018; 7:5796-5802. [PMID: 30318865 PMCID: PMC6246929 DOI: 10.1002/cam4.1815] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 09/13/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022] Open
Abstract
Background Former studies on smoking as a risk factor for Philadelphia‐negative myeloproliferative neoplasms (MPNs) have mainly been carried out in women's cohorts and studies with various definitions of MPNs. Herein, we conducted a cohort study with register‐based follow‐up of a general population from Denmark, to validate and substantiate prior observations. Methods In the Danish Health Examination Survey cohort, we used the Cox proportional‐hazards model adjusted for age, sex, body mass index, and level of education, to calculate hazard ratios (HRs), to investigate, whether daily smokers or occasional/ex‐smokers had an increased risk of MPNs compared to never‐smokers. Results From the time of data collection (September 2007 to October 2008) until 1 January 2015, 70 individuals were diagnosed with MPNs among 75 896 study participants. Similar results were observed in both the age and sex adjusted analysis and the multivariable analysis. The multivariable HR of any MPN diagnosis for daily smokers was 2.5 (95% CI: 1.3‐5.0). For essential thrombocytosis, polycythemia vera, myelofibrosis, and MPN‐unclassified, the HRs were 1.8 (95% CI: 0.5‐5.8), 1.7 (95% CI: 0.5‐5.8), 4.3 (95% CI: 0.9‐19), and 6.2 (95% CI: 1.5‐25), respectively. Among occasional/ex‐smokers the corresponding HRs were 1.9 (95% CI: 1.1‐3.3), 1.5 (95% CI: 0.6‐3.7), 0.8 (95% CI: 0.3‐2.4), 0.9 (95% CI: 0.2‐4.4), and 6.2 (95% CI: 1.8‐21). Participants, who smoked >15 g/day, had an overall HR of 3.4 (95% CI: 1.4‐8.2) for any MPN diagnosis, while participants who smoked ≤15 g/day, had an overall HR of 2.1 (95% CI: 0.9‐4.7). Conclusion Smoking was associated with MPN development when comparing smokers and never‐smokers. Further studies investigating smoking in MPNs are warranted to substantiate our findings.
Collapse
Affiliation(s)
- Kasper M Pedersen
- Department of Hematology, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark
| | - Marie Bak
- Department of Hematology, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark
| | - Anders L Sørensen
- Department of Hematology, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark.,Institute for Inflammation Research, Centre for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ann-Dorthe Zwisler
- REHPA, Danish Knowledge Centre for Rehabilitation and Palliative Care, University of Southern Denmark and Odense University Hospital, Nyborg, Denmark
| | - Christina Ellervik
- Division of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Laboratory Medicine, Boston Children's Hospital & Harvard Medical School, Boston, Massachusetts, USA
| | - Morten K Larsen
- Department of Hematology, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark.,Department of Science and Environment, University of Roskilde, Roskilde, Denmark
| | - Hans C Hasselbalch
- Department of Hematology, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark
| | - Janne S Tolstrup
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| |
Collapse
|
14
|
Liu CC, Wang SC, Kao CW, Hsieh RK, Chang MC, Chang YF, Lim KH, Chen CG. B cells facilitate platelet production mediated by cytokines in patients with essential thrombocythaemia. Thromb Haemost 2017; 112:537-50. [DOI: 10.1160/th13-11-0949] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/22/2014] [Indexed: 12/11/2022]
Abstract
SummaryWe investigated the role of activated B cells in thrombopoiesis through the production of interleukin (IL)-1beta and IL-6 in patients with essential thrombocythaemia. The number of B cells did not differ between essential thrombocythaemia patients, irrespective of the presence of Janus activated kinase-2 V617F mutation or wild type, and age-matched healthy adults. However, the number of IL-1beta/IL- 6-producing B cells was significantly higher in essential thrombocythaemia patients than that in healthy controls. The relatively high level of IL-1beta/IL-6 production by B cells was associated with serum B cell-activating factor and expression of Toll-like receptor 4 on B cells. A high level of B cell-activating factor was present in essential thrombocythaemia patients with both Janus activated kinase-2 genotypes. Incubation with B cell-activating factor enhanced the expression of Toll-like receptor 4 on B cells. IL-1beta and IL-6 production was not stimulated by B cell-activating factor alone; Toll-like receptor 4 was activated by lipopolysaccharide or patients’ sera to produce IL-1beta and IL-6 in B cells. Moreover, essential thrombocythaemia patient B cells facilitated megakaryocyte differentiation when co-cultured with CD34+ haematopoietic stem cells. Antibody neutralisation of IL-1beta and IL-6 attenuated megakaryocyte differentiation. These data suggest that B cells play a crucial role in thrombopoiesis in essential thrombocythaemia patients.
