1
|
Singh P, Khatib MN, Ballal S, Kaur M, Nathiya D, Sharma S, Prasad GVS, Sinha A, Gaidhane AM, Mohapatra P, Varma A, Lakhanpal S, Shabil M, Bushi G, Sah S, Abu Serhan H. West Nile Virus in a changing climate: epidemiology, pathology, advances in diagnosis and treatment, vaccine designing and control strategies, emerging public health challenges - a comprehensive review. Emerg Microbes Infect 2025; 14:2437244. [PMID: 39614679 DOI: 10.1080/22221751.2024.2437244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/29/2024] [Accepted: 11/28/2024] [Indexed: 12/01/2024]
Abstract
ABSTRACTWest Nile Virus (WNV), first identified in Uganda in 1937, remains a significant global health threat, adapting across diverse ecosystems and expanding geographically, particularly into temperate regions of Europe and North America. This review provides a comprehensive exploration of the latest insights and challenges in WNV management, focusing on epidemiological trends, molecular advancements, and public health implications. Recent data highlight WNV's expansion, driven by climate changes such as milder winters and longer warm seasons that increase mosquito activity and enable the virus to overwinter within mosquito populations. This facilitates year-round transmission and challenges current control strategies. Molecularly, advancements in genomic and proteomic technologies have deepened our understanding of WNV's replication and pathogenesis, identifying new therapeutic targets and improving diagnostic methods. However, the absence of an approved human vaccine leaves management dependent on supportive care, particularly for severe neurological cases. Effective vector control remains crucial, with innovative strategies including genetically modified mosquitoes and novel insecticides being pivotal. Furthermore, environmental factors like climate change and urbanization are altering vector behaviors and WNV transmission dynamics, necessitating adaptive public health strategies to manage these evolving threats. The review underscores the need for ongoing research, vaccine and therapeutic development, and enhanced public health infrastructures to better respond to WNV challenges. It stresses the critical role of integrating scientific research, public health policy, and community engagement to effectively address the persistent threat of WNV.
Collapse
Affiliation(s)
- Parminder Singh
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mahalaqua Nazli Khatib
- Division of Evidence Synthesis, Global Consortium of Public Health and Research, Datta Meghe Institute of Higher Education, Wardha, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, India
| | - Mandeep Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University, Jaipur, India
| | - Shilpa Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, India
| | - Aashna Sinha
- Division of Research and Innovation, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Abhay M Gaidhane
- Jawaharlal Nehru Medical College, and Global Health Academy, School of Epidemiology and Public Health, Datta Meghe Institute of Higher Education, Wardha, India
| | - Priyanka Mohapatra
- Evidence for Policy and Learning, Global Center for Evidence Synthesis, Chandigarh, India
| | - Amit Varma
- Department of General Medicine, Graphic Era (Deemed to be University), Dehradun, India
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Muhammed Shabil
- University Center for Research and Development, Chandigarh University, Mohali, India
- Medical Laboratories Techniques Department, AL-Mustaqbal University, Babil, Iraq
| | - Ganesh Bushi
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Sanjit Sah
- Department of Paediatrics, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Pune, India
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Pune, India
- Department of Medicine, SR Sanjeevani Hospital, Kalyanpur, Siraha, Nepal
| | | |
Collapse
|
2
|
Costa-da-Silva AL, Dye-Braumuller KC, Wagner-Coello HU, Li H, Johnson-Carson D, Gunter SM, Nolan MS, DeGennaro M. Landscape and meteorological variables associated with Aedes aegypti and Aedes albopictus mosquito infestation in two southeastern U.S.A. coastal cities. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2024; 50:28-38. [PMID: 39658537 DOI: 10.52707/1081-1710-50.1-28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/18/2024] [Indexed: 12/12/2024]
Abstract
Human cases of arboviral disease transmitted by Aedes mosquitoes are increasing worldwide and spreading to new areas of the United States. These diseases continue to re-emerge, likely due to changes in vector ecology, urbanization, human migration, and larger range of climatic suitability. Recent shifts in landscape and weather variables are predicted to impact the habitat patterns of urban mosquitoes such as Aedes aegypti and Aedes albopictus. Miami, FL is in the tropical zone, while Charleston, SC is in the humid subtropical zone, and both cities are established hotspots for arboviruses. We applied remote sensing with land-use cover and weather variation to identify mosquito infestation patterns. We detected statistically significant positive and negative associations between entomological indicators and most weather variables in combined data from both cities. For all entomological indices, weekly wind speed and relative humidity were significantly positively associated, while precipitation and maximum temperature were significantly negatively associated. Aedes egg abundance was significantly positively associated with open land in Charleston but was negatively associated with vegetation cover in combined data.