Collapse
|
15
|
Jutzi JS, Pahl HL. The Hen or the Egg: Inflammatory Aspects of Murine MPN Models. Mediators Inflamm 2015; 2015:101987. [PMID: 26543325 PMCID: PMC4620236 DOI: 10.1155/2015/101987] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/16/2015] [Indexed: 12/15/2022] Open
Abstract
It has been known for some time that solid tumors, especially gastrointestinal tumors, can arise on the basis of chronic inflammation. However, the role of inflammation in the genesis of hematological malignancies has not been extensively studied. Recent evidence clearly shows that changes in the bone marrow niche can suffice to induce myeloid diseases. Nonetheless, while it has been demonstrated that myeloproliferative neoplasms (MPN) are associated with a proinflammatory state, it is not clear whether inflammatory processes contribute to the induction or maintenance of MPN. More provocatively stated: which comes first, the hen or the egg, inflammation or MPN? In other words, can chronic inflammation itself trigger an MPN? In this review, we will describe the evidence supporting a role for inflammation in initiating and promoting MPN development. Furthermore, we will compare and contrast the data obtained in gastrointestinal tumors with observations in MPN patients and models, pointing out the opportunities provided by novel murine MPN models to address fundamental questions regarding the role of inflammatory stimuli in the molecular pathogenesis of MPN.
Collapse
Affiliation(s)
- Jonas S Jutzi
- Division of Molecular Hematology, University Hospital Freiburg, Center for Clinical Research, Breisacher Straße 66, 79106 Freiburg, Germany ; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 19A, 79104 Freiburg, Germany ; Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Heike L Pahl
- Division of Molecular Hematology, University Hospital Freiburg, Center for Clinical Research, Breisacher Straße 66, 79106 Freiburg, Germany
| |
Collapse
|
16
|
Predicting Endoscopic Disease Activity in Crohn's Disease: A New and Validated Noninvasive Disease Activity Index (The Utrecht Activity Index). Inflamm Bowel Dis 2015; 21:2453-9. [PMID: 26181428 DOI: 10.1097/mib.0000000000000507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Mucosal healing is presently considered one of the primary goals in treatment of Crohn's disease (CD), but this can only be confirmed by endoscopy. We aimed to design and validate a new disease activity index based on a combination of clinical characteristics and readily available laboratory parameters, which reliably predicts the presence and severity of endoscopic disease activity in patients with CD. METHODS Thirteen clinical characteristics and laboratory variables were selected for analysis. Endoscopic disease activity was assessed by the Crohn's disease Endoscopic Index of Severity. A linear regression model was based on 93 ileocolonoscopies performed in 82 patients with CD and internally validated by bootstrap resampling. Subsequently, the newly developed model was validated in a cohort of 99 patients. RESULTS The number of liquid stools during 1 day × 0.25 + C-reactive protein (in milligrams per liter) × 0.1 + platelet count (× 10(9)/L) × 0.01 + fecal calprotectin (in milligrams per liter) × 0.001 - mean platelet volume (in femtoliters) × 0.2 optimally predicted the severity of endoscopic disease activity (bootstrap adjusted R2 = 0.50). The model demonstrated good agreement in the external validation (r = 0.7), especially for (ileo)colonic CD (r = 0.8). Using receiver operator characteristic statistics, a cutoff point of 3 on the new index indicated endoscopic disease activity with a sensitivity of 80% and a specificity of 92%. CONCLUSIONS This newly developed, noninvasive, index was found to reliably predict endoscopic disease activity in patients with CD. This tool can facilitate clinical decision making and might prove valuable in clinical trials.
Collapse
|
17
|
Gasiorek JJ, Blank V. Regulation and function of the NFE2 transcription factor in hematopoietic and non-hematopoietic cells. Cell Mol Life Sci 2015; 72:2323-35. [PMID: 25721735 PMCID: PMC11114048 DOI: 10.1007/s00018-015-1866-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/27/2015] [Accepted: 02/16/2015] [Indexed: 01/01/2023]
Abstract
The NFE2 transcription factor was identified over 25 years ago. The NFE2 protein forms heterodimers with small MAF proteins, and the resulting complex binds to regulatory elements in a large number of target genes. In contrast to other CNC transcription family members including NFE2L1 (NRF1), NFE2L2 (NRF2) and NFE2L3 (NRF3), which are widely expressed, earlier studies had suggested that the major sites of NFE2 expression are hematopoietic cells. Based on cell culture studies it was proposed that this protein acts as a critical regulator of globin gene expression. However, the knockout mouse model displayed only mild erythroid abnormalities, while the major phenotype was a defect in megakaryocyte biogenesis. Indeed, absence of NFE2 led to severely impaired platelet production. A series of recent data, also summarized here, shed new light on the various functional roles of NFE2 and the regulation of its activity. NFE2 is part of a complex regulatory network, including transcription factors such as GATA1 and RUNX1, controlling megakaryocytic and/or erythroid cell function. Surprisingly, it was recently found that NFE2 also has a role in non-hematopoietic tissues, such as the trophoblast, in which it is also expressed, as well as the bone, opening the door to new research areas for this transcription factor. Additional data showed that NFE2 function is controlled by a series of posttranslational modifications. Important strides have been made with respect to the clinical significance of NFE2, linking this transcription factor to hematological disorders such as polycythemias.
Collapse
Affiliation(s)
- Jadwiga J. Gasiorek
- Lady Davis Institute for Medical Research, McGill University, 3755 Chemin de la Côte Sainte-Catherine, Montreal, QC H3T 1E2 Canada
- Department of Medicine, McGill University, Montreal, QC Canada
| | - Volker Blank
- Lady Davis Institute for Medical Research, McGill University, 3755 Chemin de la Côte Sainte-Catherine, Montreal, QC H3T 1E2 Canada
- Department of Medicine, McGill University, Montreal, QC Canada
- Department of Physiology, McGill University, Montreal, QC Canada
| |
Collapse
|
18
|
Docanto MM, Ham S, Corbould A, Brown KA. Obesity-Associated Inflammatory Cytokines and Prostaglandin E2 Stimulate Glucose Transporter mRNA Expression and Glucose Uptake in Primary Human Adipose Stromal Cells. J Interferon Cytokine Res 2015; 35:600-5. [PMID: 25839190 DOI: 10.1089/jir.2014.0194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Obesity is associated with chronic low-grade inflammation. This occurs largely as a result of the infiltration of immune cells within the obese adipose, which produce a number of inflammatory factors, including interleukin-6 (IL-6), IL-1β, tumor necrosis factor-α (TNFα), and prostaglandin E(2) (PGE(2)). These factors have previously been shown to affect insulin-mediated glucose uptake in differentiated adipocytes. However, the insulin-independent effect of inflammation on adipocyte precursors, the adipose stromal cells, has not been explored. This study therefore aimed to examine the effect of obesity-associated inflammatory factors on the expression of insulin-independent glucose transporters (GLUT1 and GLUT3) and on the uptake of glucose within adipose stromal cells. Primary human subcutaneous adipose stromal cells were isolated from abdominoplasty, and the effect of inflammatory cytokines (IL-6, IL-1β, and TNFα) and PGE(2) on GLUT mRNA expression and glucose transport was assessed using real-time polymerase chain reaction and radiolabeled deoxyglucose uptake assays, respectively. Results demonstrate that all four inflammatory mediators caused a dose-dependent increase in GLUT1 mRNA expression and glucose uptake. GLUT3 mRNA expression was also upregulated by IL-6 (0.5 ng/mL), TNFα (0.1 and 10 ng/mL), and PGE(2) (0.1 μM). Overall, these results demonstrate that obesity-associated inflammation increases insulin-independent glucose transporter expression and glucose uptake in undifferentiated adipose stromal cells.