Collapse
Affiliation(s)
- Andre Luis Costa-da-Silva
- Kimberly Green Latin American and Caribbean Center, Florida International University, Miami, FL 33199, U.S.A
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, U.S.A
- Department of Biological Sciences, Florida International University, Miami, FL 33199, U.S.A
| | - Kyndall C Dye-Braumuller
- Institute for Infectious Disease Translational Research, University of South Carolina, Columbia, SC 29208, U.S.A
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC 29208, U.S.A
| | - Helen Urpi Wagner-Coello
- Kimberly Green Latin American and Caribbean Center, Florida International University, Miami, FL 33199, U.S.A
- Department of Biological Sciences, Florida International University, Miami, FL 33199, U.S.A
| | - Huixuan Li
- Institute for Infectious Disease Translational Research, University of South Carolina, Columbia, SC 29208, U.S.A
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC 29208, U.S.A
| | - Danielle Johnson-Carson
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC 29208, U.S.A
| | - Sarah M Gunter
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, U.S.A
| | - Melissa S Nolan
- Institute for Infectious Disease Translational Research, University of South Carolina, Columbia, SC 29208, U.S.A.,
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC 29208, U.S.A
| | - Matthew DeGennaro
- Kimberly Green Latin American and Caribbean Center, Florida International University, Miami, FL 33199, U.S.A.,
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, U.S.A
| |
Collapse
|
3
|
Costa-da-Silva AL, Dye-Braumuller KC, Wagner-Coello HU, Li H, Johnson-Carson D, Gunter SM, Nolan MS, DeGennaro M. Landscape and meteorological variables associated with Aedes aegypti and Aedes albopictus mosquito infestation in two southeastern USA coastal cities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597792. [PMID: 38895389 PMCID: PMC11185711 DOI: 10.1101/2024.06.06.597792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Aedes transmitted arboviral human cases are increasing worldwide and spreading to new areas of the United States of America (USA). These diseases continue to re-emerge likely due to changes in vector ecology, urbanization, human migration, and larger range of climatic suitability. Recent shifts in landscape and weather variables are predicted to impact the habitat patterns of urban mosquitoes such as Aedes aegypti and Aedes albopictus. Miami (FL) is in the tropical zone and an established hotspot for arboviruses, while Charleston (SC) is in the humid subtropical zone and newly vulnerable. Although these coastal cities have distinct climates, both have hot summers. To understand mosquito infestation in both cities and potentiate our surveillance effort, we performed egg collections in the warmest season. We applied remote sensing with land-use cover and weather variation to identify mosquito infestation patterns. Our study found predominant occurrence of Ae. aegypti and, to a lesser extent, Ae. albopictus in both cities. We detected statistically significant positive and negative associations between entomological indicators and most weather variables in combined data from both cities. For all entomological indices, weekly wind speed and relative humidity were significantly positively associated, while precipitation and maximum temperature were significantly negatively associated. Aedes egg abundance was significantly positively associated with open land in Charleston but was negatively associated with vegetation cover in combined data. There is a clear need for further observational studies to determine the impact of climate change on Ae. aegypti and Ae. albopictus infestation in the Southeastern region of the USA.