Collapse
Affiliation(s)
- Maria M Docanto
- 1 Metabolism & Cancer Laboratory, Centre for Cancer Research, MIMR-PHI Institute of Medical Research , Victoria, Australia
| | - Seungmin Ham
- 1 Metabolism & Cancer Laboratory, Centre for Cancer Research, MIMR-PHI Institute of Medical Research , Victoria, Australia
| | - Anne Corbould
- 1 Metabolism & Cancer Laboratory, Centre for Cancer Research, MIMR-PHI Institute of Medical Research , Victoria, Australia .,2 Department of Physiology, Monash University , Clayton, Victoria, Australia
| | - Kristy A Brown
- 1 Metabolism & Cancer Laboratory, Centre for Cancer Research, MIMR-PHI Institute of Medical Research , Victoria, Australia .,2 Department of Physiology, Monash University , Clayton, Victoria, Australia .,3 Department of Molecular and Translational Sciences, Monash University , Clayton, Victoria, Australia
| |
Collapse
|
19
|
Wang RT, Li JY, Cao ZG, Li Y. Mean platelet volume is decreased during an acute exacerbation of chronic obstructive pulmonary disease. Respirology 2014; 18:1244-8. [PMID: 23786593 DOI: 10.1111/resp.12143] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 03/04/2013] [Accepted: 04/25/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVE An increased mean platelet volume (MPV) is an early marker of platelet activation. Activated platelets play a role in atherogenesis, inflammation and atherothrombosis. Chronic obstructive pulmonary disease (COPD) is associated with cardiovascular disease-related mortality. The aim of the study is to measure the MPV in patients with stable and exacerbated COPD. METHODS We investigated the peripheral blood cell count parameters, C-reactive protein (CRP), fibrinogen, lung function parameters and arterial blood gas analysis in patients with COPD and in controls. Seventy participants were investigated at admission for an acute exacerbation of COPD and reassessed when stable. Seventy controls were matched for age, gender, body mass index, medication use and smoking. RESULTS Participants with an exacerbation of COPD had lower MPV and higher CRP, white blood cells (WBC) and fibrinogen compared with when in stable phase of COPD and controls. MPV was also lower in patients in stable phase COPD compared with controls. Negative correlations between MPV and CRP, and between MPV and platelet count were present in patients in stable and exacerbation of COPD. CONCLUSIONS The findings show that COPD patients, during acute exacerbation and in stable phase, have lower MPV compared with healthy controls; the MPV increase once patients have recovered from their exacerbation of COPD.
Collapse
Affiliation(s)
- Rui-tao Wang
- Department of Geriatrics, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | | | | | | |
Collapse
|
20
|
Ferroni P, Guadagni F, Riondino S, Portarena I, Mariotti S, La Farina F, Davì G, Roselli M. Evaluation of mean platelet volume as a predictive marker for cancer-associated venous thromboembolism during chemotherapy. Haematologica 2014; 99:1638-44. [PMID: 25085351 DOI: 10.3324/haematol.2014.109470] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mean platelet volume has been proposed as a predictor for venous thromboembolism in cancer. We, therefore, investigated the effects of different anti-cancer drugs on mean platelet volume in order to assess its possible value in the risk prediction of a first thromboembolic episode in cancer outpatients during treatment. Pre-treatment mean platelet volumes were retrospectively evaluated in 589 ambulatory patients at the beginning of a new chemotherapy regimen. Moreover, serial changes were evaluated at baseline and before each chemotherapy cycle on 385 of the 589 patients who consented to have additional blood withdrawals during treatment. Cox proportional hazards survival analysis demonstrated a 2.7 hazard ratio (P=0.01) of developing a first venous thromboembolic episode during chemotherapy for patients with baseline mean platelet volumes below the 10(th) percentile (<7.3 fL). This index significantly declined during the first three months of chemotherapy (-6%; P<0.0001) reverting to baseline at the end of treatment. Multivariate regression analysis showed that normal baseline volumes (P=0.012) and platinum-based regimens (P=0.017) were both independent predictors of mean platelet volume decline during chemotherapy which, in turn, was associated with a 2.4 hazard ratio (P=0.044) of venous thromboembolism. In conclusion, low pre-chemotherapy mean platelet volume might be regarded as a predictor of increased venous thromboembolism risk in cancer patients and chemotherapy further decreases platelet volumes, possibly due to drug-induced platelet activation and destruction. Changes in mean platelet volumes during chemotherapy might provide additional information on thromboembolic risk of patients treated with anti-cancer drugs, particularly platinum compounds.
Collapse
Affiliation(s)
- Patrizia Ferroni
- Biomarker Discovery and Advanced Biotechnology (BioDAT) Laboratory, IRCCS San Raffaele Pisana, Research Center, Italy
| | - Fiorella Guadagni
- Biomarker Discovery and Advanced Biotechnology (BioDAT) Laboratory, IRCCS San Raffaele Pisana, Research Center, Italy
| | - Silvia Riondino
- Biomarker Discovery and Advanced Biotechnology (BioDAT) Laboratory, IRCCS San Raffaele Pisana, Research Center, Italy Department of Systems Medicine, Medical Oncology, Tor Vergata Clinical Center, University of Rome "Tor Vergata", Rome, Italy
| | - Ilaria Portarena
- Department of Systems Medicine, Medical Oncology, Tor Vergata Clinical Center, University of Rome "Tor Vergata", Rome, Italy
| | - Sabrina Mariotti
- Department of Systems Medicine, Medical Oncology, Tor Vergata Clinical Center, University of Rome "Tor Vergata", Rome, Italy
| | - Francesca La Farina
- San Raffaele Foundation, Ceglie Messapica Hospital, Ceglie Messapicaand, Italy
| | - Giovanni Davì
- Internal Medicine and Center of Excellence on Aging, "G. d'Annunzio" University Foundation, Chieti, Italy
| | - Mario Roselli
- Department of Systems Medicine, Medical Oncology, Tor Vergata Clinical Center, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
21
|
Beaulieu LM, Lin E, Mick E, Koupenova M, Weinberg EO, Kramer CD, Genco CA, Tanriverdi K, Larson MG, Benjamin EJ, Freedman JE. Interleukin 1 receptor 1 and interleukin 1β regulate megakaryocyte maturation, platelet activation, and transcript profile during inflammation in mice and humans. Arterioscler Thromb Vasc Biol 2014; 34:552-64. [PMID: 24458711 DOI: 10.1161/atvbaha.113.302700] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Interleukin 1 Receptor 1 (IL1R1) and its ligand, IL1β, are upregulated in cardiovascular disease, obesity, and infection. Previously, we reported a higher level of IL1R1 transcripts in platelets from obese individuals of the Framingham Heart Study (FHS), but its functional effect in platelets has never been described. Additionally, IL1β levels are increased in atherosclerotic plaques and in bacterial infections. The aim of this work is to determine whether IL1β, through IL1R1, can activate platelets and megakaryocytes to promote atherothrombosis. APPROACH AND RESULTS We found that IL1β-related genes from platelets, as measured in 1819 FHS participants, were associated with increased body mass index, and a direct relationship was shown in wild-type mice fed a high-fat diet. Mechanistically, IL1β activated nuclear factor-κB and mitogen-activated protein kinase signaling pathways in megakaryocytes. IL1β, through IL1R1, increased ploidy of megakaryocytes to 64+ N by 2-fold over control. IL1β increased agonist-induced platelet aggregation by 1.2-fold with thrombin and 4.2-fold with collagen. IL1β increased adhesion to both collagen and fibrinogen, and heterotypic aggregation by 1.9-fold over resting. High fat diet-enhanced platelet adhesion was absent in IL1R1(-/-) mice. Wild-type mice infected with Porphyromonas gingivalis had circulating heterotypic aggregates (1.5-fold more than control at 24 hours and 6.2-fold more at 6 weeks) that were absent in infected IL1R1(-/-) and IL1β(-/-) mice. CONCLUSIONS In summary, IL1R1- and IL1β-related transcripts are elevated in the setting of obesity. IL1R1/IL1β augment both megakaryocyte and platelet functions, thereby promoting a prothrombotic environment during infection and obesity; potentially contributing to the development of atherothrombotic disease.