Collapse
Affiliation(s)
- Andre Luis Costa-da-Silva
- Kimberly Green Latin American and Caribbean Center, Florida International University, Miami, FL 33199
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199
- Department of Biological Sciences, Florida International University, Miami, FL 33199
| | - Kyndall C Dye-Braumuller
- Institute for Infectious Disease Translational Research, University of South Carolina, Columbia, SC 29208
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC 29208
| | - Helen Urpi Wagner-Coello
- Kimberly Green Latin American and Caribbean Center, Florida International University, Miami, FL 33199
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199
- Department of Biological Sciences, Florida International University, Miami, FL 33199
| | - Huixuan Li
- Institute for Infectious Disease Translational Research, University of South Carolina, Columbia, SC 29208
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC 29208
| | - Danielle Johnson-Carson
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC 29208
| | - Sarah M Gunter
- Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030
| | - Melissa S Nolan
- Institute for Infectious Disease Translational Research, University of South Carolina, Columbia, SC 29208
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC 29208
| | - Matthew DeGennaro
- Kimberly Green Latin American and Caribbean Center, Florida International University, Miami, FL 33199
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199
- Department of Biological Sciences, Florida International University, Miami, FL 33199
| |
Collapse
|
4
|
Unlu I, Buckner EA, Medina J, Vasquez C, Cabrera A, Romero-Weaver AL, Ramirez D, Kendziorski NL, Kosinski KJ, Fedirko TJ, Ketelsen L, Dorsainvil C, Estep AS. Insecticide resistance of Miami-Dade Culex quinquefasciatus populations and initial field efficacy of a new resistance-breaking adulticide formulation. PLoS One 2024; 19:e0296046. [PMID: 38346028 PMCID: PMC10861066 DOI: 10.1371/journal.pone.0296046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/05/2023] [Indexed: 02/15/2024] Open
Abstract
Sporadic outbreaks of human cases of West Nile virus (WNV), primarily vectored by Culex quinquefasciatus Say in suburban and urban areas, have been reported since introduction of the virus into Florida in 2001. Miami-Dade County, Florida is part of one of the largest metropolitan areas in the United States, supports Cx. quinquefasciatus year-round, and recently experienced over 60 human cases of WNV during one outbreak. To facilitate more effective integrated vector management and public health protection, we used the Centers for Disease Control and Prevention (CDC) bottle bioassay method to evaluate the susceptibility of adult Cx. quinquefasciatus collected from 29 locations throughout Miami-Dade County to pyrethroid and organophosphate adulticide active ingredients (AIs) used by Miami-Dade County Mosquito Control. We also determined the frequency of the 1014 knockdown resistance (kdr) mutation for Cx. quinquefasciatus from a subset of 17 locations. We detected resistance to two pyrethroid AIs in all tested locations (permethrin: 27 locations, deltamethrin: 28 locations). The 1014F allele was widely distributed throughout all 17 locations sampled; however, 29.4% of these locations lacked 1014F homozygotes even though phenotypic pyrethroid resistance was present. Organophosphate resistance was more variable; 20.7% of the locations tested were susceptible to malathion, and 33.3% of the populations were susceptible to naled. We subsequently conducted a field trial of ReMoa Tri, a recently approved multiple AI adulticide formulation labelled for resistant mosquitoes, against a mixed location field population of Miami-Dade Cx. quinquefasciatus. Average 24-hr mortality was 65.1 ± 7.2% and 48-hr mortality increased to 85.3 ± 9.1%, indicating good control of these resistant Cx. quinquefasciatus. This current study shows that insecticide resistance is common in local Cx. quinquefasciatus but effective options are available to maintain control during active disease transmission in Miami-Dade County.
Collapse
Affiliation(s)
- Isik Unlu
- Miami-Dade County Mosquito Control Division, Miami, Florida, United States of America
| | - Eva A. Buckner
- Department of Entomology and Nematology, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, Florida, United States of America
| | - Johanna Medina
- Miami-Dade County Mosquito Control Division, Miami, Florida, United States of America
| | - Chalmers Vasquez
- Miami-Dade County Mosquito Control Division, Miami, Florida, United States of America
| | - Aimee Cabrera
- Miami-Dade County Mosquito Control Division, Miami, Florida, United States of America
| | - Ana L. Romero-Weaver
- Department of Entomology and Nematology, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, Florida, United States of America
| | - Daviela Ramirez
- Department of Entomology and Nematology, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, Florida, United States of America
| | - Natalie L. Kendziorski
- Department of Entomology and Nematology, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, Florida, United States of America
| | - Kyle J. Kosinski
- Department of Entomology and Nematology, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, Florida, United States of America
| | - T. J. Fedirko
- Department of Entomology and Nematology, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, Florida, United States of America
| | - Leigh Ketelsen
- Department of Entomology and Nematology, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, Florida, United States of America
| | - Chelsea Dorsainvil
- Department of Entomology and Nematology, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, Florida, United States of America
| | - Alden S. Estep
- Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, Gainesville, Florida, United States of America
| |
Collapse
|
5
|
Lippi CA, Mundis SJ, Sippy R, Flenniken JM, Chaudhary A, Hecht G, Carlson CJ, Ryan SJ. Trends in mosquito species distribution modeling: insights for vector surveillance and disease control. Parasit Vectors 2023; 16:302. [PMID: 37641089 PMCID: PMC10463544 DOI: 10.1186/s13071-023-05912-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023] Open
Abstract
Species distribution modeling (SDM) has become an increasingly common approach to explore questions about ecology, geography, outbreak risk, and global change as they relate to infectious disease vectors. Here, we conducted a systematic review of the scientific literature, screening 563 abstracts and identifying 204 studies that used SDMs to produce distribution estimates for mosquito species. While the number of studies employing SDM methods has increased markedly over the past decade, the overwhelming majority used a single method (maximum entropy modeling; MaxEnt) and focused on human infectious disease vectors or their close relatives. The majority of regional models were developed for areas in Africa and Asia, while more localized modeling efforts were most common for North America and Europe. Findings from this study highlight gaps in taxonomic, geographic, and methodological foci of current SDM literature for mosquitoes that can guide future efforts to study the geography of mosquito-borne disease risk.
Collapse
Affiliation(s)
- Catherine A Lippi
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32601, USA.
| | - Stephanie J Mundis
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA
| | - Rachel Sippy
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA
- School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS, UK
| | - J Matthew Flenniken
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA
| | - Anusha Chaudhary
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA
| | - Gavriella Hecht
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32601, USA
| | - Colin J Carlson
- Center for Global Health Science and Security, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - Sadie J Ryan
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32601, USA.
| |
Collapse
|
6
|
Wilke ABB, Damian D, Litvinova M, Byrne T, Zardini A, Poletti P, Merler S, Mutebi JP, Townsend J, Ajelli M. Spatiotemporal distribution of vector mosquito species and areas at risk for arbovirus transmission in Maricopa County, Arizona. Acta Trop 2023; 240:106833. [PMID: 36736524 DOI: 10.1016/j.actatropica.2023.106833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 02/04/2023]
Abstract
Mosquito-borne diseases are a major global public health concern and mosquito surveillance systems are essential for the implementation of effective mosquito control strategies. The objective of our study is to determine the spatiotemporal distribution of vector mosquito species in Maricopa County, AZ from 2011 to 2021, and to identify the hotspot areas for West Nile virus (WNV) and St. Louis Encephalitis virus (SLEV) transmission in 2021. The Maricopa County Mosquito Control surveillance system utilizes BG-Sentinel and EVS-CDC traps throughout the entire urban and suburban areas of the county. We estimated specific mosquito species relative abundance per unit area using the Kernel density estimator in ArcGIS 10.2. We calculated the distance between all traps in the surveillance system and created a 4 km buffer radius around each trap to calculate the extent to which each trap deviated from the mean number of Culex quinquefasciatus and Culex tarsalis collected in 2021. Our results show that vector mosquito species are widely distributed and abundant in the urban areas of Maricopa County. A total of 691,170Cx. quinquefasciatus, 542,733 Cx. tarsalis, and 292,305 Aedes aegypti were collected from 2011 to 2022. The relative abundance of Ae. aegypti was highly seasonal peaking in the third and fourth quarters of the year. Culex quinquefasciatus, on the other hand, was abundant throughout the year with several regions consistently yielding high numbers of mosquitoes. Culex tarsalis was abundant but it only reached high numbers in well-defined areas near irrigated landscapes. We also detected high levels of heterogeneity in the risk of WNV and SLEV transmission to humans disregarding traps geographical proximity. The well-defined species-specific spatiotemporal and geographical patterns found in this study can be used to inform vector control operations.