Collapse
Affiliation(s)
- Lea M Beaulieu
- From the Department of Medicine (L.M.B., M.K., K.T., J.E.F.) and Quantitative Health Sciences (E.M.), University of Massachusetts Medical School, Worcester, MA; Department of Medicine (E.L., M.K., E.O.W., C.D.K., C.A.G., E.J.B.), Section of Infectious Disease (C.A.G.), and Department of Microbiology (C.A.G.), Boston University School of Medicine, MA; NHLBI and Boston University's Framingham Heart Institute, Framingham, MA (M.G.L., E.J.B.); and Department of Mathematics and Statistics, Boston University, MA (M.G.L.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hasselbalch HC. A role of NF-E2 in chronic inflammation and clonal evolution in essential thrombocythemia, polycythemia vera and myelofibrosis? Leuk Res 2013; 38:263-6. [PMID: 23932394 DOI: 10.1016/j.leukres.2013.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 07/01/2013] [Indexed: 01/18/2023]
Abstract
A novel murine model for myeloproliferative neoplasms (MPNs) generated by overexpression of the transcription factor NF-E2 has recently been described. Sustained overexpression of NF-E2 in this model induced myeloid expansion with anemia, leukocytosis and thrombocytosis. Herein, it is debated if NF-E2 overexpression also might have induced a sustained state of in vivo leukocyte and platelet activation with chronic and self-perpetuating production of inflammatory products from activated leukocytes and platelets. If so, this novel murine model also may excellently describe the deleterious impact of sustained chronic NF-E2 overexpression during uncontrolled chronic inflammation upon the hematopoietic system--the development of clonal myeloproliferation. Accordingly, this novel murine model may also have delivered the proof of concept of chronic inflammation as a trigger and driver of clonal evolution in MPNs.
Collapse
Affiliation(s)
- Hans C Hasselbalch
- Department of Hematology, Roskilde Hospital, University of Copenhagen, Denmark.
| |
Collapse
|
23
|
Hasselbalch HC. The role of cytokines in the initiation and progression of myelofibrosis. Cytokine Growth Factor Rev 2013; 24:133-45. [DOI: 10.1016/j.cytogfr.2013.01.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 01/09/2013] [Indexed: 12/21/2022]
|
24
|
Thrombocytosis and Essential Thrombocythemia. Platelets 2013. [DOI: 10.1016/b978-0-12-387837-3.00049-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Blank V. Small Maf proteins in mammalian gene control: mere dimerization partners or dynamic transcriptional regulators? J Mol Biol 2007; 376:913-25. [PMID: 18201722 DOI: 10.1016/j.jmb.2007.11.074] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 11/09/2007] [Accepted: 11/26/2007] [Indexed: 12/13/2022]
Abstract
The small Maf basic leucine zipper (bZIP) proteins MafF, MafG and MafK, while modest in size, have emerged as crucial regulators of mammalian gene expression. Intriguingly, small Mafs do not contain an obvious transcriptional activation domain. However, previously perceived as "mere" partner molecules conferring DNA binding specificity to complexes with larger bZIP proteins, such as the CNC family member Nrf2, it has become clear that small Maf proteins are essential and dynamically regulated transcription factors. Current data suggest stringent control of small Maf protein function through transcriptional and post-translational mechanisms. Initial gene targeting experiments revealed considerable functional redundancy among small Maf proteins in vivo. This was not unexpected, due to the high level of homology among the three small Mafs. Nevertheless, further studies showed that these transcription factors have critical roles in various cellular processes, including stress signaling, hematopoiesis, CNS function and oncogenesis. Recent data provide a possible link between small Maf-mediated transcription and the inflammatory response.
Collapse
Affiliation(s)
- Volker Blank
- Lady Davis Institute for Medical Research, 3755, Côte Sainte-Catherine, Montreal, Quebec, Canada.