Collapse
Affiliation(s)
- André B B Wilke
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA.
| | - Dan Damian
- Maricopa County Environmental Services, Department Vector Control Division, Phoenix, AZ, USA
| | - Maria Litvinova
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA
| | - Thomas Byrne
- Center for Healthcare Organization and Implementation Research, VA Bedford Healthcare System, Bedford, MA, USA; Boston University School of Social Work, Boston, MA, USA
| | - Agnese Zardini
- Center for Health Emergencies, Bruno Kessler Foundation, Trento, Italy
| | - Piero Poletti
- Center for Health Emergencies, Bruno Kessler Foundation, Trento, Italy
| | - Stefano Merler
- Center for Health Emergencies, Bruno Kessler Foundation, Trento, Italy
| | - John-Paul Mutebi
- Arboviral Diseases Branch (ADB), Division of Vector-Borne Diseases (DVBD), Centers for Disease Control and Prevention (CDC), Fort Collins, CO, USA
| | - John Townsend
- Maricopa County Environmental Services, Department Vector Control Division, Phoenix, AZ, USA
| | - Marco Ajelli
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA.
| |
Collapse
|
7
|
Wilke ABB, Mhlanga A, Kummer AG, Vasquez C, Moreno M, Petrie WD, Rodriguez A, Vitek C, Hamer GL, Mutebi JP, Ajelli M. Diel activity patterns of vector mosquito species in the urban environment: Implications for vector control strategies. PLoS Negl Trop Dis 2023; 17:e0011074. [PMID: 36701264 PMCID: PMC9879453 DOI: 10.1371/journal.pntd.0011074] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Mathematical models have been widely used to study the population dynamics of mosquitoes as well as to test and validate the effectiveness of arbovirus outbreak responses and mosquito control strategies. The objective of this study is to assess the diel activity of mosquitoes in Miami-Dade, Florida, and Brownsville, Texas, the most affected areas during the Zika outbreak in 2016-2017, and to evaluate the effectiveness of simulated adulticide treatments on local mosquito populations. To assess variations in the diel activity patterns, mosquitoes were collected hourly for 96 hours once a month from May through November 2019 in Miami-Dade County, Florida, and Brownsville, Texas. We then performed a PERMANOVA followed by a SIMPER analysis to assess whether the abundance and species richness significantly varies at different hours of the day. Finally, we used a mathematical model to simulate the population dynamics of 5 mosquito vector species and evaluate the effectiveness of the simulated adulticide applications. A total of 14,502 mosquitoes comprising 17 species were collected in Brownsville and 10,948 mosquitoes comprising 19 species were collected in Miami-Dade County. Aedes aegypti was the most common mosquito species collected every hour in both cities and peaking in abundance in the morning and the evening. Our modeling results indicate that the effectiveness of adulticide applications varied greatly depending on the hour of the treatment. In both study locations, 9 PM was the best time for adulticide applications targeting all mosquito vector species; mornings/afternoons (9 AM- 5 PM) yielded low effectiveness, especially for Culex species, while at night (12 AM- 6 AM) the effectiveness was particularly low for Aedes species. Our results indicate that the timing of adulticide spraying interventions should be carefully considered by local authorities based on the ecology of the target mosquito species in the focus area.
Collapse
Affiliation(s)
- André B. B. Wilke
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, Indiana, United States of America
| | - Adequate Mhlanga
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, Indiana, United States of America
| | - Allisandra G. Kummer
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, Indiana, United States of America
| | - Chalmers Vasquez
- Miami-Dade County Mosquito Control Division, Miami, Florida, United States of America
| | - Maday Moreno
- Miami-Dade County Mosquito Control Division, Miami, Florida, United States of America
| | - William D. Petrie
- Miami-Dade County Mosquito Control Division, Miami, Florida, United States of America
| | - Art Rodriguez
- Public Health Department, City of Brownsville, Brownsville, Texas, United States of America
| | - Christopher Vitek
- Center for Vector-Borne Diseases, The University of Texas Rio Grande Valley, Texas, United States of America
| | - Gabriel L. Hamer
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - John-Paul Mutebi
- Arboviral Diseases Branch (ADB), Division of Vector-Borne Diseases (DVBD), Centers for Disease Control and Prevention (CDC), Fort Collins, Colorado, United States of America
| | - Marco Ajelli
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, Indiana, United States of America
| |
Collapse
|