| |
Collapse
|
26
|
Tefferi A. Thrombocytosis and Essential Thrombocythemia. Platelets 2007. [DOI: 10.1016/b978-012369367-9/50818-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Ren S, Xin C, Beck KF, Saleem MA, Mathieson P, Pavenstädt H, Pfeilschifter J, Huwiler A. PPARalpha activation upregulates nephrin expression in human embryonic kidney epithelial cells and podocytes by a dual mechanism. Biochem Biophys Res Commun 2005; 338:1818-24. [PMID: 16288986 DOI: 10.1016/j.bbrc.2005.10.158] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Accepted: 10/21/2005] [Indexed: 11/18/2022]
Abstract
Nephrin is an important member of the glomerular ultrafiltration complex and changes in its expression are associated with severe proteinuria. In this study, we show that synthetic PPARalpha agonists, but not PPARgamma agonists, stimulate an increased nephrin mRNA and protein expression in cultures of human podocytes and A293 human embryonic kidney epithelial cells which are blocked by the PPARalpha antagonist Ru486. Furthermore, the PPARalpha agonists have an additive effect on the interleukin-1beta (IL-1beta)-induced nephrin upregulation. Luciferase-reporter assays reveal that human nephrin promoter activity is stimulated by the PPARalpha agonists. Neither IL-1beta nor TNFalpha alone has an effect on nephrin promoter activity suggesting that additional posttranscriptional regulatory events might be operative. The role of nephrin mRNA stability regulation was evaluated in cells treated with actinomycin D to stop further RNA transcription. In the presence of PPARalpha agonists, IL-1beta or TNFalpha, the decay of nephrin mRNA was drastically reduced thus arguing for an additional posttranscriptional mode of action. In summary, these data show that PPARalpha activation causes an increased nephrin expression by a dual action, on the one hand by stimulating nephrin promoter activity and on the other hand by reducing nephrin mRNA degradation. These findings may have importance for treatment strategies of renal diseases affecting the expression of nephrin and subsequently the proper action of the glomerular filtration apparatus.
Collapse
Affiliation(s)
- Shuyu Ren
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
This review summarizes current data on the pathomechanisms and clinical aspects of primary and secondary thrombocytosis in childhood. Primary thrombocytosis is extremely rare in childhood, mostly diagnosed at the beginning of the second decade of life. As in adults, the criteria of the Polycythemia Vera Group are appropriate to diagnose primary thrombocytosis. The pathomechansims of non-familial forms are complex and include spontaneous formation of megakaryopoietic progenitors and increased sensitivity to thrombopoietin (Tpo). Familial forms can be caused by mutations in Tpo or Tpo receptor (c-mpl) genes. These mutations result in overexpression of Tpo, sustained intracellular signalling or disturbed regulation of circulating Tpo. Treatment of primary thrombocytosis is not recommended if platelet counts are <1500/nl and bleeding or thrombosis did not occur in patient's history. In severe cases, decision on treatment should weigh potential risks of treatment options (hydroxyurea, anagrelide) against expected benefits for preventing thrombosis or haemorrhage. Secondary thrombocytosis is frequent in children, in particular in the first decade of life. Hepatic Tpo production is stimulated in acute response reaction to a variety of disorders. Thrombosis prophylaxis is not required, even at platelet counts >1000/nl, except for cases with additional prothrombotic risk factors.
Collapse
Affiliation(s)
- Christof Dame
- Department of Neonatology, Charité- University Medicine Berlin, Campus Virchow-Klinikum, Berlin, Germany.
| | | |
Collapse
|
29
|
Schaefer L, Ren S, Schaefer RM, Mihalik D, Babelova A, Huwiler A, Pfeilschifter J. Nephrin expression is increased in anti-Thy1.1-induced glomerulonephritis in rats. Biochem Biophys Res Commun 2004; 324:247-54. [PMID: 15465010 DOI: 10.1016/j.bbrc.2004.09.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Indexed: 10/26/2022]
Abstract
Nephrin is an important constituent of the glomerular filtration barrier and alteration of its expression is associated with severe proteinuria. In this study we show that injection of an anti-Thy1.1 antibody in rats not only induces a mesangioproliferative glomerulonephritis associated with increased proteinuria, but also leads to a sustained increase of nephrin mRNA and protein expression in renal glomeruli over a time period of 29 days. In contrast, podocin and CD2AP, two proteins shown to interact with nephrin in the slit diaphragm, are acutely downregulated at days 3-7 and, thereafter, recovered again to normal levels after 29 days. Interestingly, immunofluorescence staining of kidney sections at day 10 of the disease shows a highly heterogeneous pattern, in that some podocytes show complete absence of nephrin, whereas others show highly accumulated staining for nephrin compared to control sections, which in total results in an increased level of nephrin per glomerulus. In summary, our data show that in the course of mesangioproliferative glomerulonephritis in rats, an upregulation of nephrin expression occurs with a concomitant transient downregulation of podocin and CD2AP which may account for a highly dysregulated filtration barrier and increased proteinuria.
Collapse
Affiliation(s)
- Liliana Schaefer
- Medizinische Klinik und Poliklinik D, Wilhelm Universität Münster, Albert Schweitzer Str.33, D-48149 Münster, Germany
| | | | | | | | | | | | | |
Collapse
|